
C Programming 



Computer Fundamentals

Unit-1



Computer:
• The word “Computer” is derived from the Latin 
word “Computare” which means to calculate.

•Hence, computer is normally considered as a 
calculating device, which performs the entire task 
at very fast rate.

•A computer is an electronic machine that accepts 
data and instructions, stores it until the data is 
needed, processes large amount of data according 
to the instructions provided by the user, and finally 
returns the results to the user



Advantages of computer:

• Computer is a very fast machine.

• Computers operate with almost 100% accuracy.

• Computer is capable of doing required task 
again and again without any difficulty.

• Computers have capability of storing huge 
amount of data.

• Computers can perform variety of jobs.



Disadvantages of computer:

• Computer is an automatic device, even it 
requires operator to operate the computer.

• Computer is very expensive in comparison to 
other electronic devices, so every people 
cannot afford it.

• Computer cannot think itself to give decisions.

• Computer requires technical person for 
maintenance if it does not work properly.



Types of computers:
Analog computer

Digital computer



Analog computer

• The computer which can process analog 
quantities (continuous data) is called an 
analog computer. 

• They are designed to accept physical 
quantities such as temperature, pressure, 
speedometer, etc and record them as readings 
along a continuous scale.

• Examples of analog devices are: thermometer, 
speedometer, etc.



Features of analog computer:
a) These computers work on the derived 

quantities as temperature, speed, voltage, etc.

b) They take only one instruction at a time, 
execute it, give us the result and take next 
instruction.

c) To use these computer knowledge of 
programming is not required.

d) They do not perform any calculation.



Digital computer
• The computer which accepts discrete data 

(discontinuous data) is known as digital 
computer. 

• The digital computers operate by counting 
numbers, or in other words, it represents 
information in discrete form.

• It operates directly on numbers expressed in 
binary number system. 

• Digital computers are more accurate than analog 
computer, since there is no analogous 
representation.



Features of digital computers

• These computers only operate on digit and 
they are 0 & 1.

• Digital computers do calculation to give us 
results.

• A digital computer takes all the instruction 
together and then execute one by one.

• To use these computers knowledge of 
programming is essential.



Software
• A set of instructions give to the computer in 

machine code that tells the computer what to do 
and how to perform the given task of the user is 
known as computer software. 

• The main objective of software is to enhance the 
performance capability of hardware. Examples: 
Windows XP, MS- Word, MS-Excel, etc.



Type of Software

• System software

• Application software



System Software

• It is a collection of program, language, etc 
which allows the user to communicate with 
computer equipments, the software makes 
the machine easier to use and make efficient 
use of resources of hardware.

• It is like a layer which acts as interface 
between computer and application software.

• It is used in almost all kinds of computer like 
mainframe, mini or micro computer.



Types of system software

• Operating system

• Translating Program

• System support software/ utility software



Application software

• application software is prepared and supplied by 
software company and computer manufacturer.

• Application software is a subclass of computer 
software that employs the capabilities of 
computer directly to a task that user wishes to 
perform. 

• Application software are designed to process 
data and support users in an organization such as 
solving equations or producing bills, result 
processing of Pokhara university, etc.



Types of application software

• Tailored package

• Packaged software



Tailored package
• Tailored software is the software, which are 

specially designed and developed to solve a 
specific or particular task. 

• The nature of processing of data seems similar 
but actually they are different in many ways. 

• High-level language such as COBOL, BASIC, 
FORTRAN, PASCAL, C, etc. is used to prepare 
tailored software.

• Examples: salary sheet, sales ledger, payroll 
system, library management, etc.



Packaged software

• Packaged software is the software which is 
generalized a set of programs and developed 
for general purpose. 

• These programs are user friendly and 
designed for use in more than one 
environment.

• Examples: Word processing packages: MS-
Word, MS-Star etc.

• Spreadsheet: Excel, Lotus, etc.

• Graphics: Photoshop, 3D studio max, etc.

• DBMS Package: Dbase III, Oracle, etc.



WHAT IS Programming LANGUAGE 
?

• Language is a collection of words and symbols 
which can be used to perform certain task or 
activities and to establish a communication 
between person to person.

• In the same manner computer languages are the 
collection of predefine key words which can be 
used to perform certain task and to communicate 
between two entities like between two machines 
or between human and computers or computers 
and others peripherals.



• A programming language is the series of 
commands written by programmer in a 
systematic order which can perform work easily 
in higher speed.

• A programming language is the platform which 
provides the environment to write program.

• Actually programming language have their own 
set of grammatical rules used to write program. 
Without programming language program is 
useless. Examples: C, C++, COBOL, Pascal, etc.



There are three different levels of 
programming languages. They are

(1) Machine languages (low level)

(2) Assembly languages

(3) High-level language



(1) Machine Level Languages (MLL) :-

• Computers are made of No. of electronic 
components and they all are two – state 
electronic components means they understand 
only the 0 – (pulse) and 1 (non – pulse).

• Therefore the instruction given to the computer 
must be written using binary numbers. 1and 0.

• Computers do not understand English or any 
other language but they only understand or 
respond to binary numbers(0 and 1). 

• So each computer has its own Machine 
languages.



Advantages:

• 1. Time taken to execute program is less.

• 2. The program written in this language need 
not to be translated.



Disadvantages:

1. Difficult to learn.

2. The knowledge of internal architecture is 
essential for program coding.



Assembly Level Languages (ALL) :-
• In assembly language instruction are given in 

English like words ,such as MOV,ADD,SOB etc. 

• Hence it is easy to write and understood 
assembly language. 

• As we know computer can understand only 
machine level language .

• Hence assembly language program must be 
translated into machine level language. 

• The translator which is used for translating is 
called “assembler”.



Advantages:

• 1. Assembly language is easier to understand 
as compared to machine language.

• 2. Easier for program debugging.



Disadvantages:

1. It is machine dependent.

2. Program written in assembly language is 
comparatively larger.



High level language:-
• It is designed keeping in mind the features of 

portability means these language are machine 
independent.

• These are the English like language, so it is easy to 
write and understand the programs of high level 
language. 

• For translating high level language program into 
machine language we used “compiler” and 
“Interpreter” are used. 

• The language in this category is:-
FORTAN,COBOL,C,C++,etc.



Advantages:

1. They are easier to learn as compared to 
assembly and machine language.

2. Lower program preparation cost.

3. Machine independent.



Disadvantage:

1. Require more time and memory to execute.



WHAT IS LANGUAGE TRANSLATORS?

• As we know computer can understand only 
machine level language ,which  is in binary 0 
or 1 form .

• Which is difficult to write and maintain the 
program of machine level language. 

• So the need arises for converting the code of 
high level and low level languages into 
machine level language, so the translator are 
used to achieve this process.



Type of Translator

• Assembler

• Compiler 

• Interpreter 



Assembler
• It is used for converting the code of assembly 

language into machine level language.

• This translation is done with the help of a 
translator program called assembler.

• Assembler is a system software supplied by 
computer manufacturers.



Compiler

• It is used for converting the code of high level 
language into machine level. 

• The compiler searches all the errors of 
program and lists them.

• A Compiler checks the entire program written 
by user and if it is free from error and 
mistakes then produces a complete program 
in Machine language known as object 
program.



Interpreter

• The work of interpreter is same as compiler.

• It is also used for converting high level 
language program into machine level language 
but it checks the errors of program statement 
by statement .



Differences between Compiler & Interpreter

• Error finding: Error finding is much easier in 
Interpreter because it checks and executes each 
statement at a time. So wherever it fine some 
error it will stop the execution. Where Compiler 
first checks all the statement for error and 
provide lists of all the errors in the program.

• Time: Interpreter takes more time for the 
execution of a program compared to Compilers 
because it translates and executes each 
statement one by one.

• Examples: C, C++, FORTRAN, etc are compiler 
whereas BASIC, LISP, etc are interpreter.



Problem Solving Method

Unit-2



Problem Analysis

• It is arises during the required analysis phase 
of software development problem analysis is 
done for obtaining the user requirement. 

• This is the process of becoming familiar with 
the problem that will be solved with a 
computer program.

• From analysis we can obtain, what is the input 
and output that is the first step for designing 
the program.



Algorithm

• It is a simple and informed set of instruction 
that tell about the logical modules of 
operations of solving of problem.

• This is the most fundamental concept in 
computer science.

• It can be defined as a ordered the sequence 
of well define and effective operation which 
produce a result and terminate in a finite 
amount of time when executed.



Features of Algorithm
• Finiteness: - An algorithm terminates after a fixed 

number of steps.

• Definiteness: - Each steps of a algorithm is 
precisely defined.

• Effectiveness: - All operation use in algorithm are 
basic(division, multiplication, compression, etc) 
and can be performed exactly infixed duration.

• Input: - Algorithm has certain precise input.

• Output: - Algorithm has one or more output.



Some conventions used in developing algorithms

• Each algorithm will be enclosed by two 
statements START and STOP

• To accept data from user, the INPUT or READ 
statement is used.

• To display any user message, the PRINT or 
DISPLAY statement is used.

• The arithmetic operators(+,-,* and /) are used in 
conditions.

• The relational operators(>,<,>=,<=,==,!=) are used 
in conditions.

• The logical operators (AND, OR, NOT) are used for 
logical expressions.



Example of Algorithm

• Step 1: START

• Step 2: Read principle amount, rate of interest 
and number of years. 

• Step 3: Calculate simple interest using the 
following formula 

• Simple interest = (Principle amount*rate of 
interest *number of years)/100

• Step 4: Write simple interest result.

• Step 5: STOP



Flow chart

• It is a graphical representation of an algorithm 
using standard symbols.

• In other words, flowchart is a  pictorial 
representation of an algorithm that uses 
boxes of different shapes to denote different 
type of instructions.

• This is a problem solving technique that is 
widely used.



Symbols that are used in flow chart:
• START/STOP:

The oval shape represents start/stop of the program. 
Generally, contains words like START, END or STOP.

• Input/output:

The parallelogram represents the I/O function. This step is 
used to obtaining a number from an input device and 
showing the results.

• Connection:

Used to join different flowlines and to connect remote parts 
of the flowchart on the same page. 



• Process:

A rectangular represents processing 
operation.

A process changes one or more data.

• Line or arrow:

Line or arrows, represent processing operation 
direction. The flow of control   normally be up 
to down, right to left.

• Decision making:-

The diamond represent a decision of switching 
type of option that determine which one of 
alternative paths to be followed.



Advantages of Flowcharts

Communication:

• Flowcharts are a better way of 
communications.

• They quickly and clearly provide logic, ideas 
and descriptions of algorithms to other 
programmers, students, teacher, computer 
operators and users.



Effective Analysis:

• Flowcharts provide a clear overview of the 
entire problem and its algorithm for solution.

• They show all major elements and their 
relationships.

• Thus, with the help of flowcharts, problems 
can be analyzed more effectively.



Proper Documentation

• The flowchart provides a permanent 
recording of program logic.

• It documents the steps followed in an 
algorithms.



Efficient Coding:

• Flowcharts show all major parts of a program.

• A programmer can code the programming 
instructions in a computer language with 
more ease with a comprehensive flowchart as 
a guide.





Stages of Software Development (or Software
Development Life Cycle):

• During each phase of the life cycle, a set of 
well-defined activities are carried out.





1) Feasibility Study: The main objective of the feasibility 
study is to determine whether developing the product is 
financially and technically feasible.
2) Requirement Analysis & Specification: Its main aim is to 
understand the exact requirements of the customer & to 
document them properly.
3) Design: The goal of the design phase is to transform the 
requirements specification into a structure that is suitable 
for implementation in some programming language.
4) Coding & Unit Testing: It is also called implementation 
phase. Its purpose is to translate the software design into 
source code. During the implementation phase, each 
component of the design is implemented as program 
module, & each of these program module is unit tested, 
debugged & document. The purpose of unit testing is to 
determine the correct working of the individual modules.



5) Integration & System Testing: During this phase the different 
modules are integrated in a planned manner.
The system testing usually consists of three different kind of testing 
activities:
i. α- testing
ii. β- testing
iii. Acceptance testing.
6) Maintenance: Maintenance involves performing any one or more      
of the following three kinds of activities:
i. Correcting errors that were not discovered during the product 
development phase. This is called corrective maintenance.
ii. Improving the implementation of the system & enhancing the 
functionalities of the system according to the customer’s 
requirements. This is called perfective maintenance.
iii. Posting the software to a new environment, e.g., to a new 
computer or to a new operating system. This is called adaptive 
maintenance.



Step:7> Documentation:-
Documentation refers to a collection of information 
about the program. There are two type of 
documentation:

• Programmer’s Documentation 

• User Documentation.

a). Programmer’s Documentation:-It include 
detailed requirement of program layout of all output  

reports and input data, the top down documentation.

b). User’s documentation: - It provides procedural 
instruction for installing  the program.



Unit 3: HISTORY OF ‘C’

The c language was developed in 1970’s at Bell 
laboratories, by Dennis Ritchie . It is designed for 
the operating system called UNIX.

C is derived form the B language, which is 
written by ken Thompson at AT and T Bell 
laboratories. It is excellent, efficient and general 
purpose language for most of the applications, 
such as scientific business , system software & 
application software.



Structure of C program
C program is a collection of one or more function. Every function is a collection of statements 
that performs some specific task. We can define the structure of  c program as:

Comments 
Preprocessor directives
Global variables
void main()
{
local variables
statements
.................
................
}

function 1()
{
local variables
statement
.................
................
}



Elements of c
Every language has some grammatical rules and basic 
elements. Before understanding programming it is must to 
know the basic of c language. These basic elements are:-

1). C character set

2).Variables

3).Data types

4).constants

5).Keywords

6).Variable declaration

7).Expression

8).statements,etc.



C character set

The character that are used in programs are given 
below:-

a).Alphabets:- A,B,C,……………Z

a,b,c……………...z

b).Digits:-

0,1,2,3……………9

c).Special character:-

Besides some special character are also used 
which are given below:-

/,+,_,*,$,(,),*,+,,,-,@,………etc.



Execution character/Escape sequence
Characters are printed on the screen through the keyboard but 
some character such as newline , tab, backspace, can not be 
printed like other normal characters. C supports the combination 
of (\) with the c character set to print these characters. These 
combinations are known as escape sequences.

Some escape sequence are given below:

Escape sequence Meaning

\b                                                                 backspace

\a                                                                 bell

\r                                                                  carriage return

\n                                                                 new line 

\f                                                                  form feed

\o                                                                 null

\t                                                                  tab



Reserved words/ keywords
There are certain words which are reserved for doing specific tasks. 
These words are known as keywords. These keywords have standard, 
predefined meaning in C. There are 32 keywords available in C which 
are given below:-

auto                    break                    case
continue             else                       default
enum                  for struct
goto double long
Float signed                   const
int switch                   unsigned
short void          register
size of do type of 
volatile               extreme               while
union                  char                     static
if return 



Variables/Identifiers

Variable is a name that can be used to stored values. These 
variables can take different values but one at a time. These 
values can be changed during execution.

Variable names may be consists of uppercase character, 
lowercase character and under core(_). Rule to giving the 
name to the variable are as-

1). First character should be a letter or underscore (_)

2). The variable name cannot be a keyword.

3). Uppercase and lower case letter are significant, for 
example code, Code, CODE is three different variables.



Data types
C support different types of data storage representation of these 
data type  are also different in memory . They are four fundamental 
data types in C, which are given below:
int,char,float,double
Int:- It is used to store the integer value.
Char:-char is used to store any single character.
Float:- float is used for storing floating point number.
Double:-It is used for storing long range of floating point number.
Size and Range of some data types are given below:

Data types                                 Size(bytes)                         Range
Char or singed char                    1                                  -128 to 127
Unsigned char                              1                                     0   to 255
int or signed int                            2                             -32768 to 32768
Unsigned char                              2                                     0   to 65535
Float                                             4                            3.4E.38  to 3.4E + 38
Double                                         8                           1.7E-308 to 1.7E+ 308



Constants 

It is a value that can be stored in memory and
cannot changed during execution of the program.
There are three types of constants:-

Constant

Numeric constant Character constant String constant

Integer constant Real constant



1. Numeric Constant
Numeric constants are numeric digit which may or may not decimal 
point(.).There are the rules for defining numeric constant.

Decimal number                     0,1,2,3……………9(Base 10)

Octal number                          0,1,2,3……………7(base 8)

Hexadecimal number            0,1,2,3…….A,B,C……F(base 16)

b). Real constant: Floating point constants are the numbers which 
hold the decimal point. Some valid floating point constants are: 

0.5

5.3

4000.0

0.00073

39.087600



2). Character constant:
A character constant is a single character that is enclosed with single 
quotes (‘ ‘), for example:-

‘9’
‘D’
‘$’
‘ ‘
‘#’

Ever character constant has a unique integer value associated with it.



3).String Constant

A string constant has a zero, one or more than one 
character. A string constant is enclosed in double 
quotes(“”). At the end of string \0 is automatically 
placed. 

Some example of string constants.

“Bijay”

“593”



//sample program:
#include<stdio.h>
#include<conio.h>
void main()
{
const int i=10;
const float f=5.5;
const char c='c';
const char s[15]="hellow";

printf("\n Integer Constant : %d",i);
printf("\n Real Constant : %f",f);
printf("\n Single Character Constant : %c",c);
printf("\n String Constant : %s",s);
getch();
}



Symbolic constant/define constant

If we want to use certain unique several times then we can 
use symbolic constant as a name that substitutes for a 
sequence of characters. The character may represent a 
numeric constant, a character constant or string constant. 
This is generally written at the beginning of the program. 
This is written as:

#define name value 

For e.g.:

#define MAX 100

#define PI 3.14

#define NAME “Bijay”



//Sample Program

#include <stdio.h>

#define LENGTH 10

#define WIDTH 5

#define NEWLINE '\n‘

int main()

{

int area; 

area = LENGTH * WIDTH; 

printf("value of area : %d", area);

printf("%c", NEWLINE); 

return 0; 

}



These are ASCII(American standard code for 
information Interchange) value for each 
character of the character set. As example:

A-Z                     ASCII           value (65-90)
a-z                      ASCII           value (97-12)
0-9                     ASCII           value (48-57)
;                       ASCII           value (59)



Declaration of variables

It is must to declare the variable before it is used in 
program. We declare  the variable with data type 
means the variable name can store the value of this 
data type. Declaration variable can be done as: 
Some examples

Data types variable name:

int a;

float b;

int a=6;

int a,b,c;



Statement 
It represent a set of declaration or steps in a sequence of
actions. A statement causes the computer to carry out some
action. All the statement end with semicolon and execution in
sequence. These statement are given below:
1). Assignment statements: In this types of statement we use 
the assignment operator (=) for assigning the value to the 
variable. This can be written as:
Variable name=value;
Some example as 
Basic=1200;
x=y=z=1; 
2). Null statement: A statement that has only semicolon is 
called null statement. For e.g.; null statement.



3). Expression statement; An expression statement 
consists of expression. These expression can be 
arithmetic, logic or relation .As example: 

x=5;
x=y-z;
a<=b;
4).Block of statement: A block of statements consists 

of several statements enclosed with a pair of curly 
bracket ({}). The statement can be expressions, 
assignment or control statement. As example:

{
l=4;
b=5;
Area=l*b;
}



Comments
Comments are used for under standing the program 
later. The comments are used for documentation. 
Comments are given by starting with /* and ending 
with */. It can be of one or many number of lines.

For e.g.:

// This is a C program // Single line comment.

/* a=13;

B=a-c; Multiple line comments.

C=a/b; */



Operators and expressions

An operator is a symbol that tells the compiler to
perform specific mathematical or logical manipulations. C
language is rich in built-in operators and provides following
type of operators:

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operators

Ternary operator

Increment and decrement operator



1). Arithmetic operator
It are used for numeric calculation. They are four types:-

a) Binary Arithmetic operator:-It required two operands. There are five operators for 
binary arithmetic operator.

Operator              meaning                            Purpose
+                          plus                                   Addition
- minus                                 Subtraction
*                         asterisk                               Multiplication 
%                        percent(modulus)               Reminder
/                           slash                                   Division 

Example:
a+b
a-b
a/b
a*b
a%b



b) Integer Arithmetic operator
When both operands are integer than the arithmetic 

operation with these operands is called integer arithmetic.
Example: Let us two variables a and b.
a=17
b=4

Expression                      result
a+b 21
a*b                                 68
a/b                                  4
a%b 1



/*program operate the arithmetic operations */
#include<stdio.h>
void main( )
{
int a,b;
printf(“Enter the first number a:”);
scanf(“%d”,&a);
printf(“Enter the second number b:”);
scanf(“%d”,&b);
printf(“Result of addition:%d\n”,a+b);
printf(“Result of substraction:%d\n”,a-b);
printf(“Result of multiplication:%d\n”,a*b);
printf(“Result of division:%d\n”,a\b);
printf(“Result of modulus:%d\n”,a%b);
getch();
clrscr();
}



c) Floating point Arithmetic

When both the operands are of float type then    
arithmetic operation with these operands is called 
floating point arithmetic.

For example: Let us take two variables a and b. 
Then the value of a=124.4 and b=3.1. Then result of 
these operation are as:

Expression Result

a+b 127.5

a-b                                                              121.3

a*b                                                             385.64

a/b                                                              40.129



/*program to understand floating point arithmetic 
operation*/
#include<stdio.h>
void main()
{
float a=9.6,b=1.6;
printf(“After addition:%f\n”,a+b);
printf(“After substraction:%f\n”,a-b);
printf(“After multiplication:%f\n”,a*b);
printf(“After division:%f\n”,a/b);
getch();
clrscr();
}



2) Relation operator
Relational operation is used to compare two values depending on their 
relations. It requires values depending on their relations. It required two 
operands.
An expression that contains the relation operator is called relational 
expression. If the relation is true then it returns the value 1, if the 
relation as false then it returns value 0. Then operators are:

Operators                                       Meaning
<                                                less then
<=                                              less then or equal to
= =                                             equal
!=                                               not equal
>                                                greater than
>=                                              greater than or equal to.



Examples:
Let a=9 and b=5, then the operation with 
relational operator are 

Expression                                       Result
a<b                                                  false(0)
a<=b                                                false(0)
a= =b                                               false(0)
a!=b                                                 True(1)
a>b                                                  True(1)
a>=b                                                True(1)



3) Logical Operator
An expression that combines two or more expression is terms as a 
logical expression, for combining these expression we use the logical 
operator. After testing the value of the condition(which is true or 
false), it gives the logical status(true of false). C has three logical 
operators:

And(&&) operators: This operator gives the net result if both the 
condition have the value true, otherwise gives the result false.
Example:- let a=10 and b=5 the logical expression is a==10&&b<a 

this gives the   result true because both      the condition is true.



 Or(||) operator: This operator gives the net result false. If 
both the conditions have the value false, otherwise it gives 
the result true.

Example:- Let us take 
a=7 ,b=12

The logical expression a<=b||b>15 this gives the result true 
because     one condition  is true.

 Not(!) operators: This is unary operator. This relates the 
value of the condition. If the value of condition is true then 
it gives the result false.

Example: Let us take a=10
Then logical expression !(a==10) Hence, the result is false.



4).Assignment operator
A value can be stored in variables with the use 

of assignment operator. This assignment statement 
“=” is used for assignment statement.

Example: 
x=x+5
or
x+=5
similarly, 
x=x-5 is equivalent to x-=5
x=x/5 is equivalent to x/=5
x=x%5 is equivalent to x%=5.



5).Ternary operator

Ternary operator(? and :) require three operand. 
This is written as:

Condition? Operand 1: Operand 2

First condition is tested if the result is true then the 
value of the operand 1 is taken otherwise value of 
operand 2 is taken.

Example:

Maximum=a>b?a:b

First the condition a>b is evaluated, if the value is true 
then the value of ‘a’ is taken by maximum, otherwise 
value of ‘b’ is given to the maximum.



/*write a program to print the smallest between two 
numbers with use of ternary operators*/
#include<stdio.h>
void main()
{
Int a,b,min;
printf(“Enter the first number:”);
scanf(“%d”,&a);
printf(“Enter the second number:”);
scanf(“%d”,&b);
min=a<b?a:b;
printf(“Smallest number between %d and %d is %d”,a,b,min);
getch();
clrscr();
}



/*Program to print the largest between two number with use 
of ternary  operator*/
#include<stdio.h>
void main( )
{
int a,b,max;
printf(“Enter the first number:”);
scanf(“%d”,&a);
printf(“Enter the second number:”);
scanf(“%d”,&b);
max=a>b?a:b;
printf(“Largest between %d and %d is %d”,a,b,max);
getch();
clrscr();
}



6).Bitwise operator

C has the ability to support the manipulation of data at the bit 
level. Bitwise operators are used for operations on bits. 
Bitwise operators are operated on only integer. The bitwise 
operators are given below:

Bitwise Operator                                      Meaning

&                                                      bitwise AND

|                                                        bitwise OR

~                                                       one’s complement

<<                                                     left shift

>>                                                      right shift

^                                                        bitwise XOR.



7).Increment and decrement operator

C has two useful operators increment (++) and 
decrement(- -). There are the unary operator because 
these operators on only single operand. The 
increment operator  (++) increment value of the 
variable by 1 and decrement operator(- -) decrement 
of the variable by 1. We can write this as: 

++a             or              a=a+1

- -a              or              a=a-1



/* program to understand the use of prefix increment 
/decrement * /

#include<stdio.h>
void main()
{
int a=3;
printf(“a=%d\n “,a); 
printf(“a=%d\n”,++a); 
printf(“a=%d\n”,a); 
printf(“a=%d\n”,- -a); 
printf(“a=%d\n”,a); 
}



b) Postfix operator

Here, first the value of variables is taken for operation then 
value of variables is  incremented /decrement.

Example:

a++

a- -

let us take value of a=3

then b=a++

Hence,

a=4     b=3

b=a- -

a=3    b=4



/* program to understand the use of postfix 
increment /decrement*/
#include<stdio.h>
void mani( )
{
int a=3;
printf(“a=%d\n”,a);
printf(“a=%d\n”,a++);
printf(“a=%d\n”,a);
printf(“a=%d\n”,a- -);
printf(“a=%d\n”,a);

}



Unit 4:Input/output in C
Definition:

It takes the data as input, processes this data and gives 
the output. The C language has collection of library 
functions that include several input- output functions. 
Some input /output functions are given below:

o Unformatted input/output functions: Unformatted I/O 
functions works only with character datatype (char). 

The unformatted Input functions used in C are getche(), 
getchar(), gets().
 getchar(): getchar() accepts one character type data from the keyboard.

Syntax for getchar() in C :

variable_name = getchar();



 gets(): gets() accepts any line of string including 
spaces from the standard Input device (keyboard). 
gets() stops reading character from keyboard only 
when the enter key is pressed.

Syntax for gets() in C :

gets(variable_name);



o The unformatted output statements in C are 
putchar and puts.

 Putchar(): putchar displays one character at a 
time to the Monitor.

Syntax:

putchar(variable_name);

Puts(): puts displays a single / paragraph of text to 
the standard output device.

Syntax:

puts(variable_name);



//Sample program :

#include<stdio.h>
#include<conio.h>
void main()
{
char a[20];
gets(a);
puts(a);

getch();
} 



o Formatted I/O in C :

The formatted Input / Output functions can read and 
write values of all data types, provided the appropriate 
conversion symbol is used to identify the datatype.

 scanf(): is used for receiving formatted Input.

Syntax :

scanf(“control_string 1, - - , control_string n”,&variable1, 
- - - - ,variable n);

printf ():is used for displaying formatted output.

Syntax:

printf(“control_string 1, - - , control_string n”,variable1, -
- - - , variable n);



//Sample Program :

#include<stdio.h>
#include<conio.h>
void main()
{
int no;
char ch;
char s[20];

printf("Enter a character : ");
scanf("%c",&ch);

printf("Enter a No : ");
scanf("%d",&no);

printf("Enter a Word or String : ");
scanf("%s",&s);

printf("\n Character : %c",ch);
printf("\n No : %d",no);
printf("\n String : %s",s);
getch();

}



EXAMPLES
First method:

/* Program for output fin value*/             
#include<stdio.h>
Void main( )
{
int a=6;
int b=10;
printf(“The value of a is:%d”,a);
printf(“The value of b is:%d”,b);
}

Second methods:
#Include<stdio.h>
void main()
{
int a,b;
printf(“Enter the value of a”);
scanf(“%d”,&a);
printf(“Enter the value of b”);
scanf(“%d”,&b);
printf(“The value of a is:%d”,a);
printf(“The value of b is:%d”,b);
getch();
clrscr();
}



Some examples;-
#include<stdio.h>
void main( )
{
printf(“c is excellent”);
}

#include<stdio.h>
void main( )
{
int basic=2000;
printf(“Basic=%d”,basic);
}



Lab Exercise 

1. #include<stdio.h>
void main( )
{
int a,b,c;
a=125;
b=2678;
c=124589;
printf(“%5d,%5d,%5d\n”,a,b,c);
printf(“%3d,%4d,%5d\n”,a,b,c);
}

2. #include<stdio.h>
void main( )
{
int a=98;
char ch=’b’;
printf(“%c,%d\n”,a,c,h);

3. #include<stdio.h>
void main( )
{
printf(“%10s\n”,”Nepal”);
printf(“%4s\n”,”Nepal”);
printf(“%2s\n”,”Nepal”);
printf(“%5.25s\n”,”Nepal”);
}



Unit 5:
Structured Programming Fundamentals:



Control statement 

Control statement enable us to specify the 
order in which the various instructions in the 
program are to be executed .This determines 
the flow of control. Control statement defines 
how the control is transferred to others parts 
of program. Control statement defines the 
flow in which execution of statement should 
take place to achieve the requirement result.



Fig: control structure



C Language support  three types of control statement  which are 
as:

a)Decision making structures(selection structure): require that 
the programmer specify one or more conditions to be 
evaluated or tested by the program, along with a statement or 
statements to be executed if the condition is determined to be 
true, and optionally, other statements to be executed if the 
condition is determined to be false.



Following is the general from of a typical decision making structure:



C programming language provides following types of decision 
making statements:



b) loop(Iteration structure): A loop statement allows us to 
execute a statement or group of statements multiple times 
and following is the general from of a loop statement in most 
of the programming languages:

• while

• do….while

• for

c) Sequence structure: The sequence structure 
simply executes a sequence of statements in 
the order in which they occur.





If…satement

This is bi-directional conditional statement .This statement is 
used to test condition and take one of the two possible actions. If the 
condition is true then a single statement or a block of statement as 
executed (one part of program), otherwise another single statement or 
a block of statement is executed (other part of the program).

Syntax: if statement
If (condition)
{
Statement 
…………….
…………..
}

condition

Block of statements

Statement after block

True

False



/* print the length and smallest of the two numbers*/.
#include<stdio.h>
void main()
{
int a,b;
printf(“enter the first number:”);
scanf(“%d”,&a);
printf(“enter the second number:”);
scanf(“%d”,&b);
if(a>b)
printf(“largest  number=%d and smallest number=%d\n”,a,b);
else
printf(“largest number=%d and smallest number=%d\n”,b,a);
}



if...else if...else Statement
An if statement can be followed by an optional else if...else statement, which 
is very useful to test various conditions using single if...else if statement.

Syntax2: if ….else statement
If (condition)
{
Statement

. ..............
}
elseif()
{
Statement
..............
}
else
{
}



//Sample example
#include <stdio.h>
int main () 
{ 
int a = 100; 
if( a == 10 )
{
printf("Value of a is 10\n" );
} 
else if( a == 20 )
{
printf("Value of a is 20\n" );
}



else if( a == 30 )
{
printf("Value of a is 30\n" );
}
else
{
printf("None of the values is matching\n" );
}
printf("Exact value of a is: %d\n", a ); 
return 0; 
}



Synatax3: Nested if..else statement





/* print whether the number is even or odd*/
#include<stdio.h>
void main()
{
int n;
printf(“enter the number:”);
scanf(“%d”,&n);
if(n%2= =0)
printf(“number is even\n”);
else
printf(“number is odd\n”);
}



/* program to understand the resting of ‘if.....else’ statement .Find the largest number 
between any three number*/

#include<stdio.h>
void main( )
{
int a,b,c;
printf(“enter the first number:”);
scanf(“%d”,&a):
printf(“enter the second number:”);
scanf(“%d”,&b);
printf(“enter the third number:”);
scanf(“%d”,&c);
if(a>b&&b>c)
printf(“%d is the largest number\n”,a):
elseif(b>c&&c>a )
printf(“%d is the largest number\n”,b);
else
printf(“%d is the largest number\n”,c);
getch();
clrscr();
}



Switch :

This is multi-directional conditional control statement. This is a possibility in 
program to make a choice among number of alternatives. For making a choice, we use the 
switch statement. This can be written as:

Syntax:

switch(expression)

{

case constant1:

statement

....................

case constant 2:

statement

..................

case constant 3:

statement

………….

default: 

statement

..................

}



/*program to understand the switch control statement*/
# include<stdio.h>

void main()
{

int ch;
printf(“enter your choice:”);

scanf(“%d”,&ch);
switch(ch)

{
case 1:

printf(“First\n”);
break;
case 2:

printf(“Second\n”);
break;
case 3:

printf(“Third\n”);
break;

default:
printf(“Wrong choice\n”);

}
}



Nested Switch

It is possible to have a switch as part of the 
statement sequence of an outer switch. Even 
if the case constants of the inner and outer 
switch contain common values, no conflicts 
will arise.





//sample program



while loop: statement in C programming 
language repeatedly executes a target 
statement as long as a given condition is true.

Syntax:

while(condition)

{ statement(s); } 

Here, statement(s) may be a single statement 
or a block of statements. The condition may 
be any expression, and true is any nonzero 
value. The loop iterates while the condition is 
true.





/# Find the factorial of any number#/
#include <stdio.h>
void main( )
{ 
int n,no,fact=1;
printf(“Enter the number:”);
scanf(“%d”,&n);
no=n;
if(n<0)
printf(“No factorial of negative number\n”);
else
if(n==0)
printf(“factorial of Zero is 1\n”);
else
while(n>1)
{
fact=fact*n;
n- -;
}
printf(“factorial of %d=%d\n”no,fact);
}



do...while loop: is similar to a while loop, except 
that a do...while loop is guaranteed to execute at 
least one time.

Syntax:

do 

{ statement(s); }while( condition ); 

Notice that the conditional expression appears at the end of 

the loop, so the statement(s) in the loop execute once before 
the condition is tested.

If the condition is true, the flow of control jumps back up to 
do, and the statement(s) in the loop execute again. This 
process repeats until the given condition becomes false.





for loop: is a repetition control structure that allows you to efficiently 

write a loop that needs to execute a specific number of times.

Syntax:

for ( init; condition; increment )

{

statement(s);

}

Here is the flow of control in a for loop:

• The init step is executed first, and only once. This step allows you to 
declare and initialize any loop control variables.

• Next, the condition is evaluated. If it is true, the body of the loop is 
executed.

• After the body of the for loop executes, the flow of control jumps back up 
to the increment statement. 

• The condition is now evaluated again. If it is true, the loop executes and 
the process repeats itself (body of loop, then increment step, and then 
again condition). After the condition becomes false, the for loop 
terminates.





/*print the number from 1 to 10*/
#include<stdio.h>
void main( )
{
int n=1;
do
{
printf(“%d\n”,n);
n=n+1;
}
while(n<11);
}



Different between while and Do....while:

• In do.......while loop a single, statement or block of 
statement are executed at  least once, and then the 
condition is evaluated.

• In a ‘while’ loop first the condition is evaluated and 
then the statement are executed.



Other Control Statement in c

break statement: in C programming language 
has the following two usages:

– When the break statement is encountered inside 
a loop, the loop is immediately terminated and 
program control resumes at the next statement 
following the loop.

– It can be used to terminate a case in the switch
statement

Syntax:

break;





continue statement: in C programming 
language works somewhat like the break
statement. Instead of forcing termination, 
however, continue forces the next iteration of 
the loop to take place, skipping any code in 
between.

Syntax:

continue;





goto statement: in C programming language 
provides an unconditional jump from the goto 
to a labeled statement in the same function.

Syntax:

The syntax for a goto statement in C is as 
follows:

goto label; 

.. . 

label: statement;



/*print the largest and smallest of two number*/
#include<stdio.h>
void main()
{
int a,b;
printf(“enter the first number:”);
scanf(“%d”,&a);
printf(“enter the second number:”);
scanf(“%d”,&b);
if(a>b)
goto large;
else 
goto small;
large:
printf(“largest number =%d and smallest number=%d”,a,b);
goto end ;
small:
printf(“largest  number =%d and smallest number=%d”,b,a);
goto end;
end:
printf(“\n”);
}



Unit 6: Function in c
A function is a group of statements that together 
perform a task. Every C program has at least one 
function, which is main(), and all the most trivial 
programs can define additional functions. A function 
is known with various names like a method or a sub-
routine or a procedure, etc. C  program has two 
types functions:

– Library function

– User-defined function



Liberary function:
C has the facility to provides some library

function to the programmer for doing some
operations. As an examples, C has a mathematical
function which is used for finding out square root of
any number ,sting library function is used for string
operations as example strlen() is used to find out the
length of a string and strcamp() is used for compare
two strings. These operations are programmed and
stored as library function so that they can be called by
any program.



/* Find the square root of any number*/
#include<stdio.h>
#include<math.h>
void main()
{
int n;
printf(“enter the number”);
scanf(“%d”,&n);
printf(“The square root of %d is :%f”,n,sqrt(n));
}



User-define function
Library function provide the function for doing 

some predefined operations. Users can also create 
functions for doing any specific task of the program. 
Such functions are called user defined function. The 
user defined functions are of three types.

• Function with no argument and  no return value.

• Function with argument but no return value.

• Function with argument and  return value.



Defining a Function:

The general form of a function definition in C 
programming language is as follows:

return_type function_name( parameter list ) 

{

body of the function 

}



Here are all the parts of a function:

• Return Type: A function may return a value.

• Function Name: This is the actual name of the 
function.

• Parameters: A parameter is like a placeholder. 
When a function is invoked, you pass a value 
to the parameter. This value is referred to as 
actual parameter or argument.

• Function Body: The function body contains a 
collection of statements that define what the 
function does.





Function Declarations:

• A function declaration tells the compiler about 
a function name and how to call the function. 
The actual body of the function can be defined 
separately.

• A function declaration has the following parts:

return_type function_name( parameter list ); 

• Following is the function declaration:

int max(int num1, int num2);



Calling a Function:A called function performs 
defined task and when its return statement is 
executed or when its function-ending closing 
brace is reached, it returns program control 
back to the main program.





Function Arguments:

If a function is to use arguments, it must 
declare variables that accept the values of the 
arguments. These variables are called the 
formal parameters of the function.

The formal parameters behave like other local 
variables inside the function and are created 
upon entry into the function and destroyed 
upon exit.

While calling a function, there are two ways 
that arguments can be passed to a function:



• Call by value: The call by value method of 
passing arguments to a function copies the 
actual value of an argument into the formal 
parameter of the function. In this case, 
changes made to the parameter inside the 
function have no effect on the argument. By 
default, C programming language uses call by 
value method to pass arguments.



#include <stdio.h> 

void swap(int x, int y); 

int main () 

{

int a = 100; int b = 200; 

printf("Before swap, value of a : %d\n", a );

printf("Before swap, value of b : %d\n", b ); 

swap(a, b);

printf("After swap, value of a : %d\n", a ); 

printf("After swap, value of b : %d\n", b ); 

void swap(int x, int y)

{ 

int temp;

temp = x;

x = y; 

y = temp; 

printf(“In the function values changed :%d,%d”,x,y);

}}



• call by reference :The call by reference
method of passing arguments to a function 
copies the address of an argument into the 
formal parameter. Inside the function, the 
address is used to access the actual argument 
used in the call. This means that changes 
made to the parameter affect the passed 
argument.



#include <stdio.h> 

void swap(int *x, int *y);

void main () 

{

int a = 100; int b = 200; 

printf("Before swap, value of a : %d\n", a ); 

printf("Before swap, value of b : %d\n", b ); 

swap(&a, &b); 

printf("After swap, value of a : %d\n", a ); 

printf("After swap, value of b : %d\n", b ); 

void swap(int *x, int *y) 

{

int temp; 

temp = *x; 

*x = *y; 

*y = temp;

printf(“In the values changed :%d, %d”, x,y); 

} 

getch();

clrscr();}



storage classes

A storage class defines the scope (visibility) 
and life-time of variables and/or functions 
within a C Program. They precede the type 
that they modify. There are three types of 
storage classes:

– automatic

– external

– static

– register



a) auto : The auto storage class is the default 
storage class for all local variables.

{ int mount; auto int month; }

b) register storage class : The register storage 
class is used to define local variables that 
should be stored in a register instead of RAM.

register int miles;



c) The extern storage class is used to give a reference of 
a global variable that is visible to ALL the program 
files. When you use 'extern', the variable cannot be 
initialized however, it points the variable name at a 
storage location that has been previously defined.

extern void write_extern();

d) Static Storage Class

The value of static variable persists until the end of 
the program. A variable can be declared static using 
keyword: static. For example:

static int i; Here, i is a static variable.



Recursion: The special feature of C language is that it supports the recursion function. The function which calls itself 
(in function body) again and again is known as the recursion function. This function will call itself as long as the 

condition is satisfied.

Syntax:

main()

{

……….

function();

……….

}

fun()

{

……..

……..

fun(); recursion call

}



/* Find the factorial of any number*/

#include<stdio.h>

int factorial(int n);

void main()

{

int n,value;

printf(“enter the number:”);

scanf(“%d”,&n);

if(n<0)

printf(“No factorial of negative number\n”);

else 

if(n= =0)

printf(“Factorial of Zero is 1\n”);

else

{

value= factorial(n);



printf (“Factorial of %d=%d\n”,n,value);

}

}

factorial(k)

{

int fact=1;

if(k>1)

fact=k*factorial(k-1);/ *recessive function call*  /

return(fact); 

}



ARRAY

Array: In many situations, it may be possible that it is useful to collect 
the similar  type of data items support concept of array for this purpose. 
An array is a collection of similar type of data items. The elements of 
array is indicated by specifying the array name followed by subscript in 
brackets. Let us take an array.

arr[10];

The elements of this array is arr*0+,arr*1+,arr*2+……..arr*9+.

Here number of subscripts determine the dimension of array. The value 
in the first bracket is size of the array. 

If the size of array is n, for example arr[n]; Then arr[6] is the first 
element and arr[n-1] is the last element of array.



Declaration of Array

The array should be declare with the data type, array name and number of subscript in 
the bracket. By declaring an array, the number of memory locations (size of array)is 
allocated in memory.

The syntax for declaration of array is 

data type array-name [expression].

Example:

The array can be declare as-

Int age[10];

Float sal[10];

Char grade[10];

Here first one is the integer type array. Every element of array can hold an 
integer value .Second one is the floating type array, can hold a float value and third 
one is the character type array, can hold one character value.



Processing with array:

We know the elements of array is stored in contiguous memory locations.

As example;

Int arr[5];

This is stored in memory as 

100  500   800    101    200

Arr[1] arr[2] arr[3] arr[4]

We can take the value in the array as other variables by scanf()statement

printf(“%d”,arr*1+);

Let us take the character type array.

Char arr[10];

We can take the value in character type array as 

scanf(“%c”,arr*1+);

scanf(“%s”,arr);

Similarly we can print the character type array by printf() statement as

printf(“%c”,arr*1+);

Or

printf(“%5”,arr);



/* program to print sum of 10 numbers*/
#include<stdio.h>

void main()
{

int arr[10],i, sum=0;
for(i=0;i<10;i++)

{
printf(“Enter the %d number \n”,i+1);

scanf(“%d”,&arr*i+);
}

for (i=0;i<10;i++)
{

sum=sum+arr[i];
printf(“sum=%d\n”,sum);

}
}



/* program to accept 10 number and print the number is odd or 
even*/

#include<stdio.h>
void main()

{
int arr[10],I;

for(i=0;i<10;i++)
{

printf(“Enter the %d number “,i+1);
scanf(“%d”,& arr*i+);

}
for(i=0;i<10;i++)

{
if(arr[i]%2= =0)

printf(“%d number is even\n”,arr*i+);
Else

printf(“%d number is odd/n”,arr*i+);
}
}



/* program to accept 10 characters and print 
them*/
#include<stdio.h>
void main()
{
char arr[10];
int I;
for(i=0; i<10; i++)
scanf(“%c”,&arr*i+);
printf(“Enter characters are :\n”);
for (i=0;i<10;i++)
printf(“%c\n”, arr*i+);
}



/* program to accept any string and print 
them*/
#include<stdio.h>
void main()
{
char str[15];
printf(“Enter the string”);
scanf(“%s”,str);
}



# Two Dimensional Array: 
As we know one dimensional array use one bracket, two 
dimensional array use two brackets. Similarly-dimensional 
array use n brackets.
Example:
Arr[i][J] means the starting element of array is arr[0][0] and 
the last element of array is arr[i-1][J-1].Here in arr[i][j],I 
denotes the row in the array and J denotes the column in 
array or elements in each row.



/* program to input and print the elements of matrix */
#include<stdio.h>
void main()
{
int mat[3][3],I,j,row,col;
printf(“Enter the row of  matrix:”);
scanf(%d”,&row);
printf(“Enter the column of  matrix:”);
scanf(%d”,&col);
print(“Enter matrix elements”);
for(i=o;i<row;i++)
{
for(j=0;j<col;J++)
{
scanf(“%d”,&mat*i+*j+);
}
}



printf(“matrix is:\n”);
for(i=0;i<row;i++)
{
for(j=o; j<col;j++)
{
printf(“%d\t”,mat *i+*j+);
printf(“\n”);
}
}



/* Program to addition of  two matrix */
#include<stdio.h>
void main()
{
int mat1[3][3],mat2[3][3],mat3[3][3],I,j,row,col;
printf(“Enter the row and column of matrix:”);
scanf(“%d%d”,&row,&col);
printf(“For the first matrix:\n”);
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
print(“Enter the elements of  first matrix:”);
scanf(“%d”,&mat1*i+*j+);
}
}



printf(“Enter the elements of  second 
matrix:”);
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
scanf(“%d”,&mat2*i+*j+);
}
}



/*For addition*/
for(i=0,i<row;i++)
{
for(j=0;j<col;j++)
{
mat3[i][j]=mat1[i][j]+mat2[i][j];
}
}
printf(“Matrix1 is:\n”);
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
printf(“%d\t”;mat1*i+*j+);
}
printf(“\n”);
}



printf(“matrix2 is:\n”);
for(i=0;i<row;i++)
{
for(j=0;j<col;i++)
{
printf(“%d\t”,mat2*i+*j+);
}
printf(“\n”);
printf(“After addition matrix is:n”);
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
printf(“%d\t”,mat3*i+*j+);
}
printf(“\n”);
}
}



# /*program to transpose of matrix*/
#include<stdio.h>

void main()
{

int mat1[3][3],mat2[3][3],i,j,row,col;
printf(“Enter row and column of matrix:\n”);

scanf(“%d%d”,&row&clo);
printf(“Enter the elements of matrix:\n”);

for(i=0;i<row;i++)
{

for(j=0;j<col;j++)
{

scanf(“%d”,&mat1*i+*j+);
}
}

printf(“matrix is:\n”);
for(i=0;i<row;i++)

{
for(j=0;j<col;j++)

{
printf(“%d\t”,mat1*i+*j+);

}
printf(“\n”);

}



/*for transpose of matrix*/
for(i=0;i<row;i++)

{
for(j=0;j<col;j++)

{
mat2[i][j]=mat1[j][i];

}
}

printf(“Transpose of matrix is:\n”);
for(i=0;i<row;i++)

{
for(j=0;j<col;j++)

{
printf(“%d\t”,mat2*i+*j+);

}
printf(“\n”);

}
}



#/*program to multiplication of  two matrix*/ 
#include<stdio.h>
void main()
{
int mat1[3][3],mat2[3][3],mat3[3][3],i,j,row,col,row2,col2,k;
printf(“Enter the row and column for first matrix:\n”);
scanf(“%d%d”,&row1,&col1);
printf(“Enter the row &column for second matrix:\n”);
scanf(%d%d”,&row2,&col2);
if(col1!=row2)
{
printf(“Multiplication of two matrix not possible:”);
else
printf(“enter the elements of first matrix:\n”);
for(i=0;i<row1;i++)
{
for(j=0;j<col;j++)
{
scanf(“%d”,&mat1*i+*j+);
}
}

CONT……….



……………………….
printf(“enter the element of second matrix:”);

for(i=0;i<row2;I++)
{

for(j=0;j<col2;j++)
{

scanf(“%d”,&mat2*i+*j+);
}
}

for(i=0;i<row1;i++)
{

for(j=0;j<col2;j++)
{

mat3[i][j]=0;
for(k=0;k<col1;k++)

mat3[i][j]=mat3[i][j]+mat1[i][k]*mat2[k][j];
}
}

printf(“Element of first matrix is:\n”);
for(i=0;i<row1;i++)

{ 

cont……



for(j=0;j<col1;j++)
{
printf(“%d\t”,mat1*i+*j+);
}
printf(“\n”);
}
printf(“Element of the second matrix is:\n”);
for(i=0;i<row2;i++)
{
for(j=0;j<col2;j++)
{
printf(“%d”,mat2*i+*j+);
}
printf(“\n”);
}



printf(“Multiplication of two matrix is:\n”);
for(i=0;i<row1;i++)
{
for(j=0;j<col1;j++)
{
printf(“%d\t”,mat3*i+*j+);
}
printf(“\n”);
}
}



Arrays and String

• Strings are array of character .i.e. they are 
character arrange one after another in 
memory. Thus, character array is also known 
as string. Strings is used in c for manipulating 
text such as word or sentence. A string is 
always terminated by a null character (\0).



//wap to illustrate string initilation.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char name[]="Shyam Prasad Sharma";

int i=0;

printf("\n The name in discrit form:\n");

while(name[i]!='\0')

{

printf("\t%c",name[i]);

i++;

}

getch();

clrscr();

}



//wap to illustrate string initilation.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char name[10];

int i;

printf("Enter the name of 5 student");

for(i=0;i<5;i++)

scanf("%s",&name[i]);

printf("\nNames are:\n");

for(i=0;i<5;i++)

printf("%s\t",name[i]);

getch();

clrscr();

}



String handling functions

strlen()

This function returns an integer which dinotes 
the length of string passing . the length of 
string is the number of characters present in 
it, excluding the terminating null character. 
Syntax:-

Integer_varriable= strlen(string);



Example:-

//wap to illustrate string initilation.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

char name[10];

int len;

printf("Enter your name ");

gets(name);

len=strlen(name);

printf("\n the number your name is :\t%d",len);

getch();

clrscr();

}



strcpy()

The strcpy() function copies one string to 
another. The function accept two string as 
parameter and copies second string character 
by character in to the frist one upto and 
including the null character of the second 
string . it’s syntax is :  strcpy(distination_string, 
source_string);



//wap to copy one string to another.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char name[]="Saroj Bhatta",s[15];

strcpy(s,name);

printf("The value in two strings :\n s=%s",s,name);

getch();

clrscr();

}



strcat()

This function concatenates two strings .i.e. it 
appends one string at the end of another. This 
function accepts two string as parameter and 
sorts the contents of the second string at the 
end of the first. Syntax:-

Strcat(string1,string2);



//wap to using strcat() function.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char fname[20]="Saroj",lname[]=" Bhatta";

strcat(fname,lname);
printf("The full name is:\n%s",fname);

getch();

clrscr();

}



strcmp()

This function compares two strings to find out whether they 
are same or different. This function is useful for constructing 
and searching strings as arranged in dictionary. This function 
accept two strings as parameters and returns an integer 
whose value is

 Less than 0 if the frist string is less than the second.

 Equals to 0 if the both are same.

 Grater than 0 if the first string is grater then second

The two string is compared character by character until there 
is mismatch or end of one string is reached. It’s syntax is:-

Integer_variable= strcmp(string1,string2);



//wap to illustrate the use of strcmp() function.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char name[20],lname[20];

int diff;

printf("\n Enter the frist string\t");

gets(name);

printf("\nEnter the second string\t");

gets(lname);

diff=strcmp(name,lname);

if(diff>0)

printf("%s is grater then %s by value %d",name,lname,diff);

else if(diff<0)

printf("%s is grater than %s by value %d",lname,name,diff);

else

printf("%s is same as %s",name,lname);

getch();

clrscr();

}



strrev()

This function used to reverse all characters in 
a string except null character at the end of 
string . syntax:- strrev(string);
//wap to illustrate the use of strrev() function.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char name[20]="Shyam Sharma",lname[20];

strcpy(lname,name);

strrev(name);

printf("The reverse string of original string %s is %s",lname,name);

getch();

clrscr();

}



POINTER

Pointer: 

A pointer is a variable which contains the memory(locations)of the 
another variable and is declared as the pointer type. As an example if 
one variable is a data type and second variable is the pointer type which 
points to the first variables type, then the contents of the second 
variable is the address of the first variable.
Here, the second variable contains the address of the first variable.5 is 
the value at address2000 which is the address of the first variable.



Uses of pointer

• Pointer is used for saving memory space.

• Use of pointer assigns the memory space and also 
releases it.

• With pointer data manipulation  is done with 
address, so the addition time is faster.

• The two-dimensional and multi-dimensional array 
representation easy with pointer

• Pointer concept is used with data structure such as 
liked list



The & and * operator

The ‘&’ is the address operator, it represents the address of variable.

Example:

#include<stdio.h>

Void main()

{

int a=5;

printf(“value of a=%d\n”,a);

printf(“Address of a=%u\n”,&a);

}

The %u is used for obtaining the address.

The * operator is the value at address operator. It represent the value at the specified 
address.



Example:
#include<stdio.h>
void main()
{
int a=5;
printf(“value of a=%d\n”,a);
printf(“address of  a=%u\n”,&a);
printf(“value at address %u=%d\n”,&a,*(&a));
}



# Declaration of pointer: Let us see, how we use  the pointer in 
expression. The & operator represents the address of the variable. If we 
went to give the address of the variable to another variable then we can 

write.
When a pointer variable is declared then an asterisk (*) symbol should 
precede the variable name. Here b is the pointer type variable ,which 

points to the variable a. Hence it must be declared as-
int a=5;
int*b;

Similarly,
char*p;
float*q;



Example:-
#include<stdio.h>
void main()
{
int a=5;
int*b;
b=&a;
printf(“value of a=%d\n”,a);
printf(“value of a=%d\n”,*(&a));
printf(“value of a=%d\n”,*b);
printf(“Address of a=%u \n”,&a);
printf(“Address of a=%u \n”,b);
printf(“Address of b=%u \n”,&a);
printf(“Value of b=address of a=%u \n”,b);
}



# Pointer to pointer: We know that pointer is a variable that   contains the address of 
the another variable. Similarly, another pointer variable can store the address of this 

pointer variable. Hence we can say this is a pointer to pointer variable .
/* Program to understand pointer to pointer variable*/

#include<stdio.h>
void main()

{
int a=5;
int*b;
int**c;
b=&a;
c=&b;

printf(“value of a=%d\n”,a)
printf(“value of a=%d\n”,*(&a));

printf(“value of a=%u \n”,*b);
printf(“value of a=%u \n”,**c);

}



*Pointer Arithmetic: Arithmetic operation  can also be done with pointer variable. 
Postfix, prefix increment and decrement operation are also possible with pointer.

Example:
/* program to understand the postfix , prefix increment and decrement is the pointer 

variable */
# include<stdio.h>

void main()
{

int a=5;
int*b;
b=&a;

printf(“address of a=%u\n”,b);
printf(“address of a=%u\n”,++b);
printf(“address of a=%u\n”,b++);
printf(“address of a=%u\n”,--b);
printf(“address of a=%u\n”, b--);

}



Pointer and function:
The arguments or parameters to the Function are passed in 
two ways:

*Call by value
*Call by reference

In call by value the values of the variables are passed. In 
this value of variable are not affected by changing the value of 
the formed parameter.



/*program to explain call by value */
#include<stdio.h>
void main()
{
int a=5;
int b=8;
printf(“Before calling the function a and b are %d %d\n”,a,b);
value(a,b);
printf(“Before calling the function a and b are%d%d\n”,a,b);
value(a,b);
printf(“After calling the a and b are %d%d\n”,a,b);
value(a,b);
}
value(p,q)
{
int p,q;
{
P++;
q++;
printf(“In function changes are%d%d\n”,p,q);
}



(2).Call by reference:-
In call by reference the address of the variable are passed .In this value of variable are affected 
by changing the value of the format parameter.
/*Program to explain call by reference*/
#include<stdio.h>
void main()
{
int a=5;
int b=8;
printf(“Before calling the function a and b are %d%d\n”,a,b);
ref(a,b);
printf(“After calling the function a and b are %d%d\n”,a,b);
}
ref(p,q)
int*p,*q;
{
(*p)++;
(*q)++;
printf(“In function changes are%d%d\n”,*p,*q);
}



/*Program to interchange the value of variable from cell by reference*/
#include<stdio.h>

void main()
{

int a=5;
int b=8;

printf(“Before swapping a=%d,b=%d\n”,a,b);
swap(&a,&b);

printf(“After calling swap function a=%d, b=%d\n”,a,b,);
}

swap(p,q)
int*p,*q;

{
int temp;
temp=*p;

*p=*q;
*q=temp;

printf(“In swapping function p=%d,q=%d\n”,*p,*q);
}



Pointer and Array: Array is a collection of similar data type elements. When we 
declare an array then consecutive memory locations are allocated to the array 

elements. The base address of array is the address of the 0th element of the array.
Example:

int arr[4]={5,10,15,20}
Here arr[4] means that array has 4 elements and is of int data type.

Arr[6]       arr[1]      arr[2]       arr[3]

2000        2002 2004 2006

Int arr[4]={5,10,15,20}
Int*a;
a=arr;



/* Use pointer to print the value and address of array elements */
#include<stdio.h>
void main()
{
int arr[4]={s,10,15,20},a;

int*b;
b=arr;
for(a=0;a<4;a++)
{
printf(“value of arr*%d+=%d\n”,a,*b);
printf(“value of arr*%d+=%u \n”,a,b);
b=b+1;
}



Pointer and string: A string is a collection of characters that are strode in the character array. 
Every string is terminated with the ‘0\’(null character). It is automatically inserted at the end of 
the string.
/* Program to print the character of any string and also address of each character */
#include<stdio.h>
void main()
{
int J;
char arr*+=”Vijay”;
int J;
for(J=0; arr*j+=’\0’; J++)
{
printf(“address=%u\t”,&arr*J+);
printf(“address=%c\n”,&arr*J+);
}
}



Dynamic memory allocation:-

In an array, it is must to declare the size of the array. There are two possibilities 

for declaring the array size. The first case is ,the records that are stored is less 
than the size of the array, second case, we want to store more records than size 
of the array. In first case, there is a wastage of memory. In second case we can’t 
store more records that the size of the array. The C language has the facility to 
allocate memory at the time of execution . The process of allocating memory at 
the time of execution is called as dynamic memory allocation.



• The allocation and releasing of this memory space can be done with the use of 
some built in function which are find in alloc.h file.

Let us take these function in details.
1.Size of (): Size of is an unary operator. This operator gives the size of its 
argument in the term of byte. The argument can be a variable, array or any 
data type. This operator also gives the size of any structure. 
Syntax;
size of (int)
This gives the bytes occupied by the in data type, that is 2



/*program to understand the size of operator */
#include<stdio.h>
void main()
struct{
char name[10];
int age;
float sal;
}
sec;
int arr[10];
printf(“size of structure=%d”,size of (rec));
printf(“size of int=%d”,size of (int));
printf(“size of array =%d”,size of (arr));
}



2. Mallo(); This function is used to allocate memory space. The mallo() function 
reserved a memory space of specified size and gives the starting address to pointer 
variable.
This can be written as-
ptr=(datatype,*)mallo()(specified size);
Here data types says the type of pointer and specified size is the size which is required 
to reserve in memory .An example:
ptr=(int*) malloc(10);

This allocates 10 bytes of memory space to the pointer ptr of type int and base 
address is stored in the pointer ptr.
ptr=(int*) mallo(10* size of(int));
This allocates the memory space 10 times, that is hold an int datatype.



/*Program to enter the 5member and print them*/
#include<stdio.h>
void main()
{
int J;
int*a;
a=(int*)malloc(5*size of (int));
for(J=0;J<5;J++)
{
printf(“number%d=”,J+1);
scanf(“%d”,(a+J));
}
for(J=0;j<5;J++)
printf(“%d\n”,*(a+J));
}



3.Calloc():  The calloc() function is used to allocate multiple block of memory .This has 
two arguments .

As Example: 
ptr=(int*) calloc(5,2);

This allocates 5 block of memory each block contains 2 bytes of memory and the 
starting address is stored in the pointer variable ptr which is of type int.

The calloc() function is generally used for allocating the memory space for array and 
structure .

As example: 
struct record{

char name[10]
int age;

float sal;
}

int tot-rec=100;
ptr=(record*)calloc(tot-rec,size of (record));



Structure and Union
Structure:
• Structure is a collection of data item. The data item can be 

different type, some can be int, some can be float, some can 
be char and so on. The data item of structure is called 
member of the structure.

• In other words we can say that heterogeneous data types can 
be grouped to form a structure. In some languages structure 
is known as record. The different between array and structure 
is the element of an array has the same type while the 
element of structure can be of different type. Another 
different is that each element of an array is referred to by its 
position while each element of structure has a unique name.



We can define the structure as-

Struct tag{

Member 1;

Member 2;

…………..

………….

Member n;

}

Here,struct is a keyword for structure, we can also defined as-

Struct{

Member 1;

Member 2;

…………

…………

Member n;

}

Var;  

Here var is the structure variable.



/*Program to accept name, age and address of any person and display it*/

#include<stdio.h>

void main()

{

struct{

char name[20];

int age;

char address[20];

}rec;

printf(“Enter the name”);

scanf(“%s\n”,rec.name);

printf(“Enter the age”);

scanf(“%d”,rec.age);

printf(“Enter the address”);

scanf(“%s”,rec.address);

printf(“Name:%s\n”,rec.name);

printf(“Age:%d\n”,rec.age);

printf(“Address:%s\n”,rec.address);

}



/* Same program for understanding how we define any structure to another name and how it is 
used*/

#include<stdio.h>
void main()

{
Struct rec{

char name[20];
int age;

address[20];
}

Struct rec person;
printf(“Enter the name”);
scanf(“%s”,person. name);

printf(“Enter the age:”);
scanf(“%d”,person .age);

printf(“Enter the address”);
scanf(“%s”,person.address);

printf(“Name:%s\n”,person.name);
printf(“Age:%d\n”, person.age);

printf(“Address:%s\n”, person.address);
}



*Initialize value to the structure:
We can initialize the value to the members of structure.
struct{
char name[20];
int age;
char address[20]
}
sec=,“Bijay”,19,”Bardaghat”-;
Another type of initialization value to structure.
struct rec{
char name[20];
int age;
char address[20];
}
struct rec person=,“Bijay”,19”Bardaghat”-;



Array of Structure: As we know array is a collection of same datatype of  elements. 
Similarly we can declare the array of structure where every element of array is of 
structure type. Array of structure can be declared as:-
struct rec{
char name[20];
int age;
char address[20];
}
Person[10];



/* Program to accept record of 10 person which has name, 
age and address and also display them */

#include<stdio.h>
void main(){
struct rec{

char name[20];
int age;

char address[20];
}

Person[10];
int J;

for(J=0;J<10;J++){



printf(“Enter the record%d\n”,j+1);

printf(“Name;”);
scanf(“%s”,person*J+name);
printf(“Age:”);
scanf(“%d”&person*J+age);
printf(“Address:”);
scanf(“%s”,person*J+.address);

}
printf(“Name \t Age\t Address\n”);
for(J=0;J<10;J++){
printf(“%s\t”,person*J+.name);
printf(“%d\t”,person*J+.age); 
printf(“%s\t”,person*J+.address);
}}



Union: Union is same as structure. As the structure contains members of 
different data types. In the structure each member has its own memory 
location whereas members of union has same memory location whereas 
members of union has same memory location we can assign values to only one 
member at a time so assigning value to another member that time has no 
meaning . 

Syntax:
Union union-name{
Member1;
Member2;

}
Here union is the keyword, it is necessary for declaration of union .



• The declaration of union variable is same as structure.
Union union-name {
Member 1;
Member 2;

………….
} variable name;
Example
Union  emp {

Int age;
Char code[4]

}
In union emp both int age and char code[4] share the same 
memory location. Here code occupy 4 byte and age use only 2 
bytes. We can access the union member same as structure if we 
access directly then we use the dot(.) operator if we access through 
pointer then we use arrow(    ) operator.



/*Program for accessing union member */
#include<stido.h>

void main()
{

union result{
int marks 

char grade;
} res;

printf(“size of union:%d\n”,sizeof(res));
res.mark=90;

printf(“Marks =%d,grade=%c\n”,res marks,res.grade);
des.grade=’A’;

printf(“marks=%d,grade:%c\n”,res.marks,res.grade);
}



File handling function in c

A file is a place on the disk where a group of related data is stored. The 

data file allows us to store information permanently and to access and 
alter that information whenever necessary. Programming language C has 
various library functions for creating and processing data files. Mainly, 
there are two types of data files:

1. High level (standard or stream oriented) files.

2. Low level (system oriented) files.

In high level data files, the available library functions do their own buffer 
management where as the programmer should do it explicitly in case of 
lower level files. The standard data files are again subdivided into text files 
and binary files. The text files consist of consecutive characters and these 
characters can be interpreted as individual data item. The binary files 
organize data into blocks containing contiguous bytes of information. For 
each, binary and text files, there are a number of formatted and 
unformatted library functions in C.



Opening and closing a data file:

Before a program can write to a file or read from a file, the program 
must open it. Opening a file established a link between the program 
and the operating system. This provides the operating system, the 
name of the file and the mode in which the file is to be opened. 
While working with high level data file, we need buffer area where 
information is stored temporarily in the course of transferring data 
between computer memory and data file. The process of 
establishing a connection between the program and file is called 
opening the file.



A file pointer is a pointer to a structure of type FILE. Whenever a file is opened, a 
structure of type FILE is associated with it, and a file pointer that points to this structure 
identifies this file. The function fopen( ) is used to open a file.

The buffer area is established by

FILE *ptr_variable;

And file is opened by using following syntax

ptr_variable = fopen( file_name, file_mode);

where fopen( ) function takes two strings as arguments, the first one is the name of the 
file to be opened and the second one is file_mode that decides which operations (read, 
write, append, etc) are to be performed on the file. On success, fopen( ) returns a 
pointer of type FILE and on error it returns NULL. 

For example:

FILE *fp1, *fp2 ;

fp1 = fopen (“myfile.txt”, “w”);

fp2 = fopen (“yourfile.dat”, “r”);



In other word, it specifies the purpose of opening a file. They are:

1. “w” (write):

If the file dosen’t exist then this mode creates a new file for writing, 
and if the file already exists, then the previous data is erased and 
the new data entered is written to the file.

2. “a” (append):

If the file doesn’t exist then this mode creates a new file, and if the 
file already exists then the new data entered is appended at the 
new data entered is appended at the end of existing data. In this 
mode, the data existing in the file is not erased as in “w” mode.



3. “r” (read):

This mode is used for opening an existing file for reading purpose only. The 
file to be opened must exist and the previous data of file is not erased.

4. “w+” (write + read):

This mode is same as “w” mode but in this mode we can also read and 
modify the data. If the file doesn’t exist then a new file is created and if 
the file exists then previous data is erased.

5. “r+” (read + write):

This mode is same as “r” mode but in this mode we can also write and 
modify existing data. The file to be opened must exist and the previous 
data of file is not erased. Since we can add new data and modify existing 
data so this mode is also called update mode.



Closing a file: The file which are open from the fopen c 
function must be closed at the end of the program. This is 
written as:-

fclose(fp);

Structure of the file program

void main()

FILE *fp;

fp=fopen(“file name”,”mode”);

………………….

…………………..

fclose(fp);

}



file I/O:-

fprintf( ): This function writes the data into the file, so it has one 
more parameter is the file pointer.

Syntax:-

fprintf(fp,”control character”, variable names);

fscanf( ): This function is same as the scanf() function but this reads 
the data from the file, so this has one more parameter that is the 
file pointer.

Syntax:

fscanf(fp,”control character”, variable names);

eof( ):- The macro eof( ) is used for detecting whether the file 
pointer is at the end of file or not. It returns nonzero if the file 
pointer is at the end of  file, otherwise it return zero.



//Writing a file

#include<stdio.h>

#include<conio.h>

void main

{

int age;

char name;

FILE *fp;

fp=fopen(“info.dat”,”w”);

printf(“Enter name:”);

gets(name);

printf(“Enter age:”);

scanf(“%d”,&age);

fprintf(“%s%d”,name,age);

fclose(fp);

return 0;

}



//Reading a file

#include<stdio.h>

#include<conio.h>

void main()

{

int age;

char *name;

FILE *fp;

fp=fopen(“info.dat”,”r”);

fscanf(fp,”%s%d”,name,&age);

printf(“Your name:%s”,name);

printf(“Your age:%d”,age);

fclose(fp);

return 0;

}



//Write a program to read data from the keyboard, write it to a file called 
INFO, again read the same data from INFO file, and display it on the 
screen.

#include<stdio.h>

#include<conio.h>

void main()

{

FILE *fp;

char ch;

printf(“\nData input\n\n\n”);

fp=fopen(“INFO.TXT”,”w”);

while(ch=getchar()!=EOF)

printf(“%c”,ch);

fclose(fp);



//data output

fp=fopen(“INFO.TXT”,”r”);

while(ch=getc(fp)!=EOF)

printf(“%c”,ch);

fclose(fp);

getch();

}



//Write a program to read name, address and telephone number 10 number 
of students write them //on STUD.DAT file and display them reading from 
file.

#include<stdio.h>

#include<conio.h>

void main()

{

char name[30], add[20], long int phone;

FILE *fp;

fp=fopen(“STUD.DAT”,w+);

for(i=0;i<10;i++)

{

printf(“Enter name:\n”);

scanf(“%s”,name*i+);

printf(“Enter address:\n”);

scanf(“%s”,add*i+);



printf(“Enter phone:\n”);

scanf(“%ld”,&phone*i+);

fprintf(fp,”%s%s%ld”,name,add,phone);

}

rewind(fp);

for(i=0;i<10;i++)

{

fscanf(fp,”%s%s%ld”,name,add,&phone);

printf(“Name=%s\tAddress=%s\tPhone=%ld”,name*i+,add*i+, phone*i+);

}

fclose(fp);

getch();

}



#include<stdio.h>

#include<conio.h>

//#include<lib.h>

void main()

{

struct student

{

char name[30];

int roll;

float marks;

};

struct student s[3],st[3];

int i;

FILE *fptr;



clrscr();

fptr=fopen("student.text","w+b");

for(i=0;i<3;i++)

{

printf("\n\nEnter information of student no %d\n",i+1);

printf("Name:\t");

scanf("%s",s[i].name);

printf("\nRoll:\t");

scanf("%d",&s[i].roll);

printf("\nMarks:\t");

scanf("%f",&s[i].marks);

}

printf("\n\nWriting Information to File..............\n");

fwrite(&s,sizeof(s),3,fptr);

rewind(fptr);



printf("\nReading same content form file...........\n");

fread(&st,sizeof(st),3,fptr);

printf("Student Name\t Roll\t Marks");

printf("\n.......................................\n");

for(i=0;i<3;i++)

printf("%s\t\t%d\t%.2f\n",st[i].name,st[i].roll,st[i].marks);

fclose(fptr);

getch();

}



A program to print ascii table

#include<stdio.h>
int main()

{

int i;

for(i=0;i<=255;i++)

printf("ASCII value of character %c: %d\n",i,i);

return 0;

}



/* C program to display character from A to Z 
using loops. */

#include <stdio.h> 

int main() 

{ 

char c; for(c='A'; c<='Z'; ++c)

printf("%c ",c); 

return 0; 

}


