C Programming

Computer Fundamentals

Computer:

* The word “Computer” is derived from the Latin
word “Computare” which means to calculate.

*Hence, computer is normally considered as a
calculating device, which performs the entire task
at very fast rate.

*A computer is an electronic machine that accepts
data and instructions, stores it until the data is
needed, processes large amount of data according
to the instructions provided by the user, and finally
returns the results to the user

Advantages of computer:

Computer is a very fast machine.
Computers operate with almost 100% accuracy.

Computer is capable of doing required task
again and again without any difficulty.

Computers have capability of storing huge
amount of data.

Computers can perform variety of jobs.

Disadvantages of computer:

Computer is an automatic device, even it
requires operator to operate the computer.

Computer is very expensive in comparison to
other electronic devices, so every people
cannot afford it.

Computer cannot think itself to give decisions.

Computer requires technical person for
maintenance if it does not work properly.

Types of computers:

Analog computer

Digital computer

Analog computer

 The computer which can process analog
quantities (continuous data) is called an
analog computer.

* They are designed to accept physical
guantities such as temperature, pressure,
speedometer, etc and record them as readings
along a continuous scale.

* Examples of analog devices are: thermometer,
speedometer, etc.

Features of analog computer:

a) These computers work on the derived
guantities as temperature, speed, voltage, etc.

b) They take only one instruction at a time,
execute it, give us the result and take next
Instruction.

c) To use these computer knowledge of
programming is not required.

d) They do not perform any calculation.

Digital computer

The computer which accepts discrete data
(discontinuous data) is known as digital
computer.

The digital computers operate by counting
numbers, or in other words, it represents
information in discrete form.

It operates directly on numbers expressed in
binary number system.

Digital computers are more accurate than analog
computer, since there is no analogous
representation.

Features of digital computers

These computers only operate on digit and
they are 0 & 1.

Digital computers do calculation to give us
results.

A digital computer takes all the instruction
together and then execute one by one.

To use these computers knowledge of
programming is essential.

Software

* Aset of instructions give to the computer in
machine code that tells the computer what to do
and how to perform the given task of the user is
known as computer software.

 The main objective of software is to enhance the
performance capability of hardware. Examples:
Windows XP, MS- Word, MS-Excel, etc.

Type of Software

e System software

* Application software

System Software

* |tis a collection of program, language, etc
which allows the user to communicate with
computer equipments, the software makes
the machine easier to use and make efficient

use of resources of hardware.

* [tis like a layer which acts as interface
oetween computer and application software.

* [tis used in almost all kinds of computer like
mainframe, mini or micro computer.

Types of system software

* Operating system
* Translating Program

» System support software/ utility software

Application software

e application software is prepared and supplied by
software company and computer manufacturer.

* Application software is a subclass of computer
software that employs the capabilities of
computer directly to a task that user wishes to
perform.

* Application software are designed to process
data and support users in an organization such as
solving equations or producing bills, result
processing of Pokhara university, etc.

Types of application software

* Tailored package

* Packaged software

Tailored package

Tailored software is the software, which are
specially designed and developed to solve a
specific or particular task.

The nature of processing of data seems similar
out actually they are different in many ways.

High-level language such as COBOL, BASIC,
FORTRAN, PASCAL, C, etc. is used to prepare
tailored software.

Examples: salary sheet, sales ledger, payroll
system, library management, etc.

Packaged software

Packaged software is the software which is
generalized a set of programs and developed
for general purpose.

These programs are user friendly and
designed for use in more than one
environment.

Examples: Word processing packages: MS-
Word, MS-Star etc.

Spreadsheet: Excel, Lotus, etc.

Graphics: Photoshop, 3D studio max, etc.
DBMS Package: Dbase Ill, Oracle, etc.

WHAT IS Programming LANGUAGE

?
* Language is a collection of words and symbols

which can be used to perform certain task or
activities and to establish a communication
between person to person.

* In the same manner computer languages are the
collection of predefine key words which can be
used to perform certain task and to communicate
between two entities like between two machines
or between human and computers or computers
and others peripherals.

* A programming language is the series of
commands written by programmer in a
systematic order which can perform work easily
in higher speed.

* A programming language is the platform which
provides the environment to write program.

e Actually programming language have their own
set of grammatical rules used to write program.
Without programming language program is
useless. Examples: C, C++, COBOL, Pascal, etc.

There are three different levels of
programming languages. They are

(1) Machine languages (low level)
(2) Assembly languages

(3) High-level language

(1) Machine Level Languages (MMLL) :

e Computers are made of No. of electronic
components and they all are two — state
electronic components means they understand
only the 0 — (pulse) and 1 (non — pulse).

 Therefore the instruction given to the computer
must be written using binary numbers. 1and O.

 Computers do not understand English or any
other language but they only understand or
respond to binary numbers(0 and 1).

e So each computer has its own Machine
languages.

Advantages:

1. Time taken to execute program is less.

* 2. The program written in this language need
not to be translated.

Disadvantages:

1. Difficult to learn.

2. The knowledge of internal architecture is
essential for program coding.

Assembly Level Languages (ALL) :-
In assembly language instruction are given in
English like words ,such as MOV,ADD,SOB etc.

Hence it is easy to write and understood
assembly language.

As we know computer can understand only
machine level language .

Hence assembly language program must be
translated into machine level language.

The translator which is used for translating is
called “assembler”.

Advantages:

* 1. Assembly language is easier to understand
as compared to machine language.

e 2. Easier for program debugging.

Disadvantages:

1. It is machine dependent.

2. Program written in assembly language is
comparatively larger.

High level language:-

It is designed keeping in mind the features of
portability means these language are machine
independent.

These are the English like language, so it is easy to
write and understand the programs of high level
language.

For translating high level language program into
machine language we used “compiler” and
“Interpreter” are used.

The language in this category is:-
FORTAN,COBOL,C,C++,etc.

Advantages:

1. They are easier to learn as compared to
assembly and machine language.

2. Lower program preparation cost.

3. Machine independent.

Disadvantage:

1. Require more time and memory to execute.

WHAT IS LANGUAGE TRANSLATORS?

* As we know computer can understand only

machine level language ,which isin binary 0
or 1 form.

* Which is difficult to write and maintain the
program of machine level language.

* So the need arises for converting the code of
high level and low level languages into
machine level language, so the translator are
used to achieve this process.

Type of Translator

e Assembler
 Compiler

* |nterpreter

Assembler

* |tis used for converting the code of assembly
language into machine level language.

* This translation is done with the help of a
translator program called assembler.

* Assembler is a system software supplied by
computer manufacturers.

Compiler

* |tis used for converting the code of high level
language into machine level.

 The compiler searches all the errors of
program and lists them.

A Compiler checks the entire program written
by user and if it is free from error and
mistakes then produces a complete program
in Machine language known as object
program.

Interpreter

 The work of interpreter is same as compiler.

* |tis also used for converting high level
anguage program into machine level language
out it checks the errors of program statement
oy statement .

Differences between Compiler & Interpreter

Error finding: Error finding is much easier in
Interpreter because it checks and executes each
statement at a time. So wherever it fine some
error it will stop the execution. Where Compiler
first checks all the statement for error and
provide lists of all the errors in the program.

Time: Interpreter takes more time for the
execution of a program compared to Compilers
because it translates and executes each
statement one by one.

Examples: C, C++, FORTRAN, etc are compiler
whereas BASIC, LISP, etc are interpreter.

Problem Solving Method

Unit-2

Problem Analysis

* [tis arises during the required analysis phase
of software development problem analysis is
done for obtaining the user requirement.

* This is the process of becoming familiar with
the problem that will be solved with a
computer program.

* From analysis we can obtain, what is the input
and output that is the first step for designing
the program.

Algorithm

* [tis asimple and informed set of instruction
that tell about the logical modules of
operations of solving of problem.

e This is the most fundamental concept in
computer science.

* |t can be defined as a ordered the sequence
of well define and effective operation which
produce a result and terminate in a finite
amount of time when executed.

Features of Algorithm
Finiteness: - An algorithm terminates after a fixed
number of steps.

Definiteness: - Each steps of a algorithm is
precisely defined.

Effectiveness: - All operation use in algorithm are
basic(division, multiplication, compression, etc)
and can be performed exactly infixed duration.

Input: - Algorithm has certain precise input.
Output: - Algorithm has one or more output.

Some conventions used in developing algorithms
Each algorithm will be enclosed by two
statements START and STOP

To accept data from user, the INPUT or READ
statement is used.

To display any user message, the PRINT or
DISPLAY statement is used.

The arithmetic operators(+,-,* and /) are used in
conditions.

The relational operators(>,<,>=,<=,==,!=) are used
in conditions.

The logical operators (AND, OR, NOT) are used for
logical expressions.

Example of Algorithm

Step 1: START

Step 2: Read principle amount, rate of interest
and number of years.

Step 3: Calculate simple interest using the
following formula

Simple interest = (Principle amount*rate of
interest *number of years)/100

Step 4: Write simple interest result.
Step 5: STOP

Flow chart

* |tis a graphical representation of an algorithm
using standard symbols.

* |[n other words, flowchart is a pictorial
representation of an algorithm that uses
boxes of different shapes to denote different
type of instructions.

* This is a problem solving technique that is
widely used.

Symbols that are used in flow chart:
» START/STOP:

The oval shape represents start/stop of the program.
Generally, contains words like START, END or STOP.

* Input/output: / /

The parallelogram represents the I/O function. This step is
used to obtaining a number from an input device and
showing the results.

e Connection: ‘

Used to join different flowlines and to connect remote parts
of the flowchart on the same page.

* Process:

A rectangular represents processing
operation.

A process changes one or more data.

e Line or arrow:

Line or arrows, represent processing operation
direction. The flow of control normally be up
to down, right to left.

* Decision making:-

The diamond represent a decision of switching
type of option that determine which one of
alternative paths to be followed.

Advantages of Flowcharts

Communication:

* Flowcharts are a better way of
communications.

* They quickly and clearly provide logic, ideas
and descriptions of algorithms to other
programmers, students, teacher, computer
operators and users.

Effective Analysis:

* Flowcharts provide a clear overview of the
entire problem and its algorithm for solution.

 They show all major elements and their
relationships.

* Thus, with the help of flowcharts, problems
can be analyzed more effectively.

Proper Documentation

 The flowchart provides a permanent
recording of program logic.

* |t documents the steps followed in an
algorithms.

Efficient Coding:
* Flowcharts show all major parts of a program.

* A programmer can code the programming
instructions in a computer language with
more ease with a comprehensive flowchart as

a guide.

THEMN

IF(condition)

Process 1

¥

ELSE

Process 2

a) Flowchart

Stages of Software Development (or Software
Development Life Cycle):

* During each phase of the life cycle, a set of
well-defined activities are carried out.

Feasibility

Study _l

Requirement
Analysis &
Specification

:

Design

5

Coding &

Unit Testing ‘—l

Integration &
System Testing

Fig: Software Development Life Cycle (SDLC)

h 4

Maintenance

1) Feasibility Study: The main objective of the feasibility
study is to determine whether developing the product is
financially and technically feasible.

2) Requirement Analysis & Specification: Its main aim is to
understand the exact requirements of the customer & to
document them properly.

3) Design: The goal of the design phase is to transform the
requirements specification into a structure that is suitable
for implementation in some programming language.

4) Coding & Unit Testing: It is also called implementation
phase. Its purpose is to translate the software design into
source code. During the implementation phase, each
component of the design is implemented as program
module, & each of these program module is unit tested,
debugged & document. The purpose of unit testing is to
determine the correct working of the individual modules.

5) Integration & System Testing: During this phase the different
modules are integrated in a planned manner.

The system testing usually consists of three different kind of testing
activities:

I. - testing
ii. B- testing
lii. Acceptance testing.

6) Maintenance: Maintenance involves performing any one or more
of the following three kinds of activities:

i. Correcting errors that were not discovered during the product
development phase. This is called corrective maintenance.

ii. Improving the implementation of the system & enhancing the
functionalities of the system according to the customer’s
requirements. This is called perfective maintenance.

iii. Posting the software to a new environment, e.g., to a new
computer or to a new operating system. This is called adaptive
maintenance.

Step:7> Documentation:-

Documentation refers to a collection of information
about the program. There are two type of
documentation:

Programmer’s Documentation

User Documentation.

a). Programmer’s Documentation:-It include
detailed requirement of program layout of all output
reports and input data, the top down documentation.

b). User’s documentation: - It provides procedural
instruction for installing the program.

Unit 3: HISTORY OF ‘C’

The c language was developed in 1970’s at Bell
laboratories, by Dennis Ritchie . It is designed for
the operating system called UNIX.

Cis derived form the B language, which is
written by ken Thompson at AT and T Bell
laboratories. It is excellent, efficient and general
purpose language for most of the applications,
such as scientific business , system software &
application software.

Structure of C program

C program is a collection of one or more function. Every function is a collection of statements
that performs some specific task. We can define the structure of c program as:

Comments
Preprocessor directives
Global variables

void main()

{

local variables
statements

function 1()

{

local variables
statement

Elements of ¢

Every language has some grammatical rules and basic
elements. Before understanding programming it is must to
know the basic of c language. These basic elements are:-

1). C character set
2).Variables

3).Data types
4).constants
5).Keywords
6).Variable declaration
7).Expression
8).statements, etc.

C character set

The character that are used in programs are given
below:-

a).Alphabets:- A,B,C,...............Z
a,b,Ceueeiiinnnn. 4
b).Digits:-
0,1,2,3...............9

c).Special character:-

Besides some special character are also used
which are given below:-

5900101 @,........etc.

Execution character/Escape sequence

Characters are printed on the screen through the keyboard but
some character such as newline, tab, backspace, can not be
printed like other normal characters. C supports the combination
of (\) with the c character set to print these characters. These
combinations are known as escape sequences.

Some escape sequence are given below:

Escape sequence

Meaning

\b

backspace

bell

carriage return
new line

form feed

null

tab

Reserved words/ keywords

There are certain words which are reserved for doing specific tasks.
These words are known as keywords. These keywords have standard,
predefined meaning in C. There are 32 keywords available in C which
are given below:-

auto break case
continue else default
enum for struct
goto double long
Float signed const

int switch unsigned
short void register

size of do type of
volatile extreme while
union char static

if return

Variables/Identifiers

Variable is a name that can be used to stored values. These
variables can take different values but one at a time. These
values can be changed during execution.

Variable names may be consists of uppercase character,
lowercase character and under core(). Rule to giving the
name to the variable are as-

1). First character should be a letter or underscore ()
2). The variable name cannot be a keyword.

3). Uppercase and lower case letter are significant, for
example code, Code, CODE is three different variables.

Data types

C support different types of data storage representation of these
data type are also different in memory . They are four fundamental
data types in C, which are given below:

int,char,float,double

Int:- It is used to store the integer value.

Char:-char is used to store any single character.

Float:- float is used for storing floating point number.

Double:-It is used for storing long range of floating point number.
Size and Range of some data types are given below:

Data types Size(bytes) Range

Char or singed char 1 -128 to 127
Unsigned char 1 0 to 255

int or signed int 2 -32768t0 32768
Unsigned char 2 0 to 65535
Float 4 3.4E.38 to 3.4E + 38

Double 3 1.7E-308 to 1.7E+ 308

Constants

It is a value that can be stored in memory and
cannot changed during execution of the program.
There are three types of constants:-

Constant

’ ’ ;

Numeric constant Character constant String constant

’ ;

Integer constant Real constant

1. Numeric Constant

Numeric constants are numeric digit which may or may not decimal
point(.).There are the rules for defining numeric constant.

Decimal number 0,1,2,3............... 9(Base 10)
Octal number 0,1,2,3............... 7(base 8)
Hexadecimal number 0,1,2,3....... A,B,C......F(base 16)

b). Real constant: Floating point constants are the numbers which
hold the decimal point. Some valid floating point constants are:

0.5
5.3
4000.0
0.00073
39.087600

2). Character constant:

A character constant is a single character that is enclosed with single
quotes (“ ‘), for example:-

I#I
Ever character constant has a unique integer value associated with it.

3).String Constant

A string constant has a zero, one or more than one
character. A string constant is enclosed in double

quotes(“”). At the end of string \0 is automatically
placed.

Some example of string constants.
((Bijay”
11593”

//sample program:

#include<stdio.h>
#include<conio.h>

void main()

{

const int i=10;

const float f=5.5;

const char c='c';

const char s[15]="hellow";

printf("\n Integer Constant : %d",i);
printf("\n Real Constant : %f",f);

printf("\n Single Character Constant : %c",c);
printf("\n String Constant : %s",s);

getch();

}

Symbolic constant/define constant

If we want to use certain unique several times then we can
use symbolic constant as a name that substitutes for a
sequence of characters. The character may represent a
numeric constant, a character constant or string constant.
This is generally written at the beginning of the program.
This is written as:

#define name value
For e.g.:

#define MAX 100
#tdefine Pl 3.14
#define NAME “Bijay”

//Sample Program
#include <stdio.h>
#define LENGTH 10
#define WIDTH 5
#define NEWLINE "\n’
int main()

{

Int area;

area = LENGTH * WIDTH;
printf("value of area : %d", area);
printf("%c", NEWLINE);
return O;

1

These are ASCII{American standard code for

information Interchange) value for each

character of the c

A-Z ASC

a-Z ASC

0-9 ASC
; ASCI|

naracter set. As example:

\'"

Vda

\"F

ue (65-90)
ue (97-12)
ue (48-57)

value (59)

Declaration of variables

It is must to declare the variable before it is used in
program. We declare the variable with data type
means the variable name can store the value of this
data type. Declaration variable can be done as:
Some examples

Data types variable name:
Int a;
float b;
Int a=6;
int a,b,c;

Statement

It represent a set of declaration or steps in a sequence of
actions. A statement causes the computer to carry out some
action. All the statement end with semicolon and execution in
sequence. These statement are given below:

1). Assignment statements: In this types of statement we use
the assignment operator (=) for assigning the value to the
variable. This can be written as:

Variable name=value;
Some example as
Basic=1200;
x=y=z=1;

2). Null statement: A statement that has only semicolon is
called null statement. For e.g.; null statement.

3). Expression statement; An expression statement
consists of expression. These expression can be
arithmetic, logic or relation .As example:

X=5;

X=Yy-Z;

a<=b;

4).Block of statement: A block of statements consists
of several statements enclosed with a pair of curly

bracket ({}). The statement can be expressions,
assignment or control statement. As example:

Comments

Comments are used for under standing the program
later. The comments are used for documentation.
Comments are given by starting with /* and ending
with */. It can be of one or many number of lines.

For e.g.:
// This is a C program // Single line comment.

/* a=13;
B=a-c; }I\/Iultiple line comments.

C=a/b; */

Operators and expressions

An operator is a symbol that tells the compiler to
perform specific mathematical or logical manipulations. C
language is rich in built-in operators and provides following
type of operators:

v’ Arithmetic Operators
v'Relational Operators
v'Logical Operators
v'Bitwise Operators
v'Assignment Operators
v'Ternary operator

v'Increment and decrement operator

1). Arithmetic operator
It are used for numeric calculation. They are four types:-

a) Binary Arithmetic operator:-It required two operands. There are five operators for
binary arithmetic operator.

Operator meaning Purpose
+ plus Addition

- minus Subtraction
* asterisk Multiplication
% percent(modulus) Reminder
/ slash Division
Example:

a+b

a-b

a/b

a*b

a%b

b) Integer Arithmetic operator

When both operands are integer than the arithmetic
operation with these operands is called integer arithmetic.

Example: Let us two variables a and b.

a=17/

b=4

Expression result
a+b 21
a*b 68
a/b 4

a%b 1

/*program operate the arithmetic operations */
#include<stdio.h>

void main()

{

int a,b;

printf(“Enter the first number a:”);
scanf(“%d”,&a);

printf(“Enter the second number b:”);
scanf(“%d”,&b);

printf(“Result of addition:%d\n”,a+b);
printf(“Result of substraction:%d\n”,a-b);
printf(“Result of multiplication:%d\n”,a*b);
printf(“Result of division:%d\n”,a\b);
printf(“Result of modulus:%d\n”,a%b);
getch();

clrscr();

}

c) Floating point Arithmetic

When both the operands are of float type then
arithmetic operation with these operands is called
floating point arithmetic.

For example: Let us take two variables a and b.
Then the value of a=124.4 and b=3.1. Then result of

these operation are as:

Expression Result
a+b 127.5
a-b 121.3
a*b 385.64

a/b 40.129

/*program to understand floating point arithmetic
operation*/

#tinclude<stdio.h>

void main()

{

float a=9.6,b=1.6;

printf(“After addition:%f\n”,a+b);
printf(“After substraction:%f\n”,a-b);
printf(“After multiplication:%f\n”,a*b);
printf(“After division:%f\n”,a/b);
getch();

clrscr();

}

2) Relation operator

Relational operation is used to compare two values depending on their
relations. It requires values depending on their relations. It required two
operands.

An expression that contains the relation operator is called relational
expression. If the relation is true then it returns the value 1, if the
relation as false then it returns value 0. Then operators are:

Operators Meaning
< less then
<= less then or equal to
== equal
|= not equal
> greater than

>= greater than or equal to.

Examples:

Let a=9 and b=5, then the operation with

relational operator are

Expression

a<b

a<=b

ad= =

al=b

a>b

a>=b

Result

false(0)
false(0)
false(0)
True(1)
True(1)
True(1)

3) Logical Operator

An expression that combines two or more expression is terms as a
logical expression, for combining these expression we use the logical
operator. After testing the value of the condition(which is true or
false), it gives the logical status(true of false). C has three logical
operators:

"And(&&) operators: This operator gives the net result if both the
condition have the value true, otherwise gives the result false.

Example:- let a=10 and b=5 the logical expression is a==10&&b<a
this gives the result true because both the condition is true.

* Or(]/]) operator: This operator gives the net result false. If
both the conditions have the value false, otherwise it gives
the result true.

Example:- Let us take
a=7 ,b=12

The logical expression a<=b| |b>15 this gives the result true
because one condition is true.

= Not(!) operators: This is unary operator. This relates the
value of the condition. If the value of condition is true then
it gives the result false.

Example: Let us take a=10
Then logical expression !/(a==10) Hence, the result is false.

4).Assignment operator

A value can be stored in variables with the use
of assignment operator. This assighment statement

(“_n

=" is used for assignment statement.
Example:

X=X+5

or

X+=5

similarly,

X=X-5 is equivalent to x-=5
x=x/5 is equivalent to x/=5
X=X%>5 is equivalent to x%=5.

5).Ternary operator

Ternary operator(? and :) require three operand.
This is written as:

Condition? Operand 1: Operand 2

First condition is tested if the result is true then the
value of the operand 1 is taken otherwise value of
operand 2 is taken.

Example:
Maximum=a>b?ra:b

First the condition a>b is evaluated, if the value is true
then the value of ‘a’ is taken by maximum, otherwise
value of ‘b’ is given to the maximum.

/*write a program to print the smallest between two
numbers with use of ternary operators*/
#include<stdio.h>

void main()

{

Int a,b,min;

printf(“Enter the first number:”);

scanf(“%d”,&a);

printf(“Enter the second number:”);

scanf(“%d”,&b);

min=a<b?a:b;

printf(“Smallest number between %d and %d is %d”,a,b,min);
getch();

clrscr();

}

/*Program to print the largest between two number with use
of ternary operator*/

#include<stdio.h>

void main()

{

int a,b,max;

printf(“Enter the first number:”);

scanf(“%d”,&a);

printf(“Enter the second number:”);
scanf(“%d”,&b);

max=a>b?a:b;

printf(“Largest between %d and %d is %d”,a,b,max);
getch();

clrscr();

}

6).Bitwise operator

C has the ability to support the manipulation of data at the bit
level. Bitwise operators are used for operations on bits.

Bitwise operators are operated on only integer. The bitwise
operators are given below:

Bitwise Operator Meaning
& bitwise AND
| bitwise OR
~ one’s complement
<< left shift
>> right shift
TAN

bitwise XOR.

7).Increment and decrement operator

C has two useful operators increment (++) and
decrement(- -). There are the unary operator because
these operators on only single operand. The
increment operator (++) increment value of the
variable by 1 and decrement operator(- -) decrement
of the variable by 1. We can write this as:

/* program to understand the use of prefix increment
/decrement * /

#include<stdio.h>
void main()

{

int a=3;
printf(“a=%d\n “a);
printf(“a=%d\n”,++a);
printf(“a=%d\n”,a);
printf(“a=%d\n”,- -a);
printf(“a=%d\n”,a);

}

b) Postfix operator

Here, first the value of variables is taken for operation then
value of variables is incremented /decrement.

Example:

a++

3- -

let us take value of a=3
then b=a++

Hence,

a=4 b=3

b=a- -

a=3 b=4

/* program to understand the use of postfix
increment /decrement*/
#include<stdio.h>

void mani()

{

Int a=3;
printf(“a=%d\n”,a);
printf(“a=%d\n”,a++);
printf(“a=%d\n”,a);
printf(“a=%d\n”,a- -);
printf(“a=%d\n”,a);

J

Unit 4:Input/output in C
Definition:
It takes the data as input, processes this data and gives
the output. The C language has collection of library
functions that include several input- output functions.
Some input /output functions are given below:

o Unformatted input/output functions: Unformatted /O
functions works only with character datatype (char).

The unformatted Input functions used in C are getche(),
getchar(), gets().
» getchar(): getchar() accepts one character type data from the keyboard.

Syntax for getchar() in C:
variable_name = getchar();

> gets(): gets() accepts any line of string including
spaces from the standard Input device (keyboard).
gets() stops reading character from keyboard only
when the enter key is pressed.

Syntax for gets() in C:
gets(variable_name);

o The unformatted output statements in C are
putchar and puts.

» Putchar(): putchar displays one character at a
time to the Monitor.

Syntax:

putchar(variable name);

» Puts(): puts displays a single / paragraph of text to
the standard output device.

Syntax:

puts(variable_name);

//Sample program :

#include<stdio.h>
#include<conio.h>
void main()

{

char a[20];
gets(a);

puts(a);

getch();
}

o Formatted1/OinC:

The formatted Input / Output functions can read and
write values of all data types, provided the appropriate
conversion symbol is used to identify the datatype.

» scanf(): is used for receiving formatted Input.
Syntax :

scanf(“control_string 1, - -, control_string n”,&variablel,
- - - - variable n);

» printf ():is used for displaying formatted output.
Syntax:

printf(“control_string 1, - -, control_string n”,variablel, -
- - -, variable n);

//Sample Program :

#include<stdio.h>
#include<conio.h>
void main()

{

int no;

char ch;

char s[20];

printf("Enter a character : ");
scanf("%c",&ch);

printf("Enter a No : ");
scanf("%d",&no);

printf("Enter a Word or String :

scanf("%s",&s);

printf("\n Character : %c",ch);
printf("\n No : %d",no);
printf("\n String : %s",s);
getch();

}

EXAMPLES

First method:

/* Program for output fin value*/
#include<stdio.h>

Void main()

{

int a=6;

int b=10;

printf(“The value of a is:%d”,a);
printf(“The value of b is:%d"”,b);

}

Second methods:

#Include<stdio.h>

void main()

{

int a,b;

printf(“Enter the value of a”);
scanf(“%d”,&a);

printf(“Enter the value of b”);
scanf(“%d”,&b);

printf(“The value of a is:%d”,a);
printf(“The value of b is:%d”,b);
getch();

clrscr();

Some examples;-
#include<stdio.h>
void main()

{

printf(“c is excellent”);

}

#include<stdio.h>

void main()

{

int basic=2000;
printf(“Basic=%d”,basic);
}

#include<stdio.h>

void main()

{

int a,b,c;

a=125;

b=2678,;

c=1245809;
printf(“%5d,%5d,%5d\n”,a,b,c);
printf(“%3d,%4d,%5d\n”,a,b,c);
}

#include<stdio.h>

void main()

{

int a=98;

char ch="b’;
printf(“%c,%d\n”,a,c,h);
#include<stdio.h>

void main()

{

printf(“%10s\n”,”Nepal”);
printf(“%4s\n”,”Nepal”);
printf(“%2s\n”,”Nepal”);
printf(“%5.25s\n”,”Nepal”);
}

Lab Exercise

Unit 5:

Structured Programming Fundamentals:

Control statement

Control statement enable us to specify the
order in which the various instructions in the
program are to be executed .This determines
the flow of control. Control statement defines
how the control is transferred to others parts
of program. Control statement defines the
flow in which execution of statement should
take place to achieve the requirement result.

Fig: control structure

lerat on

Z.

Sequence

‘

C Language support three types of control statement which are
as:

a)Decision making structures(selection structure): require that
the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or
statements to be executed if the condition is determined to be
true, and optionally, other statements to be executed if the
condition is determined to be false.

Following is the general from of a typical decision making structure:

If condition

is false

If condition
is true

conditional '

code

C programming language provides following types of decision

making statements:

Statement

if statement

If...else statement

nested if statements

switch statement

nested switch statements

Description

An if statement consists of a boolean expression followed by one
or more statements.

An if statement can be followed by an optional else statement,
which executes when the boolean expression is false.

You can use one if or else if statement inside another if or else if
statement(s).

A switch statement allows a variable to be tested for equality
anainst a list of values.

You can use one swicth statement inside another switch
statement(s).

b) loop(lteration structure): A loop statement allows us to
execute a statement or group of statements multiple times
and following is the general from of a loop statement in most
of the programming languages:

e while
e do...while
 for

c) Sequence structure: The sequence structure
simply executes a sequence of statements in
the order in which they occur.

Conditional Code

If condition
is true

If condition
is false

If...satement

This is bi-directional conditional statement .This statement is
used to test condition and take one of the two possible actions. If the
condition is true then a single statement or a block of statement as
executed (one part of program), otherwise another single statement or
a block of statement is executed (other part of the program).

Syntax: if statement
If (condition)

{

Statement l

................ e
.............. condition

}

l True

Block of statements

l

Statement after block

/* print the length and smallest of the two numbers*/.
#include<stdio.h>

void main()

{

int a,b;

printf(“enter the first number:”);

scanf(“%d”,&a);

printf(“enter the second number:”);

scanf(“%d”,&b);

if(a>b)

printf(“largest number=%d and smallest number=%d\n”,a,b);
else

printf(“largest number=%d and smallest number=%d\n”,b,a);

J

if...else if...else Statement
An if statement can be followed by an optional else if...else statement, which
is very useful to test various conditions using single if...else if statement.

Syntax2: ifelse statement
If (condition)

{

Statement

elseif()

{

Statement

//Sample example
#include <stdio.h>

int main ()

{

int a =100;

if(a==10)

{

printf("Value of a is 10\n");
}

else if(a==20)

{

printf("Value of a is 20\n");

}

else if(a==30)

{
printf("Value of a is 30\n");

}

else

{

printf("None of the values is matching\n");

J

printf("Exact value of a is: %d\n", a);
return O;

}

Synatax3: Nested if..else statement

It 5 always legal in C programming o nest if-else statements, which means you can use one if or else if
statement inside another if or else if statement(s).

Syntax:

The syntax for a nested if statement is a5 follows:

if(boolean expression 1)

{

/* Executes when the boolean expression 1 iz true */
1f (boolean expression 2)

{

* Executes when the boolean expressicn 2 13 true */

}

Example:
$include <stdio.h>

int main ()

{
f* local variable definition */
int a = 100;
int b = 200;

/* check the boolean condition =/
if{ a == 100)

{
/* 1f condition is true then check the following */
if{ b == 200)
{
/¥ 1f condition is true then print the following */
printf("Value of a is 100 and b is 200\n"),
I
!

printf("Exact value of a iz : #d\n", a);
printf("Exact value of b iz : ¥dwn", b }):

return 0:

/* print whether the number is even or odd*/
#include<stdio.h>

void main()

{

Int n;

printf(“enter the number:”);
scanf(“%d”,&n);

if(n%2= =0)

printf(“number is even\n”);
else

printf(“number is odd\n”);

J

/* program to understand the resting of ‘if.....else’ statement .Find the largest number
between any three number*/
#include<stdio.h>
void main()
{
int a,b,c;
printf(“enter the first number:”);
scanf(“%d”,&a):
printf(“enter the second number:”);
scanf(“%d”,&b);
printf(“enter the third number:”);
scanf(“%d”,&c);
if(a>b&&b>c)
printf(“%d is the largest number\n”,a):
elseif(b>c&&c>a)
printf(“%d is the largest number\n”,b);
else
printf(“%d is the largest number\n”,c);
getch();
clrscr();

}

Switch :

This is multi-directional conditional control statement. This is a possibility in
program to make a choice among number of alternatives. For making a choice, we use the
switch statement. This can be written as:

Syntax:
switch(expression)
{

case constantl:
statement

case constant 2:
statement

case constant 3:
statement
default:
statement

/«program to understand the switch control statement./
include<stdio.h>
void main()

{
int ch;
printf(“enter your choice:”);
scanf(“%d”,&ch);
switch(ch)

{
case 1:
printf(“First\n”);
break;
case 2:
printf(“Second\n”);
break;
case 3:
printf(“Third\n”);
break;
default:
printf(“Wrong choice\n”);
}

}

Nested Switch

It is possible to have a switch as part of the
statement sequence of an outer switch. Even
if the case constants of the inner and outer
switch contain common values, no conflicts

will arise.

The syntax for 3 nested switch statement is as follows:

switchichl) |
cage 'A':
printf("This & 13 part of cuter awitch® };
switch(ch) |
caze 'A':
printf ("This & 13 part of inner switch" };
break;
cage 'B': /¥ case code */
!
break;
cage 'B': /¥ case code */

//sample program

$include <stdio.h>

int main ()

{
/% local wariable definition */
int a = 100;
int b = 200;

switch{a) {
cage 100:
printf("This is part of outer switch\n"™, a):
switch(b)
case 200:
printf("This i=s part of inner switch\wn", &8);
]
]
printf ("Exact value of a iz : *d\n™, a);
printf ("Exact value of b iz : %d\n™, b)

return 0:

while loop: statement in C programming
language repeatedly executes a target
statement as long as a given condition is true.

Syntax:
while(condition)
{ statement(s); }

Here, statement(s) may be a single statement
or a block of statements. The condition may
be any expression, and true is any nonzero
value. The loop iterates while the condition is
true.

Example:
#include <atdioc.h>

int main ()

{
;F* local wvariaesble definition */
int a = 10;:

/* wWhile loop execution */
while{ a < 20)

{
printf ("value of a: %d\n", a):
at+:

1

return 0;

/# Find the factorial of any number#/
#include <stdio.h>
void main()
{
int n,no,fact=1;
printf(“Enter the number:”);
scanf(“%d”,&n);
no=n;
if(n<0)
printf(“No factorial of negative number\n”);
else
if(n==0)
printf(“factorial of Zero is 1\n”);
else
while(n>1)
{
fact=fact*n;
n--;
}
printf(“factorial of %d=%d\n"”no,fact);

}

do...while loop: is similar to a while loop, except
that a do...while loop is guaranteed to execute at
least one time.

Syntax:
do
{ statement(s); jwhile(condition);

Notice that the conditional expression appears at the end of

the loop, so the statement(s) in the loop execute once before
the condition is tested.

If the condition is true, the flow of control jumps back up to
do, and the statement(s) in the loop execute again. This
process repeats until the given condition becomes false.

Example:
#include <3tdic.h>

int main ()

|
J/* local wvariaeble definition */f
int a = 10;

/* do loop execution */f

do

{
printf("value of a: d\n", a);
B=a+ 1;

lwhile{ a < 20):

return 0:

for IOODZ is a repetition control structure that allows you to efficiently
write a loop that needs to execute a specific number of times.

Syntax:
for (init; condition; increment)

{

statement(s);

}

Here is the flow of control in a for loop:

The init step is executed first, and only once. This step allows you to
declare and initialize any loop control variables.

Next, the condition is evaluated. If it is true, the body of the loop is
executed.

After the body of the for loop executes, the flow of control jumps back up
to the increment statement.

The condition is now evaluated again. If it is true, the loop executes and
the process repeats itself (body of loop, then increment step, and then
again condition). After the condition becomes false, the for loop
terminates.

Example:

#include <atdio.h>

int main (]
{
/* for loop execution */
for{inta=10; a< 20y a=8a+1)
{
printf("value of a: d\n", a);

}

return 0;

/*print the number from 1 to 10*/
#include<stdio.h>
void main()

{

int n=1;

do

{
printf(“%d\n”,n);
n=n+1;

J

while(n<11);

}

Different between while and Do....while:

* Indo....... while loop a single, statement or block of
statement are executed at least once, and then the
condition is evaluated.

* |n a ‘while’ loop first the condition is evaluated and
then the statement are executed.

Other Control Statement in c

break statement: in C programming language
has the following two usages:

— When the break statement is encountered inside
a loop, the loop is immediately terminated and
program control resumes at the next statement
following the loop.

— It can be used to terminate a case in the switch
statement

Syntax:
break;

Example:

#include <atdioc.h>

int main ()
{

J* local varieble definition */
int a = 10;

/* while loop execution */
while{ a < 20)

{
printf(“value of a: ¥d\n", a);
att;
if{ a > 135)
{
/* terminate the loop using break statement */
break;
}
}
return 0;

continue statement: in C programming
language works somewhat like the break
statement. Instead of forcing termination,
however, continue forces the next iteration of
the loop to take place, skipping any code in
between.

Syntax:
continue;

Example:
#finclude «<stdic.h>
int main ()

{

F* local warigble definition */f
int a = 10;

F* do loop execution */

do
{
if{ a == 135)
i
S* akip the iteration */
a =a + 1;
continue;
}
printf {"value of a: Fd4d\n", a):
at+:

lwhile{ a < 20);

return 0:

goto statement: in C programming language
provides an unconditional jump from the goto
to a labeled statement in the same function.

Syntax:

The syntax for a goto statement in Cis as
follows:

goto label;

label: statement;

/«print the largest and smallest of two number./
#include<stdio.h>

void main()

{

int a,b;

printf(“enter the first number:”);
scanf(“%d”,&a);

printf(“enter the second number:”);
scanf(“%d”,&b);

if(a>b)

goto large;

else

goto small;

large:

printf(“largest number =%d and smallest number=%d”,a,b);
goto end ;

small:

printf(“largest number =%d and smallest number=%d”,b,a);
goto end;

end:

printf(“\n”);

}

Unit 6: Function in ¢

A function is a group of statements that together
perform a task. Every C program has at least one
function, which is main(), and all the most trivial
programs can define additional functions. A function
is known with various names like a method or a sub-
routine or a procedure, etc. C program has two
types functions:

— Library function

— User-defined function

Liberary function:

C has the facility to provides some library
function to the programmer for doing some
operations. As an examples, C has a mathematical
function which is used for finding out square root of
any number ,sting library function is used for string
operations as example strlen() is used to find out the
length of a string and strcamp() is used for compare
two strings. These operations are programmed and
stored as library function so that they can be called by
any program.

/* Find the square root of any number*/
#include<stdio.h>

#include<math.h>

void main()

{

int n;

printf(“enter the number”);

scanf(“%d”,&n);

printf(“The square root of %d is :%f",n,sqrt(n));

J

User-define function

Library function provide the function for doing
some predefined operations. Users can also create
functions for doing any specific task of the program.
Such functions are called user defined function. The
user defined functions are of three types.

* Function with no argument and no return value.
 Function with argument but no return value.

* Function with argument and return value.

Defining a Function:

The general form of a function definition in C
programming language is as follows:

return_type function_name(parameter list)

{
body of the function

J

Here are all the parts of a function:
* Return Type: A function may return a value.

 Function Name: This is the actual name of the
function.

 Parameters: A parameter is like a placeholder.
When a function is invoked, you pass a value
to the parameter. This value is referred to as
actual parameter or argument.

* Function Body: The function body contains a
collection of statements that define what the
function does.

Example:

Following is the source code for a function called max{). This function takes two parameters num? and
num2 and refums the maximum between the two;

/* function returning the max between two numbers */
int max(int numl, int num?)
{

{/* local variable declaration */

int reault;

if (muml > num|
reqult = numl;
elae
reqult = num;

return result:

Function Declarations:

* A function declaration tells the compiler about
a function name and how to call the function.

The actual body of the function can be defined
separately.

* A function declaration has the following parts:
return_type function_name(parameter list);
* Following is the function declaration:
int max(int num1, int num?2);

Calling a Function:A called function performs
defined task and when its return statement is
executed or when its function-ending closing
brace is reached, it returns program control
back to the main program.

Finclude <atdic.h>

S* function declaration */
int max{int nmuml, int num?) ;

int main ()
{
J% local warieble definition #*/f°
int a = 1007
int b = 20072
int retr

S* calling a function to get max value %/
ret = max{a, b):

printf{ "Max wvalue iz : 4d\wn"™, et)

return 07

}

F* function returning the max between two numbers */
int max(int nmnuml, int num?)
i

F* local wvariable declaration */f

int result:

if (numl > num?)
regult = numl;
2]lae
regult = numa;

return result:

Function Arguments:

If a function is to use arguments, it must
declare variables that accept the values of the
arguments. These variables are called the
formal parameters of the function.

The formal parameters behave like other local
variables inside the function and are created
upon entry into the function and destroyed
upon exit.

While calling a function, there are two ways
that arguments can be passed to a function:

* Call by value: The call by value method of
passing arguments to a function copies the
actual value of an argument into the formal
parameter of the function. In this case,
changes made to the parameter inside the
function have no effect on the argument. By
default, C programming language uses call by
value method to pass arguments.

#include <stdio.h>

void swap(int x, int y);

int main ()

{

inta =100; int b = 200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
swap(a, b);

printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);
void swap(int x, int y)

{

int temp;

temp = x;

X=Y;

y = temp;

printf(“In the function values changed :%d,%d”,x,y);
1}

* call by reference :The call by reference
method of passing arguments to a function
copies the address of an argument into the
formal parameter. Inside the function, the
address is used to access the actual argument
used in the call. This means that changes

made to the parameter affect the passed
argument.

#include <stdio.h>

void swap(int *x, int *y);

void main ()

{

int a = 100; int b = 200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
swap(&a, &b);

printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);
void swap(int *x, int *y)

{

int temp;

temp = *x;

*X — *y’

*y = temp;

printf(“In the values changed :%d, %d”, x,y);

}
getch();

clrscr();}

storage classes

A storage class defines the scope (visibility)
and life-time of variables and/or functions
within a C Program. They precede the type
that they modify. There are three types of
storage classes:

— automatic
— external
— static

— register

a) auto : The auto storage class is the default
storage class for all local variables.

{int mount; auto int month; }

b) register storage class : The register storage
class is used to define local variables that
should be stored in a register instead of RAM.

register int miles;

c) The extern storage class is used to give a reference of
a global variable that is visible to ALL the program
files. When you use 'extern’, the variable cannot be
initialized however, it points the variable name at a
storage location that has been previously defined.

extern void write_extern();
d) Static Storage Class

The value of static variable persists until the end of
the program. A variable can be declared static using
keyword: static. For example:

staticint i; Here, i is a static variable.

Recursion: The special feature of C language is that it supports the recursion function. The function which calls itself
(in function body) again and again is known as the recursion function. This function will call itself as long as the

condition is satisfied.
Syntax:

main()

fun(); recursion call

}

/* Find the factorial of any number*/
#include<stdio.h>

int factorial(int n);

void main()

{

int n,value;

printf(“enter the number:”);
scanf(“%d”,&n);

if(n<0)

printf(“No factorial of negative number\n”);
else

if(n==0)

printf(“Factorial of Zero is 1\n”);

else

{

value= factorial(n);

printf (“Factorial of %d=%d\n”,n,value);

}
}
factorial(k)
{
int fact=1;

if(k>1)
fact=k*factorial(k-1);/ *recessive function call* /
return(fact);

}

ARRAY

Array: In many situations, it may be possible that it is useful to collect
the similar type of data items support concept of array for this purpose.
An array is a collection of similar type of data items. The elements of

array is indicated by specifying the array name followed by subscript in
brackets. Let us take an array.

arr[10];
The elements of this array is arr[0],arr[1],arr[2]........ arr[9].

Here number of subscripts determine the dimension of array. The value
in the first bracket is size of the array.

If the size of array is n, for example arr[n]; Then arr[6] is the first
element and arr[n-1] is the last element of array.

Declaration of Array

The array should be declare with the data type, array name and number of subscript in
the bracket. By declaring an array, the number of memory locations (size of array)is
allocated in memory.

The syntax for declaration of array is
data type array-name [expression].
Example:
The array can be declare as-
Int age[10];
Float sal[10];
Char grade[10];

Here first one is the integer type array. Every element of array can hold an
integer value .Second one is the floating type array, can hold a float value and third
one is the character type array, can hold one character value.

Processing with array:

We know the elements of array is stored in contiguous memory locations.
As example;
Int arr[5];
This is stored in memory as
100 500 800 101 200
Arr[1] arr[2] arr[3] arr[4]
We can take the value in the array as other variables by scanf()statement
printf(“%d”,arr[1]);
Let us take the character type array.
Char arr[10];
We can take the value in character type array as
scanf(“%c”,arr[1]);
scanf(“%s”,arr);
Similarly we can print the character type array by printf() statement as
printf(“%c”,arr[1]);
Or
printf(“%5”,arr);

/* program to print sum of 10 nhumbers*/
#include<stdio.h>
void main()
{
int arr[10],i, sum=0;
for(i=0;i<10;i++)
{
printf(“Enter the %d number \n”,i+1);
scanf(“%d”,&arrli]);
}
for (i=0;i<10;i++)
{
sum=sum-+arr|i];
printf(“sum=%d\n”,sum);
}
}

/* program to accept 10 number and print the number is odd or

even®*/

#include<stdio.h>
void main()
{
int arr[10],1;
for(i=0;i<10;i++)
{
printf(“Enter the %d number “i+1);
scanf(“%d”,& arrli]);
}
for(i=0;i<10;i++)
{
if(arr[i]%2= =0)
printf(“%d number is even\n”,arr[i]);
Else
printf(“%d number is odd/n”,arr[i]);

}
}

[* program to accept 10 characters and print

them*/

#include<stdio.h>
void main()

{

char arr[10];

int [;

for(i=0; i<10; i++)
scanf(“%c”,&arrli]);
printf(“Enter characters are :\n”);
for (i=0;i<10;i++)
printf(“%c\n”, arr[i]);
}

[* program to accept any string and print
them*/

#include<stdio.h>
void main()

{
char str[15];

printf(“Enter the string”);
scanf(“%s”,str);

J

Two Dimensional Array:

As we know one dimensional array use one bracket, two
dimensional array use two brackets. Similarly-dimensional
array use n brackets.

Example:

Arr[i][J] means the starting element of array is arr[0][0] and
the last element of array is arr[i-1][J-1].Here in arr]i][j],!
denotes the row in the array and J denotes the column in
array or elements in each row.

/* program to input and print the elements of matrix */
#include<stdio.h>

void main()

{

int mat[3][3],1,j,row,col;

printf(“Enter the row of matrix:”);
scanf(%d”,&row);

printf(“Enter the column of matrix:”);
scanf(%d”,&col);

print(“Enter matrix elements”);
for(i=o;i<row;i++)

{

for(j=0;j<col;J++)

{

scanf(“%d”,&mat[i][j]);

}

}

printf(“matrix is:\n”);
for(i=0;i<row;i++)

{

for(j=0; j<col;j++)

{

printf(“%d\t”, mat [i][j]);
printf(“\n”);

}

}

/* Program to addition of two matrix */
#include<stdio.h>

void main()

{

int mat1[3][3],mat2[3][3],mat3[3][3],1,j,row,col;
printf(“Enter the row and column of matrix:”);
scanf(“%d%d”,&row,&col);

printf(“For the first matrix:\n”);
for(i=0;i<row;i++)

{

for(j=0;j<col;j++)

{

print(“Enter the elements of first matrix:”);
scanf(“%d”,&mat1[i][j]);

}
}

printf(“Enter the elements of second
matrix:”);

for(i=0;i<row;i++)

{

for(j=0;j<col;j++)

{

scanf(“%d”, &mat2[i][j]);

}

}

/*For addition*/
for(i=0,i<row;i++)
{
for(j=0;j<col;j++)
{
mat3[i][j]l=matl[i][j]+mat2]i][j];
}
}
printf(“Matrix1 is:\n”);
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
printf(“%d\t”;mat1][i][j]);
}
printf(“\n”);
}

printf(“matrix2 is:\n"”);
for(i=0;i<row;i++)

{

for(j=0;j<col;i++)

{
printf(“%d\t”,mat2[i][jl);
}

printf(“\n”);
printf(“After addition matrix is:n”);
for(i=0;i<row;i++)

{

for(j=0;j<col;j++)

{
printf(“%d\t”,mat3[i][j]);
}

printf(“\n”);

}

}

/*program to transpose of matrix*/

#include<stdio.h>
void main()
{
int mat1[3][3],mat2[3][3],i,j,row,col;
printf(“Enter row and column of matrix:\n");
scanf(“%d%d”,&row&eclo);
printf(“Enter the elements of matrix:\n”);

for(i=0;i<row;i++)
{

for(j=0;j<col;j++)
{

scanf(“%d”,&mat1[i][j]);
}
}
printf(“matrix is:\n");

for(i=0;i<row;i++)
{

for(j=0;j<col;j++)
{

printf(“%d\t”,mat1][i][j]);
}
printf(“\n”);

}

/*for transpose of matrix*/

for(i=0;i<row;i++)

{
for(j=0;j<col;j++)

{

mat2[i][jl=matl1[j][i];
}
}

printf(“Transpose of matrix is:\n”);
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
printf(“%d\t”,mat2[i][j]);
}
printf(“\n”);
}
}

##/*program to multiplication of two matrix*/

#include<stdio.h>

void main()

{

int mat1[3][3],mat2[3][3],mat3[3][3],i,j,row,col,row2,col2,k;
printf(“Enter the row and column for first matrix:\n"”);
scanf(“%d%d”,&row1,&coll);

printf(“Enter the row &column for second matrix:\n”);
scanf(%d%d”,&row2,&col2);

if(coll!=row?2)

{

printf(“Multiplication of two matrix not possible:”);
else

printf(“enter the elements of first matrix:\n"”);
for(i=0;i<row1;i++)

{

for(j=0;j<col;j++)

{

scanf(“%d”,&matl[i][j]);

printf(“enter the element of second matrix:”);

for(i=0;i<row2;1++)
{

for(j=0;j<col2;j++)
{

scanf(“%d”, &mat2[il[j]);

}
}

for(i=0;i<row1;i++)
{

for(j=0;j<col2;j++)
{

mat3[i][j]=0;
for(k=0;k<col1;k++)
mat3[i][jl=mat3[i][j]+mat1[i][k]*mat2[Kk][j];

}
}

printf(“Element of first matrix is:\n”);
for(i=0;i<row1;i++)

for(j=0;j<coll;j++)

E)rintf(”%d\t”,matl[i][j]);

|}3rintf(”\n”) ;

|}orintf(”EIement of the second matrix is:\n”);
for(i=0;i<row2;i++)

1{‘or(j=0;j<coI2;j++)

|{:>rintf(”%d”,mat2[i][j]);

|}orintf(”\n”) ;

}

printf(“Multiplication of two matrix is:\n");
for(i=0;i<row1;i++)

{

for(j=0;j<coll;j++)

{

printf(“%d\t”, mat3[il[j]);

}

printf(“\n”);

}

}

Arrays and String

e Strings are array of character .i.e. they are
character arrange one after another in
memory. Thus, character array is also known
as string. Strings is used in c for manipulating
text such as word or sentence. A string is
always terminated by a null character (\0).

//wap to illustrate string initilation.
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
char name[]="Shyam Prasad Sharma",;
int i=0;
printf("\n The name in discrit form:\n");
while(name[i]!="\0')
{
printf("\t%c",nameli]);
i++;

’

}
getch();

clrscr();

}

//wap to illustrate string initilation.
#include<stdio.h>
#include<conio.h>
#include<string.h>

void main()

{

char name[10];

inti;

printf("Enter the name of 5 student");
for(i=0;i<5;i++)
scanf("%s",&name[i]);
printf("\nNames are:\n");
for(i=0;i<5;i++)
printf("%s\t",name]Ji]);

getch();

clrscr();

}

String handling functions

strien()

This function returns an integer which dinotes
the length of string passing . the length of
string is the number of characters present in

it, excluding the terminating null character.
Syntax:-

Integer_varriable= strlen(string);

Example:-
//wap to illustrate string initilation.

#include<stdio.h>

#include<conio.h>
#include<string.h>

void main()

char name[10];

int len;

printf("Enter your name ");
gets(name);
len=strlen(name);
printf("\n the number your name is :\t%d",len);
getch();

clrscr();

}

strcpy()

The strcpy() function copies one string to
another. The function accept two string as
parameter and copies second string character
by character in to the frist one upto and
including the null character of the second
string . it’s syntax is : strcpy(distination_string,
source_string);

//wap to copy one string to another.
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()

{

char name[]="Saroj Bhatta",s[15];

strcpy(s,name);

printf("The value in two strings :\n s=%s",s,name);
getch();

clrscr();

)

strcat()

This function concatenates two strings .i.e. it
appends one string at the end of another. This
function accepts two string as parameter and
sorts the contents of the second string at the
end of the first. Syntax:-

Strcat(stringl,string2);

//wap to using strcat() function.
#include<stdio.h>
#tinclude<conio.h>
#include<string.h>
void main()
{
char fname[20]="Saroj",Iname[]=" Bhatta";
strcat(fname,Iname);

printf("The full name is:\n%s",fname);
getch();
clrscr();

)

stremp()

This function compares two strings to find out whether they
are same or different. This function is useful for constructing
and searching strings as arranged in dictionary. This function

accept two strings as parameters and returns an integer
whose value is

v Less than O if the frist string is less than the second.
v Equals to O if the both are same.
v Grater than O if the first string is grater then second

The two string is compared character by character until there
is mismatch or end of one string is reached. It’s syntax is:-

Integer_variable= strcmp(stringl,string2);

//wap to illustrate the use of strcmp() function.
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
char name[20],Iname[20];
int diff;
printf("\n Enter the frist string\t");
gets(name);
printf("\nEnter the second string\t");
gets(Iname);
diff=strcmp(name,lname);
if(diff>0)
printf("%s is grater then %s by value %d",name,Iname, diff);
else if(diff<0)
printf("%s is grater than %s by value %d",Iname,name, diff);
else
printf("%s is same as %s",name,Iname);
getch();
clrscr();

}

strrev()

This function used to reverse all characters in
a string except null character at the end of
string . syntax:- strrev(string);

//wap to illustrate the use of strrev() function.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char name[20]="Shyam Sharma",Iname[20];
strcpy(lname,name);

strrev(name);

printf("The reverse string of original string %s is %s",Iname,name);
getch();

clrscr();

}

POINTER

Pointer:

A pointer is a variable which contains the memory(locations)of the
another variable and is declared as the pointer type. As an example if
one variable is a data type and second variable is the pointer type which
points to the first variables type, then the contents of the second
variable is the address of the first variable.

Here, the second variable contains the address of the first variable.5 is
the value at address2000 which is the address of the first variable.

Uses of pointer

Pointer is used for saving memory space.

Use of pointer assigns the memory space and also
releases it.

With pointer data manipulation is done with
address, so the addition time is faster.

The two-dimensional and multi-dimensional array
representation easy with pointer

Pointer concept is used with data structure such as
liked list

The & and * operator

The ‘&’ is the address operator, it represents the address of variable.
Example:
#include<stdio.h>
Void main()
{
int a=5;
printf(“value of a=%d\n”,a);
printf(“Address of a=%u\n”,&a);
}
The %u is used for obtaining the address.

The * operator is the value at address operator. It represent the value at the specified
address.

Example:

#include<stdio.h>

void main()

{

int a=5;

orintf(“value of a=%d\n”,a);

orintf(“address of a=%u\n”,&a);

orintf(“value at address %u=%d\n”,&a,*(&a));
}

Declaration of pointer: Let us see, how we use the pointerin
expression. The & operator represents the address of the variable. If we
went to give the address of the variable to another variable then we can

write.

When a pointer variable is declared then an asterisk (*) symbol should
precede the variable name. Here b is the pointer type variable ,which
points to the variable a. Hence it must be declared as-
int a=5;
int*b;

Similarly,
char*p;
float*q;

Example:-

#include<stdio.h>

void main()

{

int a=5;

int*b;

b=&a;

printf(“value of a=%d\n”,a);
printf(“value of a=%d\n”,*(&a));
printf(“value of a=%d\n”,*b);
printf(“Address of a=%u \n”,&a);
printf(“Address of a=%u \n”,b);
printf(“Address of b=%u \n”,&a);
printf(“Value of b=address of a=%u \n”,b);

}

Pointer to pointer: We know that pointer is a variable that contains the address of
the another variable. Similarly, another pointer variable can store the address of this
pointer variable. Hence we can say this is a pointer to pointer variable .

/* Program to understand pointer to pointer variable*/
#include<stdio.h>
void main()

{
int a=5;
int*b;
int**c;
b=&a;
c=&b;
printf(“value of a=%d\n”,a)
printf(“value of a=%d\n”,*(&a));
printf(“value of a=%u \n”,*b);
printf(“value of a=%u \n”,**c);

}

*Pointer Arithmetic: Arithmetic operation can also be done with pointer variable.
Postfix, prefix increment and decrement operation are also possible with pointer.
Example:

/* program to understand the postfix , prefix increment and decrement is the pointer
variable */

include<stdio.h>
void main()

{
int a=5;
int*b;
b=&a;
printf(“address of a=%u\n”,b);
printf(“address of a=%u\n”,++b);
printf(“address of a=%u\n”,b++);
printf(“address of a=%u\n”,--b);
printf(“address of a=%u\n”, b--);

}

Pointer and function:
The arguments or parameters to the Function are passed in
two ways:

*Call by value

*Call by reference

In call by value the values of the variables are passed. In
this value of variable are not affected by changing the value of
the formed parameter.

[*program to explain call by value */

#include<stdio.h>

void main()

{

int a=5;

int b=8;

printf(“Before calling the function a and b are %d %d\n”,a,b);
value(a,b);

printf(“Before calling the function a and b are%d%d\n”,a,b);
value(a,b);

printf(“After calling the a and b are %d%d\n”,a,b);
value(a,b);

}

value(p,q)

{

int p,q;

{

P++;
q++;

’

printf(“In function changes are%d%d\n”,p,q);
}

(2).Call by reference:-

In call by reference the address of the variable are passed .In this value of variable are affected
by changing the value of the format parameter.

/*Program to explain call by reference*/

#include<stdio.h>

void main()

{

int a=5;

int b=8;

printf(“Before calling the function a and b are %d%d\n”,a,b);
ref(a,b);

printf(“After calling the function a and b are %d%d\n”,a,b);

}

ref(p,q)

int*p,*q;

{

(*p)++;

(*a)++;

printf(“In function changes are%d%d\n”,*p,*q);

}

/*Program to interchange the value of variable from cell by reference*/
#include<stdio.h>
void main()
{
int a=5;
int b=8;
printf(“Before swapping a=%d,b=%d\n”",a,b);
swap(&a,&b);
printf(“After calling swap function a=%d, b=%d\n”,a,b,);
}
swap(p,q)
int*p,*q;
{
int temp;
temp="p;
*p=*qg;
*q=temp;
printf(“In swapping function p=%d,q=%d\n”,*p,*q);
}

Pointer and Array: Array is a collection of similar data type elements. When we
declare an array then consecutive memory locations are allocated to the array
elements. The base address of array is the address of the 0" element of the array.
Example:
int arr[4]={5,10,15,20}

Here arr[4] means that array has 4 elements and is of int data type.

Arr[6] arr[1] arr[2] arr[3]

2000 2002 2004 2006

Int arr[4]={5,10,15,20}
Int*a;
a=arr;

/* Use pointer to print the value and address of array elements */
#include<stdio.h>
void main()

{
int arr[4]={s,10,15,20},a;

int*b;

b=arr;

for(a=0;a<4;a++)

{

printf(“value of arr[%d]=%d\n",a,*b);
printf(“value of arr[%d]=%u \n”,a,b);
b=b+1;

}

Pointer and string: A string is a collection of characters that are strode in the character array.
Every string is terminated with the ‘O\’(null character). It is automatically inserted at the end of
the string.

/* Program to print the character of any string and also address of each character */
#include<stdio.h>

void main()

{

int J;

char arr[]="Vijay”;

int J;

for(J=0; arr[j]="\0’; J++)

{

printf(“address=%u\t”,&arr[J]);

printf(“address=%c\n”,&arr[J]);

}
}

Dynamic memory allocation:-

In an array, it is must to declare the size of the array. There are two possibilities

for declaring the array size. The first case is ,the records that are stored is less
than the size of the array, second case, we want to store more records than size
of the array. In first case, there is a wastage of memory. In second case we can’t
store more records that the size of the array. The C language has the facility to
allocate memory at the time of execution . The process of allocating memory at
the time of execution is called as dynamic memory allocation.

The allocation and releasing of this memory space can be done with the use of
some built in function which are find in alloc.h file.

Let us take these function in details.

1.Size of (): Size of is an unary operator. This operator gives the size of its
argument in the term of byte. The argument can be a variable, array or any
data type. This operator also gives the size of any structure.

Syntax;

size of (int)

This gives the bytes occupied by the in data type, that is 2

[*program to understand the size of operator */
#include<stdio.h>

void main()

struct{

char name[10];

int age;

float sal;

}

sec;

int arr[10];

printf(“size of structure=%d”,size of (rec));
printf(“size of int=%d”,size of (int));
printf(“size of array =%d”,size of (arr));

}

2. Mallo(); This function is used to allocate memory space. The mallo() function
reserved a memory space of specified size and gives the starting address to pointer
variable.
This can be written as-

ptr=(datatype,*)mallo()(specified size);
Here data types says the type of pointer and specified size is the size which is required
to reserve in memory .An example:

ptr=(int*) malloc(10);
This allocates 10 bytes of memory space to the pointer ptr of type int and base
address is stored in the pointer ptr.
ptr=(int*) mallo(10* size of(int));
This allocates the memory space 10 times, that is hold an int datatype.

/*Program to enter the 5member and print them*/
#include<stdio.h>

void main()

{

int J;

int*a;

a=(int*)malloc(5*size of (int));
for(J=0;J<5;J++)

{

printf(“number%d=",J+1);
scanf(“%d”,(a+)));

}

for(J=0;j<5;J++)
printf(“%d\n”,*(a+)));

}

3.Calloc(): The calloc() function is used to allocate multiple block of memory .This has
two arguments .
As Example:
ptr=(int*) calloc(5,2);
This allocates 5 block of memory each block contains 2 bytes of memory and the
starting address is stored in the pointer variable ptr which is of type int.
The calloc() function is generally used for allocating the memory space for array and
structure .
As example:
struct record{
char name[10]
int age;
float sal;
}
int tot-rec=100;
ptr=(record*)calloc(tot-rec,size of (record));

Structure and Union

Structure:

Structure is a collection of data item. The data item can be
different type, some can be int, some can be float, some can
be char and so on. The data item of structure is called
member of the structure.

In other words we can say that heterogeneous data types can
be grouped to form a structure. In some languages structure
is known as record. The different between array and structure
is the element of an array has the same type while the
element of structure can be of different type. Another
different is that each element of an array is referred to by its
position while each element of structure has a unique name.

We can define the structure as-
Struct tag{
Member 1;
Member 2;

Member n;

}

Here,struct is a keyword for structure, we can also defined as-
Struct{

Member 1;
Member 2;

Member n;

}

Var;

Here var is the structure variable.

/*Program to accept name, age and address of any person and display it*/
#include<stdio.h>
void main()
{
struct{
char name[20];
int age;
char address[20];
lrec;
printf(“Enter the name”);
scanf(“%s\n”,rec.name);
printf(“Enter the age”);
scanf(“%d”,rec.age);
printf(“Enter the address”);
scanf(“%s”,rec.address);
printf(“Name:%s\n”,rec.name);
printf(“Age:%d\n”,rec.age);
printf(“Address:%s\n”,rec.address);

}

/* Same program for understanding how we define any structure to another name and how it is
used*/
#include<stdio.h>
void main()

{

Struct rec{
char name[20];
int age;
address[20];

}

Struct rec person;
printf(“Enter the name”);
scanf(“%s”,person. name);
printf(“Enter the age:”);
scanf(“%d”,person .age);
printf(“Enter the address”);
scanf(“%s”,person.address);
printf(“Name:%s\n”,person.name);
printf(“Age:%d\n”, person.age);
printf(“Address:%s\n”, person.address);

}

*Initialize value to the structure:

We can initialize the value to the members of structure.
struct{

char name[20];

int age;

char address[20]

}

sec={“Bijay”,19,”Bardaghat”};

Another type of initialization value to structure.
struct rec{

char name[20];

int age;

char address[20];

}
struct rec person={“Bijay”,19”Bardaghat”};

Array of Structure: As we know array is a collection of same datatype of elements.
Similarly we can declare the array of structure where every element of array is of
structure type. Array of structure can be declared as:-

struct rec{

char name[20];
int age;
char address[20];

}
Person[10];

/* Program to accept record of 10 person which has name,
age and address and also display them */
#include<stdio.h>
void main(){
struct rec{
char name|[20];

Int age;
char address[20];

}

Person[10];
int J;
for(J=0;J<10;J++){

printf(“Enter the record%d\n”,j+1);
printf(“Name;”);
scanf(“%s”,person[JJname);
printf(“Age:”);

scanf(“%d” &person[J]age);
printf(“Address:”);
scanf(“%s”,person[J].address);

}
printf(“Name \t Age\t Address\n”);

for(J=0;J<10;J++){
printf(“%s\t”,person[J].name);
printf(“%d\t”,person[J].age);
printf(“%s\t”,person[J].address);
1

Union: Union is same as structure. As the structure contains members of
different data types. In the structure each member has its own memory
location whereas members of union has same memory location whereas
members of union has same memory location we can assign values to only one
member at a time so assigning value to another member that time has no
meaning .
Syntax:

Union union-name({

Memberl;

Member2;

}

Here union is the keyword, it is necessary for declaration of union..

The declaration of union variable is same as structure.
Union union-name {

Member 1;

Member 2;

} variable name;
Example
Union emp {

Int age;

Char code[4]

}

In union emp both int age and char code[4] share the same
memory location. Here code occupy 4 byte and age use only 2
bytes. We can access the union member same as structure if we
access directly then we use the dot(.) operator if we access through
pointer then we use arrow() operator.

/*Program for accessing union member */
#include<stido.h>
void main()
{
union result{
int marks
char grade;
}res;
printf(“size of union:%d\n”,sizeof(res));
res.mark=90;
printf(“Marks =%d,grade=%c\n”,res marks,res.grade);
des.grade="A’;
printf(“marks=%d,grade:%c\n”,res.marks,res.grade);

}

File handling function in c

A file is a place on the disk where a group of related data is stored. The

data file allows us to store information permanently and to access and
alter that information whenever necessary. Programming language C has
various library functions for creating and processing data files. Mainly,
there are two types of data files:

1. High level (standard or stream oriented) files.
2. Low level (system oriented) files.

In high level data files, the available library functions do their own buffer
management where as the programmer should do it explicitly in case of
lower level files. The standard data files are again subdivided into text files
and binary files. The text files consist of consecutive characters and these
characters can be interpreted as individual data item. The binary files
organize data into blocks containing contiguous bytes of information. For
each, binary and text files, there are a number of formatted and
unformatted library functions in C.

Opening and closing a data file:

Before a program can write to a file or read from a file, the program
must open it. Opening a file established a link between the program
and the operating system. This provides the operating system, the
name of the file and the mode in which the file is to be opened.
While working with high level data file, we need buffer area where
information is stored temporarily in the course of transferring data
between computer memory and data file. The process of
establishing a connection between the program and file is called
opening the file.

A file pointer is a pointer to a structure of type FILE. Whenever a file is opened, a
structure of type FILE is associated with it, and a file pointer that points to this structure
identifies this file. The function fopen() is used to open a file.

The buffer area is established by

FILE *ptr_variable;

And file is opened by using following syntax
ptr_variable = fopen(file_name, file_mode);

where fopen() function takes two strings as arguments, the first one is the name of the
file to be opened and the second one is file_mode that decides which operations (read,
write, append, etc) are to be performed on the file. On success, fopen() returns a
pointer of type FILE and on error it returns NULL.

For example:
FILE *fpl, *fp2 ;
fpl = fopen (“myfile.txt”, “w”);
fp2 = fopen (“yourfile.dat”, “r”);

In other word, it specifies the purpose of opening a file. They are:
1. “w” (write):

If the file dosen’t exist then this mode creates a new file for writing,
and if the file already exists, then the previous data is erased and
the new data entered is written to the file.

2. “a” (append):

If the file doesn’t exist then this mode creates a new file, and if the
file already exists then the new data entered is appended at the

new data entered is appended at the end of existing data. In this
mode, the data existing in the file is not erased as in “w” mode.

3. “r” (read):

This mode is used for opening an existing file for reading purpose only. The
file to be opened must exist and the previous data of file is not erased.

4. “w+” (write + read):

This mode is same as “w” mode but in this mode we can also read and
modify the data. If the file doesn’t exist then a new file is created and if
the file exists then previous data is erased.

5. “r+” (read + write):
This mode is same as “r” mode but in this mode we can also write and
modify existing data. The file to be opened must exist and the previous
data of file is not erased. Since we can add new data and modify existing

data so this mode is also called update mode.

Closing a file: The file which are open from the fopen c
function must be closed at the end of the program. This is
written as:-

fclose(fp);

Structure of the file program
void main()

FILE *fp;

fp=fopen(“file name”,”"mode”);

fclose(fp);
}

file 1/0:-

fprintf(): This function writes the data into the file, so it has one
more parameter is the file pointer.

Syntax:-
fprintf(fp,”control character”, variable names);

fscanf(): This function is same as the scanf() function but this reads
the data from the file, so this has one more parameter that is the
file pointer.

Syntax:
fscanf(fp,’control character”, variable names);

eof():- The macro eof() is used for detecting whether the file
pointer is at the end of file or not. It returns nonzero if the file
pointer is at the end of file, otherwise it return zero.

//Writing a file
#include<stdio.h>
#include<conio.h>
void main
{
int age;
char name;

FILE *fp;
fp=fopen(“info.dat”,”w”);
printf(“Enter name:”);
gets(name);

printf(“Enter age:”);
scanf(“%d”,&age);
fprintf(“%s%d”,name,age);
fclose(fp);

return O;

}

//Reading a file
#include<stdio.h>
#include<conio.h>
void main()

{

int age;

char *name;

FILE *fp;
fp=fopen(“info.dat”,’r”);
fscanf(fp,”%s%d”,name,&age);
printf(“Your name:%s”,name);
printf(“Your age:%d”,age);
fclose(fp);

return O;

}

//Write a program to read data from the keyboard, write it to a file called
INFO, again read the same data from INFO file, and display it on the
screen.

#include<stdio.h>
#tinclude<conio.h>

void main()

{

FILE *fp;

char ch;

printf(“\nData input\n\n\n”);
fp=fopen(“INFO.TXT”,”"w");
while(ch=getchar()!=EOF)
printf(“%c”,ch);

fclose(fp);

//data output
fp=fopen(“INFO.TXT",r”);
while(ch=getc(fp)!=EOF)
printf(“%c”,ch);
fclose(fp);
getch();

}

//Write a program to read name, address and telephone number 10 number
of students write them //on STUD.DAT file and display them reading from
file.

#include<stdio.h>
#tinclude<conio.h>

void main()

{

char name[30], add[20], long int phone;
FILE *fp;
fp=fopen(“STUD.DAT”,w+);
for(i=0;i<10;i++)

{

printf(“Enter name:\n");
scanf(“%s”,name[i]);
printf(“Enter address:\n”);
scanf(“%s”,add[i]);

printf(“Enter phone:\n");
scanf(“%ld”,&phoneli]);

fprintf(fp,” %s%s%ld”,name,add,phone);

}

rewind(fp);

for(i=0;i<10;i++)

{
fscanf(fp,”%s%s%ld”,name,add,&phone);
printf(“Name=%s\tAddress=%s\tPhone=%I|d”,nameli],add[i], phone[i]);
}

fclose(fp);

getch();

}

#include<stdio.h>
#include<conio.h>
//#include<lib.h>

void main()

{

struct student

{

char name[30];

int roll;

float marks;

7

struct student s[3],st[3];
inti;

FILE *fptr;

clrscr();

fptr=fopen("student.text","w+b");

for(i=0;i<3;i++)

{

printf("\n\nEnter information of student no %d\n",i+1);
printf("Name:\t");

scanf("%s",s[i].name);

printf("\nRoll:\t");

scanf("%d",&s[i].roll);

printf("\nMarks:\t");

scanf("%f",&s[i].marks);

}

printf("\n\nWriting Information to File.............. \n");
fwrite(&s,sizeof(s),3,fptr);

rewind(fptr);

printf("\nReading same content form file........... \n");
fread(&st,sizeof(st),3,fptr);

printf("Student Name\t Roll\t Marks");

PENEF("\N oo \n");

for(i=0;i<3;i++)
printf("%s\t\t%d\t%.2f\n",st[i].name,st]i].roll,st[i].marks);
fclose(fptr);

getch();

}

A program to print ascii table

#include<stdio.h>
int main()

{

Int i;

for(i=0;i<=255;i++)

printf("ASCII value of character %c: %d\n",i,i);
return O;

}

/* C program to display character from Ato Z
using loops. */

#include <stdio.h>

int main()

{

char c; for(c='A"; c<='Z"; ++c)
printf("%c ",c);

return O;

}

