
Embedded System

What is embedded system?

An embedded system is some combination of
computer hardware and software, either fixed in
capability or programmable, that is designed for a
specific function or within a larger system.
Industrial machines, agricultural and process
industry devices, automobiles, medical
equipment, cameras, household appliances,
airplanes, vending machines and toys as well as
mobile devices are all possible locations for an
embedded system.

An embedded system has three components −

• It has hardware.

• It has application software.

• It has Real Time Operating system (RTOS)

Advantages

• Easily Customizable

• Low power consumption

• Low cost

• Enhanced performance

Disadvantages

• High development effort

• Larger time to market

Characteristics of an Embedded System

• Single-functioned − An embedded system usually performs
a specialized operation and does the same repeatedly.

• Reactive and Real time − Many embedded systems must
continually react to changes in the system's environment
and must compute certain results in real time without any
delay.

• Microprocessors based − It must be microprocessor or
microcontroller based.

• Memory − It must have a memory, as its software usually
embeds in ROM. It does not need any secondary memories
in the computer.

• Connected − It must have connected peripherals to connect
input and output devices.

• HW-SW systems − Software is used for more features and
flexibility. Hardware is used for performance and security.

Types of Embedded system:

Embedded system can be classified into different types
based on performance function requirement and
performance of the microcontroller.
– Real time embedded system :

An embedded system that gives an output within a
specified amount of real time is
called real time embedded system. That is in
additional to a proper output it depends on
time constant as well.

– Stand Alone embedded system:

These are embedded system that can work by
themselves. In other words they are self
sufficient and don't required a different system
to function. Music players, video gaming and
microwave ovens are the examples of standalon
system.

• Network embedded system:

Embedded system that are connected to the network &
depends on it from their functionally are called network
embedded system. Router
home security system are network embedded system.

• Mobile embedded system

Embedded system that are mobile in nature are called
mobile embedded system. They include generally small
system. They are used in
portable embedded devices like cell phones, mobile, digital
camers, mp3 player and personal digital assistant.

Apllication of embedded system:

Here are some application area of embedded
system:

• Consumer electronics:

Mobile phones , video games, printers, home
entertainment system, television, digital
camera, music player

• Household application:

Washing machine , diswashes, air conditioner,
etc

• Medical equipment:

BLood pressure monitor, CET scanner, heart
beat monitor, ECG machine, etc

• Automobiles
Anticlock breaking system, air conditionor control,
electronic fuel, injections, entertainment systems

• Industrial system
Robotic machine, control system, smoke detector, fire

detector, data collection system, system monitoring,
feedback system

• Aerospace
Navigation system, guided system, global positioning
system (GPS)

• Communication
Router, network hubs, phone, etc

Some Basic terms:
Chips :

Most digital electronic circuits today are built with semi
conductor parts called chips. Chips are purchased from
manufacturers specializing in building such parts.
Semi-conductor themselves are enclosed in small thin
square or rectangle black package made of plastics or
ceramics. Each package made of plastics or ceramics.
Each package have collection of pins and those pins are
response for their own functions. Most digital circuit
use just two voltage to do their work

– OVDC somtimes called ground or low input.
– Either 3V or 5V sometimes called VCC or high

The most common mechanism to connect the chips to
one another is the printed circuit board.

Telegraph

Telegraph : is one of the example of embedded system that
do the long-distance transmission of textual or symbolic (as
opposed to verbal or audio) messages without the physical
exchange of an object bearing the message. Telegraphy
requires that the method used for encoding the message
be known to both sender and receiver. Such methods are
designed according to the limits of the
signaling medium used.
– Telegraph must sort out on the network and provide the clean

data stream to the printer.
– Telegraph has to work with a number of different types of a

printers without customer configuration.
– Telegraph must respond quite rapidly to certain events.
– Telegraph must keep track of time

Gates :
A very simple part built from a handful of semiconductor transistor
is called gates or sometime discrete.

or
" A logic gate is an elementary building block of a digital circuit.
Most logic gates have two inputs and one output.

At any given moment , every terminal is in one of two binary
conditions low (0) or high(1).

Types of Gates:
And gate:

An AND gate is one whose output is driven to high of both the
input are high and in other conditions the output is driven to low

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

OR gate:
An OR gate is one which output is high if either or both of the

inputs are high. AND whose output is driven to low if only if both
input are low.

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

NOT/ INVERTER gate:
Inverter are the very simple gate i.e output driven to low if the

input is high & vice- versa

INPUT OUTPUT
1 0
0 1

Bubble:
The bubble or little loop on the invertor symbol is used in other schematic symbols to
indicate that an input or an output is inverted that is loop when it should be high &
vice versa

A Y
0 0
1 1

X-OR gate:
AN XOR gate is one whose output is driven high if one if the input is high & other input
is low. And if both the input are high or low at that conditions the output is low, then it
is called XOR gate.

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

NAND gate:
NAND gate is not AND gate.

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

Few other basic consideration

Cordless Bar-code scanner

A cordless barcode reader (or barcode scanner)
is an embedded system (electronic device) that
can read and output printed barcodes to
a computer. Like a flatbed scanner, it consists of a
light source, a lens and a light sensor translating
optical impulses into electrical ones. Additionally,
nearly all barcode readers
contain decoder circuitry analyzing the barcode's
image data provided by the sensor and sending
the barcode's content to the scanner's output
port.

Laser Printer

Laser Printer: Another embedded system is a
laser printer. Most laser printers have fairly
substantial microprocessor embedded in them to
control all aspects of the printing. In particular
the microprocessor is responsible for getting the
data from various communication ports on the
printer for sending when the user presses the
certain buttons from the control pannel and for
presenting the messages to the users on the
control panel display.

Under ground tank monitor system

The under ground tank monitor system is one
kind of embedded system that watches the levels
of gasoline in the underground tank at a gas
station. It’s principle purpose is to detect the
leakage before the gas station turns into a toxic
waste dump. The system also has a panel of 16
buttons and a 20 character liquid crystal display
and a thermal printer. With the help of buttons
the user can tell the system to display or print
various information such as gasoline level in tank
or the overall system status.

Nuclear reactor monitor

Nuclear reactor monitor: is an another example
of embedded system that monitors the what is
happening inside the nuclear reactor centre
where huge amount of nuclear reactions are
occurred. In nuclear reactor monitor, there is
hypothetical system that controls the nuclear
reactor. The embedded code that monitors the
two temperature which are always supposed to
be equal. If they differ it indicates that there is
some defects in the system.

Power and Decoupling

A power supply is an electronic device that supplies electric
energy to an electrical load. The primary function of a
power supply is to convert one form of electrical energy to
another and, as a result, power supplies are sometimes
referred to as electric power converters.
A decoupling capacitor is a capacitor used to decouple one
part of an electrical network (circuit) from another. Noise
caused by other circuit elements is shunted through the
capacitor, reducing the effect it has on the rest of the
circuit. An alternative name is bypass capacitor as it is used
to bypass the power supply or other high impedance
component of a circuit.

– A decoupling capacitor can prevent the powered
circuit from seeing that signal, thus decoupling it
from that aspect of the power supply circuit.

– Another kind of decoupling is stopping a portion
of a circuit from being affected by switching that
occurs in another portion of the circuit. Switching
in sub circuit A may cause fluctuations in the
power supply.

Timing Diagrams
Timing is essential to the success of a microcomputer
design. Often it is quite possible to get one system
functioning by simply interconnecting the various
compo­nents. But it is significantly more difficult to be
able to guarantee that many systems will work under
the entire range of possible conditions that they may
be exposed to.
There are many designs in production right now that
have a number of unidentified failures due to the lack
of a worst-case analysis of the design. When timing or
loading problems show up in a design, they usually
appear as intermittent failures or as sensitivity to
power supply fluctuations, tempera­ture changes, and
so on.

A timing diagram is a graph that shows the
passage of time on the horizontal axis and show
each of the input and output signals changing
and the relationship of the changes to one
another. For examples NAND gates are simple
that manufacture normally published a time
diagram. In the figure you can see that whenever
one of the inputs goes low, the output goes high.

Fig:

D Flip-Flops

A D flip-flop is a circuit that has two stable states and can
be used to store state information. A D flip flop is also
known as a register, D-flop or a flip-flop or even just a flop.
A D flip-flop is essentially a 1-bit memory. The transition of
a signal from low to high is called a rising edge. The
transition of a signal from high to low is called a falling
edge.
The Q output on the D flip-flop takes on the value of the D
input at the time that the CLK input transition from low to
high, that is, at the CLK signal’s rising edge. Then the Q
output holds that value until the CLK is driven low again
and then high again. Some D flip-flops also have a CLEAR/
signal and a PRESET/ signal. On those parts, asserting the
CLREAR/ signal forces the Q signal low, no matter what the
CLK and D signals are doing; asserting the PRESET/ signal
forces the Q signal high.

Clock
Microprocessor based circuit must go on executing
instruction even if nothing changes in the outside. To
accomplish this, most circuits have a signal called the
clock. The purpose of the clock signal is to provide
rising and falling edges to make other parts of the
circuit do their jobs. The two types of parts used to
generate clock signals are oscillators and crystal.
– Oscillators is a part that generates a clock signal all by

itself. Oscillators typically come in metallic packages with
four pins: one for VCC, one for ground, one that the clock
signal, and one that is there just to make easier to solder.

– A crystal has just two signal connections, and you must
build a little circuit around it to get a clock signal out.
Many microprocessors have two pins on them for
attachment to a circuit containing a crystal.

Memory
ROM: Almost every computer system needs a memory area
in which to store the instruction of its program. This must
be a non-volatile memory, that is, one that doesn’t forget
its data when the power is turned off. In most embedded
systems, which do not have a disk drive or other storage
medium, the entire program must be in memory that is
called ROM.
The characteristics of ROM are the following:
– `The microprocessor can read the program instructions from the

ROM quickly.
– The microprocessor can not write new data to the ROM.
– The ROM remembers the data, even if the power is turned off.

Required figure

In the figure, the signal from A0 to An are the
address signal, which indicate the address
from which the processor wants to read. The
signal from D0 to Dn are the data signals
driven by the ROM. The CE/ signal is the chip
enable signal, which tells the ROM that the
microprocessor wants to activate the ROM.
The RE/ signal is the read enable signal, which
indicates that the ROM should drive its data
on the D0 to Dn signals.

Timing Diagram for ROM

Above figure shows the timing diagram for ROM
with parts such as memory chips, which have
multiple address or data signals, it is common to
show a group of such related signals on a single
row of the timing diagram. With such a group of
signals, a single line that is neither high nor low
indicates that the signals are floating or changing.
When the signals take on a particular value, that
is shown in the timing diagram with two lines,
one high and one low, to indicate that each of the
signals has been driven either high or low.

The sequence of events when a microprocessor
reads from a ROM is as follows:
– The microprocessor drives the address lines with the

address of the location it wants to fetch from the
ROM.

– At about the same time, the chip enable signal is
asserted.

– A little while later the microprocessor asserts the read
line.

– The ROM drives the data onto the data lines for the
microprocessor to read

– When the microprocessor has been seen the data on
the data lines it releases the chip enables and read
enable lines.

Microprocessor
A microprocessor is a system processor which
incorporates the functions of a system's central
processing unit (CPU) on a single integrated
circuit (IC), or at most a few integrated circuits. The
microprocessor is a multipurpose, clock
driven, register based, programmable electronic device
which accepts digital or binary data as input, processes
it according to instructions stored in its memory, and
provides results as output.
A collection of address signal is used to tell the various
other parts of the circuit memory. For example:- the
addresses it want to read from or write to. A collection
of data signals, it uses to get the data from and send
data to another parts in the circuit.

A READ/ line which it pulses low when it
wants to get data and a WRITE/ line which it
pulses low when it wants to write data out. A
clock signal input which paces(speed) all of
the work that the microprocessor does and as
a consequence pace the work in the rest of
the system. Some microprocessor have two
clocks inputs to allow the designer to attached
the crystal circuit.

Buses
A system bus is a single system bus that
connects the major components of a system,
combining the functions of a data bus to carry
information, an address bus to determine
where it should be sent, and a control bus to
determine its operation.

The address, data and control buses are used
for data signals, address signals and control on
the microprocessor. The READ/ signal from the
microprocessor is connected to the output
enable signals on the memory chips.

The write/ signal for microprocessor is
connected to the write enable signals on the
RAM. Some types of the clock circuit is
attached to the clock signals on the
microprocessor. The address signals as a group
are very often refers to as address bus.
Similarly the data signals are refers to as data
bus. The combination of two bus the READ &
WRITE signals from the processors are
referred to as microprocessor bus.

Bus handshaking
The RAM & ROM will have various timing requirements. The

address line must stay stable for a certain period of time and
read enable & chip enable lines must be asserted for some
period of time then the data will be valid on the bus. The
microprocessor is in control of all these signals and it decides
when to took for data on the bus. The entire process is called
bus cycle. For the circuit to work the signals that the
microprocessor produces must confirm to the requirement of
the other parts in the circuit. The various mechanism by
which this can be accomplish are referred to as bus
handshaking.

No Bus Handshaking
If there is no bus handshaking then the
microprocessor just derive the signals at
whatever speed suits it and it is up to the
other parts of the circuit to keep up. In this
scenario the hardware engineer parts for the
circuit that can keep up with the
microprocessor . For example we can
purchase the ROM’s that respond in 120, 90,
70 nanoseconds depending on how fast they
must be keep up with our microprocessor.

Wait signals

• Some microprocessor offers the alternative that
they have a wait input signal that the memory
can use to extend the bus cycle as needed. The
figure shows the microprocessor at normal state
and the microprocessor in wait state. As long as
wait signal is asserted the microprocessor will
wait in definitely for the device to put the data on
the bus. The only one disadvantage of wait signal
is that ROM’s and RAM’s do not come from the
manufacturers with a wait signal correctly

Wait State
Some microprocessor offer the alternative for
dealing the slow memory devices i.e. wait state.
For understanding the wait state we need to
first understand how the microprocessor times
the signals on the bus in the first place. The
microprocessor have clock inputs, address lines,
data lines & it uses the clock time for all its
activities in a particular interaction with the bus.

It outputs the address on the rising edge of T1
i.e. when the clock signal transmission from
low to high in the first clock cycle of the bus
cycle. It assert the READ/ line at falling edge of
T1. It expect the data to be valid and actually
takes the data in just a little after the rising
edge of T₃. It desserts the READ/ line at the
falling edge of T₃ & shortly there after stop
driving the address signals there by
completing the transaction.

Direct memory access
Direct memory access (DMA) is a feature of
systems that allows certain hardware
subsystems to access main
system memory (RAM) independently of
the central processing unit(CPU).
One way to get the data into the output of the
system quickly is to use of direct memory
access. DMA is circuit that can read the data
from the I/O devices such as serial port or a
network and then write it into the memory or
read from the memory and write to the I/O
devices. When the I/O devices has data to be
moved into the RAM, it asserts the DMAREQ
signal to the DMA circuit.

The DMA circuit is turn asserts the BUSREQ signal
to the microprocessor. When the microprocessor
is ready to give up the bus-which may mean not
executing instructions for the short period during
which the DMA does it work-it asserts the
BUSACK signal. The DMA circuitry then places the
address into which the data is to be written on
the address bus, asserts DMAACK back to the I/O
device and asserts WRITE/ to the RAM. The I/O
device puts the data on the data bus for the RAM,
completing the write cycle. Fig:

Without DMA, when the CPU is
using programmed input/output, it is typically
fully occupied for the entire duration of the
read or write operation, and is thus
unavailable to perform other work. With
DMA, the CPU first initiates the transfer, then
it does other operations while the transfer is
in progress, and it finally receives
an interrupt from the DMA controller when
the operation is done.

Interrupts

Interrupts is the process of opposing or
stopping the running execution files if
there is some happen occurred. Interrupt
told to stop doing what it is doing and
execute some other pieces of software.
The signals that tells the microprocessor
i.e. it is time to run the interrupt is the
interrupt request.

Watchdog timer
One common part that use in embedded system circuit is
use of watchdog timer. A watchdog timer contains a timer
that expires after the certain interval unless it is started.
The watchdog timer has an output that pulses should the
timer ever expire. The way that the watchdog timer are
connected into the circuit is shown in figure. The output
of watchdog timer is attached to the RESET/ signal on the
microprocessor. If the timer is expired the pulse on its
output signal resets the microprocessor and start the
software over the beginning. Different watchdogs circuits
require different pattern of the signals on their input to
restart them. Some glue circuitry may be necessary to
allow the microprocessor to change the RESTART signal
appropriately.

UART(my definition)

• A universal asynchronous receiver/transmitter
(UART) is a microchip that performs serial-to-
parallel conversion of data received from
peripheral devices and parallel-to-serial
conversion of data coming from the CPU for
transmission to peripheral devices. The UART
chip has control capabilities and the ability to
send an interrupt request to the processor that
can be tailored in a way that minimizes the
software management of the communication link
between a computer and a peripheral device.

UART Functions

• Converts parallel data into serial data for
outbound communications

• Converts serial data into parallel data for inbound
communications

• Adds a parity checking bit on outbound
transmissions and checks the parity bit for
inbound transmissions

• Handles interrupt requests and device
management, which may require the computer
and the device to coordinate the speed of
operation.

UART(Universal Asynchronous
Receiver/transmitter and RS-232)

A UART is a common device i.e. used in many embedded
systems. The main purpose of UART is to convert the data
to and from a several interface i.e. an interface in which
the bits that makeup the data send one after another. A
very common standard for serial interface is RS-232 i.e.
used between computer and modem as well as computer
and mouse. A typical UART and its connection are shown
in figure. On the left hand side of the UART are those
signals that attach to the bus structure address line, data
line, read and write line and interrupt line. At the bottom
of the UART is the connection to a clock circuit.

The clock circuit for the UART is separated
from the microprocessor clock circuit because
it must run at a frequency i.e. the multiple of
common bit rate. The signal on the right are
those that go to the serial port, a line for
transmitting bits one after another(TXD), a
line for receiving the bits(RXD), and some
standard control line used in the RS-232 serial
protocol. Generally UART usually runs at the
standard 3 or 5 volt of the circuit.

Built-Ins on the microprocessor
1) Timer

It is common for microprocessors to have
one or more timers. A timer is essentially a counter
that counts the number of microprocessor clock
cycle and causes an interrupt when the counter
expires. The features of microprocessor counter are

–A pre-scalar divides the microprocessor clock signal by
some constant before the signal gets to the timer.

–The counter can reset itself to its initial value when it
expires and then continue to the count so that it can be
the source of a regular period interrupt.

–The timer can drive an output pin on the
microprocessor either causing the pulse whenever a
timer expires or creating a square wave with an edge
with every timer expiration.

–A timer has an input pin that enable or disable the
counting, the timer circuit also may be able to
function a counter that counts pulse on that input
pin.

2) DMA:
Some DMA channels are used in built microprocessor

chips. Since the DMA channel and the microprocessor contained
for the bus and certain processes are simplify if the DMA channel
and a microprocessor are on the same chips.

3)I/O Pins:
It is common for the microprocessor intended for

embedded system to contain anywhere from a few dozen of I/O
pins. These pin can be configured as a output that the software
can set high or low directly usually by writing to a register or they
can be configure as input that software can read. These pin can be
used for any number of purpose including the following points

A) Turning on and off the led
B) Resetting the watchdogs timer
C) Reading from a one pin or two pin EEROM
D) Switching from one bank of ROM to another if there is

more Ram than the processor can address.

4) Address decoding:

Some microprocessor offers to do some of that

address decoding for you by having a handful of chip enable output
pins that can be connected directly to the other chips. Typically, the
software has to tell the microprocessor that the address range should
assert the various chip enable outputs.

OR

Address decoding refers to the way a computer system
decodes the addresses on the address bus to select memory locations
in one or more memory or peripheral devices.

5) Memory cache and instruction pipeline:

A number of microprocessor particularly faster
RISC(Reduced Instruction Set Computer)system contains a
memory cache or cache in the same chip with the
microprocessor . They are small but extremely fast memory
that the microprocessor uses to speed up its work. The
microprocessor can fetch the items that happens to be in
the cache when they are needed much more quickly then it
can fetch the item from separate memory chip.

An instruction pipeline or pipeline is similar to
a memory cache in that microprocessor and
load into the pipeline instruction that it will
need. The difference between pipelining and
cache are the pipelines typically much smaller
than cache & the logic behind them is often
much simpler and microprocessor uses them
only for instruction not for the data.

Unit 2
introduction

Interrupt causes the µP in the embedded system

to suspend doing whatever it is doing to execute

some different code instead the code that will

response whatever event causes the interrupt.

Interrupt can solve the response problem without

some difficult programming and without

introducing some new problems of their own.

`

Assembly Language
It is human readable form of the instruction that

the µP really knows how to do it. Assembler

translates the ALL into MLL. When the compiler

translates C, most of the statement becomes

multiple instruction for the µP to execute. The

typical µP has a set of registers called general

purpose register.

Most of the µPs have several special purpose

registers called PC which keeps the addresses

of next instruction that the µP executes. Most

of the SPs which stores the memory address of

the top of the general purpose µP stack. Some

µPs can only do arithmetic in special register

called AC. A.L.L. have “JUMP” instruction

that unconditionally continue the execution

from break point.

Interrupt Basic

In Interrupt Basics, we study what the µPs

typically do when an interrupt happens, what

interrupt routines typically do and how they are

usually written. Each of these chips have a pin

that it asserts when it requires services.

Interrupt routines are the sub-routines of that do

whatever needs to be done when interrupt

signals occur.

For eg. When the interrupt come from the

serial port chip and that has service a

character from the serial port, then the

interrupt routine must read the characters from

the serial port chip and put into the memory.

An interrupt routine sometimes called interrupt
handler or interrupt service routine

The last instruction to be executed in an
interrupt routine is an ALL “RETURN”
instruction. When it gets there, the µP
retrieves the address of next instruction from
the stack, and resume execution.

Disabling interrupts
Almost every system allows you to disable
interrupts, usually in a variety of ways. To begin
with, most I/O chips allow our programs to tell
them not to interrupt, even if they need the
microprocessor’s attention. This stops the
interrupt signals at the source. Most
microprocessors allow your program to tell
them to ignore incoming signals on their
interrupt request pins.

Most of a microprocessor have non-maskable
interrupt i.e a hardware interrupt that cannot
be ignore by standard interrupt masking
techniques in the system. Some
microprocessor use different mechanism for
disabling and enabling the interrupt.

These microprocessor assign a priority to each
interrupt request signals and allow the
program to specify the priority of the lowest
priority interrupt that is will to handle at any
given time. It can disable all interrupt by
setting the acceptable priority higher than
that of any interrupt it can enable all interrupt
by setting the acceptable priority of low.

Shared data problem

One problem that arises as soon as you use the

interrupt routines need to communicate with the

rest of your code. It is usually neither possible

nor desirable for the µP to do all it‟s work in

interrupt routines. Therefore interrupt routines

need to signal the task code to do follow up

processing.

For this to happen, the interrupt routines and the
task code must share one or more variables that
they can use to communicate with one another.

\ OR

The shared data problem occurs
when several functions (or ISRs or tasks) shares a
variable. Shared data problem can arise in a
system when another higher priority task finishes
an operation and modifies the data or a variable
before the completion of previous task
operations.

Example
static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
iTemperature[0]=‼ read in values from hardware
iTemperature[1]=‼ read in values from hardware

}
void main(void)
{
int iTemp0,iTemp1;
while (TRUE)
{
iTemp0=iTemperature [0];
i Temp1=iTemperature [1];
If (iTemp0!=iTemp1)
!! Set off howling alarm;

}
}

Above program code segment illustrate the
shared data problem which is the part of
nuclear reactor monitoring system. This code
monitors the two temperatures which are
always supposed to be equal if they differ, it
indicates that there is some malfunctioning in
the reactor.

The main function is in infinite loop making
sure that two temperatures are same. The
interrupt routine vReadTemperatures (void)
happens periodically. If one or both of the
temperatures changes or per haves the timer
interrupt in every few millisecond causes the
µP to jump into the interrupt routine of new
temperature.

Solving shared data problem

• The first method for solving shared data
problem is to disable the interrupt whenever
task code uses the shared data. The hardware
can assert the interrupt signal requesting
service and then µP will not jump to the
interrupt routine while the interrupts are
disable.

Interrupt Latency

• Interrupts are the tools for getting better
response from our system and because the
speed with which an embedded system can
respond is always of interest, one obvious
question is, “How fast may system respond to
each interrupt?” The answer of this question
depends upon a number of factors:-

1. The longest period of time during which the

interrupts is disables.

2. The period of time it takes to execute any interrupt

routines for interrupts that are of higher priority

that the one in question.

3. How long it takes the µP to stop what is doing, do

the necessary bookkeeping, and start executing

instructions within the interrupt routine.

4. How long it takes the interrupt routine to save the

context and then do enough work that what it has

accomplished counts as „respone‟.

The term interrupt latency refers to the amount of

time it takes to execute or to respond by the

system to an interrupt.

For example, suppose that you are writing a

system that controls a factory, and that every

second your system gets 2-dozen of interrupts to

which it must respond promptly to keep the

factory running smoothly .

Suppose that your system monitors a decoder

that checks for gas leaks, and that your system

must call the fire department and shunt down

the affected part of the factory if a gas leak is

detected. The interrupt routine that handles gas

leaks need to be relatively high priority to get

the µP‟s attention first, especially if those

interrupt routines open and close electrical

switches and cause an explosion.

UNIT -3

SURVEY OF SOFTWARE ARCHITECTURE

Introduction

The most important factor that determines which
architecture will be the most appropriate for any given
system & how much we control over the system
response. To achieve the good response it depends not
only on the absolute response time requirement but
also on the speed of the up & and the other processing
requirements. All with different deadlines & different
priorities, the different software architecture are:

i. Round Robin
ii. Round Robin with interrupt
iii. Function queue scheduling architecture.
iv. Real time operating system architecture.

Round Robin:

Round Robin architecture is the simplest
architecture for survey of any embedded
system which consists of no interrupt. The
main loop simply checks each of the I/O
devices in turn & services that needs to
service. Following code segments represents
the prototype for Round Robin.

void main()
{

while(TRUE)
{

if(!! I/O device A need service)
{

!!Take care of I/O Devices A
!! Handle data to or from I/O Device A

}
if(!! I/O Device B needs service)
{

!! Take care of I/O device B
!! Handle data to or from I/O device B

}

etc.
etc.
if (!! I/O device Z needs service)
{

!! Take care of I/O device Z
!! Handle data to or from I/O Device Z

}
}

}

From above code segment there is no interrupt
occur, no share data , no latency concern &
therefore always an attractive potential
architecture. For example a digital multimeter
that measures electrical resistance, current &
potential in the units of Ohm's , amperes & volts
each in the units of ohm's , amperes & volts each
in several different ranges . A typical multimeter
have two probs that the user touches two points
on the circuit to be measure & a digital display &
the rotary switch that selects which
measurement to make in what the range. The
system makes continous measurement & changes
the display to reflect the most recent
measurements. The possible pseudo code for
multimeter is given below.

Void vDigitalMultiMeterMain (void)
{
Enum {OHMS_1,OHMS_10,……,VOLTS_100}
eSwitchPosition;
While(TRUE)
{
eSwitchPosition=!!Read the position of the switch;
switch(eSwitchPosition)
{
case OHMS_1:
!! Read hardware to measure ohms
!!Format result
break;

case OHMS_10
!! Read hardware to measure ohms
!!Format result
break;
.
.
.
case VOLTS_100:
!! Read hardware to measure ohms
!!Format result
break;

}
!! Wrtie result to display
}
}

Advantage and disadvantages of round robin
architecture:

Advantage:
– The round robin architecture has only one

advantage over other architecture is simplicity.

Disadvantages:
– If any one device needs response in less time then

it takes the Microprocessor to get around the
main loop in the worst case scenario.

– Even if one of the required response time are
absolute deadlines the system may not work well
if these is any lengthy processing to do.

Round Robin with interrupt:

In this architecture interrupt routine deals with
the very urgent needs of hardware & sets of flag.
The main loop polls the flag & does any follow of
processing required by the interrupt. This
architecture gives little bit more control over the
priorities. The interrupt routine can get good
response because the hardware interrupt signals
causes the microprocessor to stop what ever it is
doing in the main function & execute the
interrupt routine instead. Effectively all the
processing that we put into the interrupt routine
has higher priority than the task code in the main
routine.

The example of Round Robin with interrupt
are a simple bridge & the Bar Code Scanner.

One example of Round Robin with interrupt is
communication bridge which is device with
two parts on it that forwards the data traffic
received on the first port to the second & vice
- versa which is shown in figure given.

Function queue scheduling Architecture:

In this architecture the interrupt routines
adds the functions pointer to the queue of the
function. The main routine just reads pointer
from the queue and calls the function . In this
architecture the worst wait for the highest
priority task code function is the length of the
longest of the task code function. This worst
case if the longest task code function has just
started when the interrupt for highest priority
device occurs Under the Round Robin with
interrupt architecture all of the task code gets a
change to run .

Under this architecture lower priority
functions may never execute if the priority
function frequently enough to use up all the
microprocessor available time. Although the
function queue scheduling architecture
reduces the worst case response for the high
priority task code & it may still not be good
enough because one of the lower priority task
code functions are quite long and it affect the
response for the highest priority function.

Real time operating system architecture:

In real time operating system architecture the
other interrupt routines take care of the most
urgent operations. They then signal that there is
work for the task code to do. Some features are:
– The necessary signaling between the interrupt

routine & the task code handled by the real time
operating system (RTOS).

– No loop in the code decides what needs to be done
next. Code inside the real time operating system
decides which of the task code function should be
run.

– The RTOS can suspend one task code sub-routine in
the middle of its processing in order to run.

SELECTING AN ARCHITECTURE:

Few suggestions for selecting the system
architecture are:
– Select the simplest architecture that will meet your

response requirement. Writing embedded system
software is complicated enough without choosing
unnecessarily complex architecture for your system.

– IF the system has response requirement that might
necessitate using RTOS. We should lean towards using
real time operating system(RTOS)

– If it makes sense for our system we can create hybrids
for the architectural system.

Unit-4

Real Time Operating System and services

Introduction :
Embedded system is a field in which the terminology is
inconsistent. Many people uses acronym real time OS
are different from desktop machine OS such as
windows , or Linux etc. On a first place, on a desktop
computer the OS takes the controls of the machine as
soon as it is turned on & starts the application
separately from the OS. In embedded system, you
usually link your application and the RTOS. At boot up
time, your application usually gets control first, and it
then starts the RTOS. Thus , the application and the
RTOS are much more tightly tied to one another than
are an application and its desktop operating system.

In the second place, many RTOSs do not protect
themselves as carefully from your application as
do desktop OS. For example, whereas most
desktop operating systems check that any pointer
you pass into a system function is valid, many
RTOSs skip this step in the interest of better
performance.

In the third place, to save memory RTOSs typically
include just the service that you need for your
embedded system and no more. Some RTOS
available to as areVxWorks, VRTX, pSOS, Nucleus,
C Executive, LynxOS, QNX, Multitask!, AMX etc.

Task and Task state:

The basic building blocks of software written
under an real time operating system is task are
very simple to write under most real time
operating system & task is simply a sub-routine.
Task state is the state that occurs during
processing or execution by the system to any
task.

Basically there are three task state which are:

i. Running

ii. Ready

iii. Blocked

• Running:

Running means that the microprocessor is executing
the instructions that make up this task . If there is only
one microprocessor than only one task that is in the
running state at any given time.

• Ready:

Which means that some other task is in the running
state but that task has the things that it could be do if
the microprocessor becomes available. Any number of
task can be in this state.

• Blocked:

which means that this task has not got anything to do
right now even if the microprocessor becomes
available. Task get into this state because they are
waiting for some external events.

The Scheduler:

A part of real time operating system called
scheduler which keeps the track of the state of
each task & decides which one task should go
into the running state. The scheduler in most
real time operating system are entirely simple
minded about which task should get the
processor. They looked at priority, we assign to
the task & among them which are not in
blocked state.

One tasks with highest priority runs &
remaining of other task are waiting for ready
state. The lower priority task just have to wait
the scheduler assuming that we know what
we were doing when setting the task
priorities. Figure below shows the transactions
among the three tasks state.

Here we will adopt the fairly common use of
the verb block to mean “move into the
blocked state”, the verb run to mean “move
into the running state” and the verb switch to
mean “change which task is in the running
state.” Here are following points for figure:

– A task will only block because it decides for itself
that it has run out of things to do. Other tasks in
the system or the scheduler cannot decide for a
task that needs to wait for something.

– While a task is blocked, it never gets
microprocessor. Therefore, an interrupt routine or
some other task in the system must be able to
signal that whatever task was waiting for has
happened. Otherwise, the task will be blocked
forever.

– The shuffling (to switch) of tasks between the
ready and running states is entirely the work of
the scheduler. Task can block themselves, and
tasks and interrupt routines can move other tasks
from the blocked state to the ready state, but the
scheduler has control over the running state.

TASK and DATA:

Each task has its own private context which
includes the register value, a program counter &
a stack. However all other data i.e global , static,
initialized & uninitialized & every thing else is
shared among all of the task in the system.

The RTOS typically has its own private data
structure which are not available to any other
task. Since we can share the date variables
among the task, it is easy to move the date from
one task to another task which only have access
to some other variables.

Figure:

Semaphore

• Semaphore means a hardware or
software flag. In multitaskingsystems, a
semaphore is a variable with a value that
indicates the status of a common resource. It's
used to lock the resource that is being used. A
process needing the resource checks the
semaphore to determine the resource's status
and then decides how to proceed.

https://www.webopedia.com/TERM/F/flag.html
https://www.webopedia.com/TERM/M/multitasking.html
https://www.webopedia.com/TERM/V/variable.html
https://www.webopedia.com/TERM/R/resource.html

Semaphores and shared Data:

A common use of semaphore are the simple
way to communicate from one task to another
task or from an interrupts routine to another
task. Let us example the railway baron
discovered that it was bad for business if their
train run into one another. There solution to
this problem was to use signals called
semaphores. When the first train enters into
the protected section of track, the
semaphores behind it automatically lowers.

When the train cross the protected section
than next train starts to enter the protected
section. The general idea of semaphore in
RTOS is similar to the idea of railway
semaphores. Trains do two thinks with
semaphores.
– When a train leaves the protected section of track,

it raises the semaphore.

– When a train comes to a semaphore, it waits for
the semaphore to rise, if necessary, passes
through the (now raised) semaphore, and lowers
the semaphore.

RTOS semaphores:

Although the word was originally coined for a
particular concept, the word semaphore is now
one of the most slippery in the embedded
systems word. It seems to mean almost as many
different things as there are software engineers
or at least as these are RTOS, some RTOS even
have more than one kind of semaphore. RTOS
use get and give, take and release, pend and post,
p and v, wait and signal, and any number of other
combinations. We will use take (for lower) and
release (for raise). This kind of semaphore is most
commonly called binary semaphores.

A typical RTOS binary semaphores work like
this: tasks can call two RTOS functions,
TakesSemaphore and ReleaseSemaphore. If
one task has called Take-Semaphore to take
the semaphore and has not called
ReleaseSemaphore to release it, then any
other task that calls TakeSemaphore will block
unit the first task calls ReleaseSemaphore.
Only one task can have the semaphore at a
time.

Message , Queues , Mailboxes & Pipes:

Task must be able to communicate with one
another to coordinate their activities or to share
the data.

for example: In underground tank monitoring
system the task that calculate the amount of gas
in the tank must let other parts of the system to
know how much gasoline is available. for
example, if there is two task, task1 & task2 each
of which has a number of high priority urgent
things to do. These all signals to send to the
system consist of message.

Mailbox:
In general mailbox are much like queues. The typical RTOS has
function to create, to write, & to read from the mailboxes &
perhaps function to check whether the mailbox contain any
message & to destroy the mailbox if it is no longer needed. The
details of mailbox however are different in different RTOS. Some of
the variation of mailboxes are:

– Although some RTOS allow a certain number of messages in each
mailbox. A number of messages in each mailbox. A number that we
can usually choice when we create the mailbox.

– In some RTOS the number of messages in each mailbox is unlimited.
– In some RTOS we can priority mailbox messages. Higher priority

messages will be read before lower priority messages.

– Mailboxes provide a means of passing messages between tasks for
data exchange or task synchronization. For example, assume that a
data gathering task that produces data needs to convey the data to a
calculation task that consumes the data.

Pipes:

Pipes are also much like queues. In pipes the
RTOS can create them, write to them, read from
them & so on. The details of pipes however like
the details of mailboxes and queues, vary form
RTOS to RTOS. Some variations of pipes are given
below:

– Some RTOS allow to write the message of varying
length onto the pipe.

– Pipes in some RTOS are entirely byte oriented.

– Some RTOS uses the standard c-library functions fread
& fwrite to read from and to write into the pipe.

Events:
Event is an action performed by the user such as clicking of
mouse, key press etc. An event is essentially a boolean flag
that the task can be set or reset & other task can wait for.
For eg: When the user pulls the trigger on the cordless bar
code scanner the task that turn on the laser scanning
mechanism & tries to recognized the bar code that must
start. The events provides the easy way to do these task.
The user pulls the trigger sets on events for which the
scanning task is waiting.
Some standard features of events are:
– More than one task can blocked waiting for the same event &

the RTOS will unblock all of them when an event occurs.
– RTOS typically forms group of events & task can wait for any

sub-set of events within the group.
– Different RTOSs deal in different ways with issue of resetting an

event after it has occurred and tasks that were waiting for it
have been unblocked. Some RTOSs reset events automatically.

Memory Management:
Most RTOS have some kinds of memory
management sub-system although some offers
the equivalent of library functions like malloc,
calloc & free. Real time system avoid this two
functions because they are typically slow & their
execution time is unpredictable. The fixed favor
function that allocate and fixed the fixed size
buffer & most RTOS offer fast & predictable
function for purpose. The reqbuf & getbuf
function allocate the memory buffer from the
various poll. Each returns a pointer to the allocate
buffer. The only difference between them is if no
memory buffers are available than the get buffer
will block the task that calls it where as reqbuf
will return a null pointer.

Interrupt routine in RTOS Environment:

Interrupt routine in most RTOS environment
must follow two rules that do no apply to the
task code.
– An interrupt routine must not call any RTOS

function that might block the caller. Therefore
interrupt routine must not get the semaphores ,
read from queue mailbox that might be empty
and wait for events.

– An interrupt routine may not call any RTOS
function that might cause the RTOS to switch task
unless the RTOS know the interrupt routine.

Unit: 5

BASIC DESIGN using RTOS

Intro

It can be more difficult event to specify a real
time system properly than to specify the
desktop application. In addition to answering
the question "what must the system do?" the
specification must answer question about how
fast must do it?" We can simply simplified that
the cordless bar code scanner will send bar
codes across the radio links to the cash
register, the cashier will become unproductive
& bored if it is long to wait for the signals that
the bar code got successfully.

Further we must know how critical timing is. It
may satisfactory for the cordless bar code
scanner to respond on time. We must have some
feels for the speed of microprocessor to know
which companies will take long enough to affect
other deadlines is a necessary design
consideration.

We will use our general software engineering
skills in designing embedded system software.
The concern for structure modified encapsulation
& maintainability are important in the embedded
world as in the application world.

Systems with absolute deadlines, such as the
nuclear reactor system, are called hard real-time
system. Systems that demand good response but
that allow some fudge in the deadlines are called
soft real-time system.

To design effectively, you must know something
about the hardware. For example, suppose your
system will receive data on a serial port at 9600
bits(1000character) per second. If each received
character will cause an interrupt, then your
software design must accommodate a serial-port
interrupt routine that will execute about 1000
times each second.

Principles

Here we will discuss the design consideration
that have application to a broad range of
embedded system.

General Operations
Embedded system is very commonly have
nothing to do until the passage of time or some
external event requires a response. If no print
data arrives laser printers do nothing other than
wake up every minute or so & move the printer
drum a little. If the user does not pull the trigger
or press one of the keyboard button then the
cordless bar code scanner even goes so far as to
turn the microprocessor off. Since external events
generally causes interrupts & since we make the
passage of time causes interrupt by setting up a
hardware timer interrupt tends to be driving
force of embedded system design technique.

Encapsulating semaphores & Queues:

Encapsulating semaphores

Semaphore can cause various bugs. At least
some of those bugs stem from undisciplined
use i.e allowing code in many different
modules to use. The semaphores & hopping
that they all use it correctly. We can squash
these bugs before they get crawling simply by
hiding the semaphores & the data that it
protects inside of a module thereby
encapsulating both.

Encapsulating Queues:

Similarly mistakes dealing with queues can be
reduced by encapsulation queues typically
have a protocol or format associated with
multiple messages passing calls increases the
probability of the communication mistakes.
Encapsulating such calls into functions that
take specific arguments reduces the errors.

Hard real time scheduling consideration

The issues that arises in hard real-time system are we must
somehow guarantee that the system will meet the hard
deadlines.

To some extend the ability to meet hard deadlines
come from writing fast codes. Writing fast code for real
time systems are not very different from writing fast codes
for applications. We can characterized real-time system as:

– Made of N task that executes periodically every in units of time.
– Each task worst case execution time Cn units of time &

deadlines of Dn.
– Assume task switching time is O & no blocking on semaphores.
– Each task has priority Pn.

Timer Function

Most embedded system keeps the track of the passes
of time. Timer function represents the timing
execution of microprocessor & its delay in the
embedded system.
For example: in library management system to extend
its battery life the cordless bar code scanner most turn
itself after a certain no of seconds. System with
network connection most wait for acknowledgement
to data that they have send & retransmit the data if an
acknowledgement does not show up on a time
manufacturing system most wait for Robert alarms to
move or for motors to come up to the speed.

Saving Memory Space
In embedded system we may be short of code space, we may be
short of data space. They are interchangeable code are stored in
ROM & data are stored in RAM. In RTOS each task need memory
space for its task. Each function call, function parameter, local
variable takes up a certain number of bytes on the task depending
upon other microprocessor & compile. We must then add space for
the worst case nesting of interrupt routine & some space is needed
RTOS itself.
The method of saving memory is fill each stack with some
recognizable data pattern at startup run the system for the period
of time stop it & then examine how much of the date pattern was
overwritten on each stack.
Here few ways to save code space are:

– Make sure that you are not using two functions to do something.
– Check that your development tools are not sabotaging you.
– Configure your RTOS to contain only those function that you need.

Saving power

A very common power saving mode is one in which the
microprocessor stops the executing instructions that stops
any built in peripherals & stops its clock circuit. The primary
methods for preserving the battery power is turn off the
parts or all of the system whenever possible. That includes
the microprocessor another typical power saving mode is a
one in which the microprocessor stops executing
instructions but the board peripherals continue to operate.
Any interrupt starts the microprocessor up again &
microprocessor will execute the corresponding interrupt
routines & then assumes the task code from the
instructions that follows the one that put the
microprocessor to sleep.
This mode saves less power than desired above. However
no special hardware is required & don't have to start our
software from beginning.

Example of a system to design:
The underground tank monitoring system monitors up to eight
underground tanks by reading thermometers and the levels of
floats installed in those tanks. To read a float level in one of the
tanks, the microprocessor must send a command to the hardware
to tell it which tank to read from. When the hardware has obtained
a new float reading a few milliseconds later, it interrupts; the
microprocessor can read the temperature in any time. Since
gasoline expands and contracts substantially with changes in
temperature, the system use both the temperature and the float
level to calculate the number of gallons of gasoline in a tank.
The user interface consists of a 16-button keypad, a 20-character
liquid crystal display, and a thermal printer. With the keypad, the
user can tell the system to display various information such as the
levels in the tanks or the temperatures or the time of day or the
overall system status.
The system also has a connector to which a loud alarm bell can be
attached to alert the gas station attendants if a leak is detected or if
a tank looks as if it is about to overflow.

figure:

UNIT - 6

Embedded Software development tools

Host & target machine:

The embedded world there are many number of
reasons to do our actual programming work on the
system other then the one of which the software will
eventually run in the target system may not have a
keyboard screen a disc drive & other peripherals
necessary for programming. It have not enough
memory to run our editor program, the microprocessor
in the target system don't support editor software,
therefore must programming work for embedded
system is done on the host, a computer system on
which all the programming tools run only after the
program has been written, compiled assembled &
linked and moved to the target the system that is
shipped to the customers.

Cross compilers

Most desktops systems used as hosts come with
compilers, assemblers, linkers & so on for
building programs that will run on the host. These
tools are called native tools. The binary code
produced by native tools is not understood by
our target system microprocessor thus we need a
compiler that runs on our host system but
produces a binary instructions that will be
understood by our target microprocessor such a
program is called cross compiler.

Cross assembler & tool chains:

Another tool that we will need if we must
write any of our program in assembly
language is a cross assembler. A cross
assembler is an assembler that runs in our
host but produces binary instructions
appropriate for our target.

The output files from each tool become the
input files for the next because of this , the
tools must be compatible with one another. A
set of tools that is compatible in this way is
called tool chain.

Linker / Locator for embedded software

FIGURE: Tool chain for building the embedded
software

The job of cross compiler is to read in a source
file & produce an object file suitable for the
linkers. A linker for an embedded system most do
a number of things differently from a native
linkers. In fact the two programs are used for the
embedded system specifying the location & link
type, this is called linker & locator.

Getting embedded software into the target system

There are several ways of getting the embedded software into the target
system some are:

i. PROM Programmers
The classic way to get the software from the locator output files into the
target system is to use the files into the target system is to use the file to
create a ROM OPROM. As creating ROM is only appropriate when
software development has been completed, since the tooling cost to build
ROMs is quite high.
Putting the program into the PROM requires a device & the programmer
to insert the data called a PROM programmers. This is appropriate if our
volumer are not large enough to justify using a ROM, if we plan to change
software or while we are debugging. If we plan to use PROMs & a PROM
programmers, for debugging purposes it is useful to build versions of the
target system in which the PROM is placed in the socket on the target
system rather than being soldered directly in the circuit. Then when we
find bug we can remove the PROM containing the software with the bugs
from the target system & put into the eraser like it is an erasable PROM or
into the waste basket.

Fig: schematic edge view of a socket

ii. ROM Emulator

fig: ROM emulator

Another popular mechanism for getting the software
into the target system for debugging purpose is to use
of ROM emulator. A device that replaces the ROM in
the target system. From the point of view of the rest of
hardware in the target system the emulator look just
like a ROM. However ROM emulator contains a large
box of electronics and a serial port or a network
connection through which it can be connected to your
host. As with PROM programmers we must ensure that
downloads new code into the ROM emulator
understand the format of file that locator creates.

iii. Monitor

Another option on a system with communication
port is use of monitor , a program that reside on
the target ROM & knows how to load a new
program into the system. A typical monitor allow
to sent the software across the serial port ,
stores that software into the target RAM & then
run it. Sometimes a monitor performs some of
the function of locator as well & some monitor
offers a few debugging services such as setting
break points & displaying the memory & register
value.

iv. Flash

Flash memory is the flash socket in our target
system acts as EPROM. Most PROM programmer
can program flash memory. Using flash memory
make possible update our software containing the
target machine from communication links. The
reasons for using flash memory are:
– We can load new software into our system for

debugging without pulling the chips of socket.

– Downloading a new software into a flash across a serial
port or h/w connection is much faster.

– User can easily update his embedded software from
hardware using flash memory.

UNIT: 7

DEBUGGING

Testing on host machines

fig: Test System

The target system is a trouble. Some testing environment The main goal of
typical testing process are:

– Find the bugs early in the development process.

Many studies have shown that this save time & money. In any case
testing early gives some ideas of how many bugs you have &
therefore how much trouble you are in but the target system is
very often not available early in the process or the hardware may
be unstable.

– Exercise all of the codes

This includes all of the exceptional cases even through you hope that
they will never happen. But is varies from difficult to impossible to
exercise all of the codes invariably deals with unlikely situations.

– Develop reusable, repeatable tests

It is extra ordinary frustrating to see a bug once but then not be able
to find it because it refuses to happen again.

– Leave an " audit trail" of the test results

Noticing that telegraph "seems to work" in the network environment
is not nearly as valuable as knowing & storing exactly what data it
send out in response to received data.

Instruction set simulator

Some of the short coming of the method can be
overcome with an instruction set simulator or
simulator , a software tools that runs on your host &
simulates the behavior of microprocessor & memory in
target system. To use simulator we can run our
software through the cross compiler & linker locator
just as building the real system. The simulator knows
the target microprocessor architecture & instruction
set. The user interfaces on most simulator are simulate
to that of debugger allowing to run the program setting
the break points, examining & changing the data in the
memory & in the register single steps through the
program. Simulator have some useful abilities they are:

i. Determining response & throughput
Simulators do not run at the same speed as the target
microprocessor. Most will give the statistics from which
we can derive the time that given piece of code that
will execute. For example the simulator can report the
number of target microprocessor instruction it has
executed all the number of target bus cycle it has
simulated.

ii. Testing assembly language code
Since the simulator uses the target instruction set code
return in assembly languages poses no problems we
can run that code through the cross compiler & linker
locator & then load into the simulator.

iii. Resolving portability issues.
Since we can use same tools chain to develop code for
simulator & for final products. We should have some
unpleasant surprises when we move from simulator to
the target system or from host to the target system.

iv. Testing code dealing with peripherals built into
the microprocessor
Most simulator will simulates the target
microprocessor built in peripherals. The software
uses built in timers to simulate & when time
expires it will cause the simulated microprocessor
to jump into the interrupt routine.

v. Others hardware
The simulator will simulates the microprocessor,
ROM, RAM & built in peripherals & to extend the
system the custom hardware , some specialized
radios, sensor , ASIC , etc.

The assert MACRO

The assert macro is one good technique that
application programmer use or at least should
be used the applied embedded system. The
macro takes a single parameter evaluates false
than the asserts causes the programs to crash.
Usually printing some useful message along
the way.

Laboratory tools

i. Voltmeter & Ohm meter

It is a device used in lab. The voltmeter is used to check
& test the voltage across any circuit where as Ohm

meter is used to test & check the resistance. These are
the extraordinary useful tools & not terribly expensive

voltmeter measure the voltage difference between two
points & ohmmeter measures the resistance between
two points. A product commonly knows as multimeter.

Fig:

ii. Oscilloscopes

Oscilloscopes or scope is a device that graph voltage
versus time. Time is graphed along a horizontal axis &
voltage is graphed along vertical. An oscilloscope is an
analog device that is it detects not just whatever a
signal is high or low. Some features of oscilloscopes
are:

– Monitor one or two signals simultaneously.
– Adjust the time & voltage scales over a fairly wide range.
– Adjust the vertical level on the oscilloscope screen that

corresponds to ground.
– Adjust the oscilloscope start graphing through the use of

trigger mechanism.

iii. Software only monitors figure
Another widely available debugging tool is one often called a
monitor. Monitor allows to run software on the actual target
microprocessor while still giving you a debugging interface similar
to that of an in-circuit emulators. Monitor differ significantly from
one another however we must examine carefully to know what we
are getting. The typical working of monitors are

– One part of the monitor is a small program that resides in the ROM on
the target system in the lab. A program that knows how to receive
software on a serial port or across the network.

– Another part of the monitor is a program that runs on host system &
communication with debugging with debugging kernel over the
network.

– We can use instruct the monitor to set break parts run the program &
so on. The user interface can run on host system & communicate the
instruction to be debugging kernel running on the target.

Monitors can extra ordinarily valuable & they can give a debugging
interface without any modification on the hardware called software
only monitors.

Ways of DMA implementation

• Direct Memory Access (DMA) transfers data from an I/O
device to the computer's memory. This method bypasses
the CPU, using instead a device on the system board called
a DMA controller. To transfer data without executing
commands through the CPU, the card that implements the
DMA signals the DMA controller when data is ready for
transfer. During the actual transfer, the DMA controller
acquires control over the CPU's data and address busses. To
signal the end of the actual transfer, the DMA controller is
programmed with the amount of data (number of words)
to be transferred. The transfer can be prematurely
terminated by initializing either the I/O device or the DMA
controller during the transfer.

There are three limiting factors in DMA transfers: no program
intervention by the CPU, long transfer latency times, and 64KB
transfer boundaries. The first limiting factor, lack of program
intervention by the CPU, is the reason that DMA is utilized in the
first place. In order for conditions to be implemented that effect
how data is selected for transfer, the peripheral card must be
"smart" enough to detect when to change these selections. The
second limiting factor, transfer latency time, occurs due to the fact
that the CPU must finish its current instruction before yielding the
bus to the DMA controller. If the CPU is executing a string or I/O
instruction with a rep prefix, up to 128KB memory and/or I/O cycles
could occur before the DMA controller gains access to the bus.
Empirical testing has found some "AT" style computers with
latencies between the DMA request and DMA cycle of up to 16
microseconds, thus limiting instantaneous transfer rates to 62KHz.
This limitation can be overcome with peripheral FIFOs, allowing an
average A/D transfer rate up to one million samples/second on an
AT and up to four million samples/second on EISA computers. The
third limiting factor, 64KB transfer boundaries, can be overcome by
programming techniques.

• Types of Data Transfers

The simplest DMA transfer is one where a device
sends the same type of data. A data acquisition
card, for example, would transfer one channel's
data at a fixed frequency and gain for the
duration of the transfer. Most data acquisition
cards however allow DMA data transfers from a
series of channels starting at the lowest channel
to a programmed channel number, at a fixed rate.

• DMA Controller on the PC
• The DMA controller implemented on the PC and

compatibles (8237A or its equivalent) transfers a maximum
of 64KB words using DMA channels 5 to 7. This controller
does not address memory in the same manner as the
CPU. Figure 1 illustrates the two methods of addressing
memory. The CPU addresses memory in real mode by
shifting the Base register four bits to the left and adding the
Offset register forming a 20-bit address. The DMA
controller addresses memory by appending the Offset
register to the first four bits in the Page register. This
addressing scheme can cause problems when allocating a
buffer for the DMA transfer. The allocated buffer should not
contain more than one DMA page.

http://www.drdobbs.com/showArticle.jhtml?documentID=cuj9205bradley&pgno=2

• Lab Master AD
• The Lab Master AD is one of the first smart cards for data

acquisition available for the IBM ISA or EISA bus computers. It is
equipped with 16 single or eight differential fully-programmable
Analog-to-Digital (AD) channels with 12-bit resolution, two Digital-
to-Analog (DA) channels, eight digital-input and eight digital-output
channels, eight digital-expansion channels, and five 16-bit
programmable timer/counters tied into a 4MHz base frequency.
This card has a 2048 word FIFO buffer for AD and one 1024 word
FIFO buffer shared by both the DA channels. The Lab Master makes
use of both the Single and Demand transfer modes for AD and DA
DMA transfers. The number of AD channels can be expanded to 64
single or 32 differential AD channels.

• Data Acquisition Application

The routines in this article use DMA to create
a working, high-speed data-acquisition
system. I designed the routines to make it easy
to port them to any type of data acquisition
application. You can easily modify the code to
provide variable channel, frequency, and gain
sequences, a pseudo real-time display, and
some signal processing capabilities.

