
Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

Unit 1. Overview of Systems Analysis and Design                                                   4 Hrs. 

 
What is System? 
A system is a collection of components (subsystems) that work together to realize some 
objective. For example, the library system contains librarians, books, and periodicals as 
components to provide knowledge for its members. 

 
 
 
 
 

Subsystem  Subsystem 
 

 
Inputs  Outputs 

Subsystem 
 
 
 

Feedback 
 

System boundary 
 

System environment 
 

Fig: Basic System Model 
 

Every system has three activities or functions. These activities are input, processing and 
output. 
• Input: It involves capturing and assembling elements that enter the system to be 

processed. Inputs to the system are anything to be captured by the system from its 
environment. For example, raw materials. 

• Processing: It involves transformation processes that convert input to output. For 
example, a manufacturing process. 

• Output:   It   involves   transferring   elements   that   have   been   produced   by   a 
transformation process to their ultimate destinations. Outputs are the things produced 
by the system and sent into its environment. For example, finished products. 

The system also includes other two additional activities. These activities include feedback 
and control. 
• Feedback: It is data about the performance of a system. It is the idea of monitoring 

the current system output and comparing it to the system goal. Any variation from the 
goal are then fed back in to the system and used to adjust it to ensure that it meets its 
goal. For example, data about sales performance is feedback to a sales manager. 

• Control: It  involves monitoring and evaluating  feedback to determine whether a 
system is moving toward the achievement of its goals. The control function then 
makes  necessary  adjustments  to  a  system’s  input  and  processing  components  to 
ensure that it produces proper output. For example, a sales manager exercises control 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

 
 

when reassigning salespersons to new sales territories after evaluating feedback about 
their sales performance. 

Theoretical approaches to systems have introduced many generalized principles. Goal 
setting is one such principle. It defines exactly what the system is supposed to do. There 
are principles concerned with system structure and behavior. System boundary is one 
such a principle. This defines the components that make up the system. Anything outside 
the system boundary is known as system environment. A system can be made up of any 
number of subsystems. Each subsystem carries out part of the system function i.e. part of 
the system goal. The subsystems communicate by passing messages between themselves. 

Several systems may share the same environment. Some of these systems may be 
connected to one another by means of a shared boundary, or interface. A system that 
interacts with other systems in its environment is called open system. Finally, a system 
that  has the ability to  change  itself or environment  in order to  survive is called an 
adaptive system. 

 

What is an Information System? 
 

In a simplest sense, a system that provides information to people in an organization is 
called information system (IS). 

Information systems in organizations capture and  manage data to  produce useful 
information that supports an organization and its employees, customers, suppliers and 
partners. So, many organizations consider information system to be the essential one. 

Information systems produce information by using data about significant people, 
places, and things from within the organization and/or from the external environment to 
make decisions, control operations, analyze problems, and create new products or 
services. Information is the data shaped into a meaningful form. Data, on the other 
hand, are the collection of raw facts representing events occurring in organizations or the 
environment before they have been organized and arranged into a form that people can 
understand and use. 

The  three  activities  to  produce  information  in  an  information  system  are  input, 
processing, and output. Input captures or collects row data from within the organization 
or from its external environment for processing. Processing converts these row data into 
the meaningful information. Output transfers this information to the people who will use 
it or to the activities for which it will be used. Information systems also require feedback, 
which is used to monitor the current information system output and compare it to the 
system goal. 

The two types of information systems are formal and informal. Formal information 
systems are based on accepted and fixed definitions of data and procedures for collecting, 
storing, processing, disseminating, and using these data with predefined rules. Informal 
information systems, in contrast, relay on unstated rules. 

Formal information systems can be manual as well as computer based. Manual 
information systems use paper-and-pencil technology. In contrast, computer-based 
information systems (CBIS) relay on computer hardware and software for processing 
and disseminating information. 

 
 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

Types of Information Systems 
 

In practice there are several classes of information systems in organizations. Each class 
serves the needs of different types of users. These are: 
1. Transaction processing system (TPS) 
2. Management information system (MIS) 
3. Decision support system (DSS) 
4. Executive information system (EIS) 
5. Expert system 
6. Communication and collaboration system 
7. Office automation system. 

 

(1)Transaction Processing Systems (TPSs) 
These  are  the  computerized  systems  that  perform  and  records  the  daily  routine 
transactions necessary to conduct business. These systems serve the operational level of 
the organization. Some examples include sales order entry, hotel reservation systems, 
payroll, employee record keeping, and shipping. 

Transaction processing systems are central to a business. TPS failure for a few hours 
can cause a firm’s demise and perhaps other firms linked to it. Managers need TPS to 
monitor the status of internal operations and the firm’s relations with external 
environment. TPS are also major producers of information for the other types of systems. 

Online transaction processing systems (OLTPS) is an interactive data processing 
system that involves a direct connection between TPS programs and users. As soon as a 
single transaction is entered into a computer system, the program interacts immediately 
with the user for that transaction. It is often known as the live system where there is no 
time lag between data creation and its processing. A good example of this system is 
online ticket reservation system. 

 

(2)Management Information Systems (MISs) 
These are the information systems at the management level of an organization and serve 
management-level  functions  like  planning,  controlling,  and  decision-making.  These 
systems provide reports that  are usually generated on a predetermined  schedule and 
appear in prearranged format. Typically, these systems use internal data provided by the 
transaction processing systems. These systems are used for structured decision-making 
and in some cases for semi-structured decision making as well. Salary analysis and sales 
reporting are the examples in which MIS can be used. 

 

(3)Decision Support Systems (DSSs) 
These systems also serve at the management level of the organization. These systems 
combine data and sophisticated analytical models or data analysis tools to support semi- 
structured  and  unstructured  decision-making.  These systems use internal  information 
from TPS and MIS, and often information from external sources, such as current stock 
prices or product prices of competitors. DSS have more analytical power than other 
systems. Contract cost analysis is an example in which DSS can be used. 

 

(4)Executive Information Systems (EISs) 
These systems are also called executive support systems (ESSs) and serve the strategic 
level of the organization. These systems are designed to address unstructured decision 
making through advanced graphics and communication. These systems incorporate data 
about  external  events  such  as  new  tax  laws  or  competitors,  but  they  also  draw 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

 
 
summarized information from internal MIS and DSS. 

These  systems  are  not  designed  to  solve  a  specific problem  but  they provide  a 
generalized computing and telecommunication capacity that can be applied to a changing 
array of problems. 5-year operating plan is an example in which EIS can be used. 

 

(5)Expert Systems 
An expert system is an extension of DSS that captures and reproduces the knowledge and 
expertise of an expert problem solver or decision maker and then simulates the “thinking” 
or “actions” of that expert. These systems imitate the logic and reasoning of the experts 
within their respective fields. 

Expert systems are implemented with artificial intelligence (AI) technology that 
captures, stores, and provides access to the reasoning of the experts. 

 

(6)Communication and Collaboration Systems 
These systems enable more effective communications between workers, partners, 
customers and suppliers to enhance their ability to collaborate.  These systems use 
network technology that allows companies to coordinate with other organizations 
across great distances. These systems create new efficiencies and new relationships 
between an organization, its customers and suppliers, and business partners redefining 
organizational boundaries. 

 

(7)Office Automation Systems 
Office automation (OA) is more than word processing and spreadsheet applications. 
Office automation systems support the wide range of business office activities for 
improved work flow and communication between workers, regardless of whether or not 
those workers are located in the same office. 

Office automation functions include word processing, spreadsheet applications, 
electronic mails, work group computing, fax processing, work flow management etc. 

Office automation systems can be designed to support both individuals and work 
groups. Personnel information systems are those designed to meet the needs of a single 
user. They are designed to boost an individual’s productivity. Work group information 
systems, on the other hand, are designed to meet the needs of a work group. They are 
designed to boost the group’s productivity. 

 
Systems Analysis and Design 
 

System analysis and design is a complex, challenging, and simulating organizational 
process that a team of business and systems professionals uses to develop and maintain 
computer-based information systems. It is an organizational improvement process. 
Information systems are built and rebuilt for organizational benefits. 

An important (but not the only) result of system analysis and design is application 
software i.e. software designed to support organizational functions or processes such as 
inventory management, payroll, or mark-sheet analysis. In addition to application 
software, the total information system includes the hardware and systems software on 
which the application software runs, documentation and training materials, the specific 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

 
 
job roles associated with the overall system, controls and the people who use the software 
along with their work methods. 

In systems analysis and design, we use various methodologies, techniques and tools 
that have been developed, tested, and widely used over the years to assist people during 
system analysis and design. 
Methodologies are comprehensive, multistep approaches to systems development that 
will guide your work and influence the quality of your final product: the information 
system. Methodologies use a standard set of steps. A methodology adopted by an 
organization will be consistent with its general management style. Most methodologies 
incorporate several development techniques. 

Techniques are particular processes that will help to ensure that your work is well 
thought-out, complete, and comprehensible to other on the project team. Techniques also 
provide support for a wide range of tasks like conducting interviews, planning and 
managing the activities in a system development project, diagramming the system’s 
logic, and designing the reports that the system will generate. 

Tools are typically computer programs that make it easy to use and benefit from the 
techniques and to faithfully follow the guidelines of the overall development 
methodology. 

To be effective, both techniques and tools must be consistent with an organizations 
system development methodology. These make easy for system developers to conduct the 
steps in methodology. 

 
Importance of Systems Analysis and Design 
 

Systems analysis and design is the collection of important activities that takes place when 
new information systems are being built or existing ones are changed. All the activities 
are needed to build good information systems. The systems developed by using systems 
analysis and design activities fulfill the requirements of organizations’ personnel. 

Furthermore, we can develop information systems easily and rapidly because there 
are lots of supporting methodologies, tools, and techniques. The information system can 
be built in the most effective way. The systems also fit into an existing environment and 
will be very easy to use and maintain. By following the activities involved in systems 
analysis and design, we can develop high quality information system within allocated 
budget and time. 

 

Information System Stakeholders 
 

A stakeholder is any person who has an interest in an existing or proposed information 
system. She/he may be technical or non-technical and internal or external worker. 
Stakeholders are also called information workers. An information worker involves in 
creating, collecting, processing, distributing and using information. 
There are six groups of stakeholders and each group has a different role in the same 
information system. But in practice, any individual person may play more than one role. 
For example, a system analyst may also work as a system designer. The six groups are:  
1. System owners 
2. System users 
3. System designers  



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

4. System builders 
5. System analysts and project managers 
6. Information technology vendors and consultants. 
 

(1)System owners 
System owners are the information system’s sponsors and chief advocates. They are 
usually responsible for funding the project of development, operate, and maintain the 
information system. They are interested with-how much will the system cost? And how 
much value or what benefit will the system return to the business? 

Every information system has one or more system owners. They usually come from 
the ranks of managers to supervisors. 

 

(2)System Users 
These are the people who use or are affected by the information system on a regular 
basis. They are concerned with the system’s functionality related with their jobs and the 
system’s ease of learning and use. A system user may capture, validate, ent er, respond, 
store and exchange data and information. System users are also called clients. To know 
business requirements, discussions with most users need to be kept. 

 

(3)System Designers 
These are technology specialists who translate system users’ business requirements and 
constraints  into  technical  solutions.  These  are  interested  in  information  technology 
choices and the design of systems within the constraints of the chosen technology. They 
design the computer database, inputs, outputs, screens, networks, and programs that will 
meet the system users’ requirements. These designs guide the construction of the final 
system. 

 

(4)System Builders 
These are also technology specialists who construct information systems and components 
based on the design specifications generated by the system designer. 

 

(5)Systems Analysts and Project Managers 
A.  Systems  Analyst:  Although,  many  people  in  organizations  are  responsible  for 

systems  analysis  and  design,  in  most  organizations  the  systems  analyst  has  the 
primary responsibility. The primary role of a systems analyst is to study the problems 
and needs of an organization in order to determine how people, methods and 
information technology can best be combined to bring about improvements in the 
organization. System analysts identify and validate problems and needs and ensure 
that the technical solution fulfills these problems and needs. 

Systems analysts study the system and identify and validate its problems and 
needs for system owners and users and ensure that the technical solution fulfills the 
business needs. 

B.  Project  Manager:  To  build  a good  information  system and  applications  all the 
stakeholders must work together as a team. Teams require leadership. For this reason, 
usually one or more of these stakeholders takes on the role of project manager to 
ensure that systems are developed on time, within budget and acceptable quality. So, 
project manager is responsible for planning, monitoring, and controlling projects with 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

 
 

respect to schedule, budget, deliverables, customer satisfaction, technical standards 
and system quality. 

 

(6)Information Technology Vendors and Consultants 
Most  information  systems  are  dependent  on  information  technology  that  must  be 
selected, installed and customized, integrated into business, and technically supported. 
This technology is developed, sold, and supported by IT vendors. 

Similarly,  many businesses rely on external consultants to  help them develop or 
acquire information systems and technology. The use of consultants may be driven by the 
need for specialized knowledge or skills or by an immediate need to complete a project. 

 
System Development Life Cycle (SDLC) 
 

Most organizations use a standard set of steps, called a systems development 
methodology to develop and support their information systems. It is a standard process 
followed in an organization to conduct all the steps necessary to analyze, design, 
implement, and maintain information systems. And systems development life cycle 
(SDLC)   is  the  traditional  methodology  used  to  develop,   maintain,   and  replace 
information systems. It includes different phases as shown in the figure below. This 
representation of SDLC is sometimes referred to as the waterfall model or classic life 
cycle. 
 

 
Fig: The systems development life cycle 

 

The first phase is called planning. In this phase, someone identifies the need for a new or 
enhanced system. These needs are then analyzed, prioritized and arranged into a plan for 
the IS department. Here, a potential information systems project is explained and an 
argument for continuing or not continuing with the project is presented; a detailed plan is 
also  developed  for  conducting  the remaining  phases  or the SDLC  for  the proposed 
system. 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

The next phase is called analysis. During this phase, the analyst studies the current 
system  and  proposes  alternative  replacement  systems.  Here,  the  analyst  thoroughly 
studies  the  organization’s  current  procedures  and  the  information  systems  used  to 
perform organizational tasks. The analyst work with users to determine what the users 
want from a proposed system. The analyst carefully studies any current systems, manual 
and computerized, that might be replaced or enhanced as part of this project. The analyst 
studies the requirements and structures them according to their interrelationships and 
eliminates any redundancies; generates alternative initial designs to match the 
requirements; compare these alternatives to determine which best meets the requirements 
within the cost, labor, and technical levels the organization is willing to commit to the 
development process. The output of this phase is a description of the recommended 
alternative solution. Once the recommendation is accepted by owners, you can begin to 
make plans to acquire any hardware and system software necessary to build or operate 
the system as proposed. 

The next phase is called design. During this phase, you convert the description of 
the recommended alternative solution into logical and then physical system specification. 
Here, you must design all aspects of the system form input and output screens to reports, 
databases, and computer processes. Logical design is the part of the design process that 
is independent of any specific hardware or software platform. Theoretically, the system 
could be implemented on any hardware and systems software. Physical design is the part 
of the design phase in which the logical specifications of the system form logical design 
are transformed into technology-specific details from which all programming and system 
construction can be accomplished. 

The next phase is called implementation. In this phase, the information system is 
coded, tested, installed, and supported in the organization. During coding, programmers 
write the programs that make up the information system. During testing, programmers 
and analysts test individual programs and the entire system in order to find and correct 
errors. During installation, the new system becomes a part of the daily activities of the 
organization. Implementation activities also include initial user support such as the 
finalization of documentation, training programs, and ongoing user assistance. 

The  final  phase  of SDLC  is  called  maintenance.  In  this  phase,  information 
system is systematically repaired and improved. When a system is operating in an 
organization, users sometimes find problems with how it works and often think of better 
ways to perform its functions. Also the organization’s needs with respect to the system 
change over time. In maintenance, you make the changes that users ask for and modify 
the system to reflect changing business conditions. 

Waterfall model is the oldest and the most widely used paradigm for information 
systems development. While it does have weaknesses, it is significantly better than a 
haphazard approach. This model is suitable for the projects in which user requirements 
are certain and precise. The problems that are sometimes encountered with the linear 
sequential model are: 

→  Changes can cause confusion as the project team proceeds. 
→  It is often difficult for the customer to state all requirements explicitly. The linear 

sequential  model  requires  this  and  makes  difficulty  to  respond  to  changing 
customer requirements. 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

 
 

→  A working version of the system will be available to customers late in the project 
time-span. A major blunder, if undetected until the working program is reviewed, 
can be disastrous. 

→  The linear nature of the classic life cycle leads to “blocking states” in which some 
project team members must wait for other members of the team to complete 
dependent tasks. 

→  User involvement is limited.  
 

 
Different Approaches to Improving Information Systems 
Development 
 

Several different approaches have been developed in the continuous effort to improve the 
systems analysis and design process. The two important approaches are prototyping and 
joint application development (JAD). 

 

Prototyping 
Prototyping is a form of rapid application development (RAD). Prototyping is a rapid, 
iterative, and incremental process of systems development in which requirements are 
converted to a working system that is continually revised through close work between the 
development team and the users. We can build a prototype with any computer language 
or development tool, but special prototyping tools have been developed to simply the 
process. A prototype can be developed with some fourth-generation language (4GL), 
with the query and screen and report design tools of a database management system, and 
with tools called computer-aided software engineering (CASE) tools. 

 
 

In prototyping, the analyst works with users to determine the initial or basic requirements 
for the system. The analyst then quickly builds a prototype. When the prototype is 
completed, the users work with it and tell the analyst what they like and do not like about 
it. The analyst uses this feedback to improve the prototype and takes the new version 
back to the users. This iterative process continues until the users are relatively satisfied 
with what they have seen. 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

 
 

Ideally, the prototype serves as a mechanism for identifying information system 
requirements. In this case, we throw away the prototype (also called throwaway 
prototype) after identifying requirements. The actual information system is developed 
with an eye toward quality and maintainability based on the requirements. 
♦   Advantages: 

→  Useful for projects in which user requirements are uncertain or imprecise. 
→  It encourages active user and management participation. 
→  Projects  have  higher  visibility  and  support  because  of  the  extensive  user 

involvement. 
→  Users and management see working, software based solutions more rapidly. 
→  Errors and omissions tend to be detected earlier in prototypes. 
→  Testing and training are natural by-products. 
→  It is more natural process. 
→  It is most popular for small to medium-size projects. 

♦   Disadvantages: 
→  It increases lifetime cost to operate, support and maintain the system. 
→  It can solve the wrong problems since problem analysis is abbreviated or ignored. 
→  The product may have less quality because of speed in development. 

 

Joint Application Development (JAD) 
It is used for collecting information system requirements and reviewing system designs. 
It is a structured process in which users, managers, and analysts work together for several 
days in a series of intensive structured meetings run by a JAD session leader to specify or 
review system requirements. Here, people work together to agree on system requirements 
and design details, time and organizational resources are better managed. Group members 
are more likely to develop a shared understanding of what the IS is supposed to do. 

 
 
 
Computer-aided Software Engineering (CASE) Tools 
 

Computer-aided systems engineering (CASE) tools are the software programs that help 
the development team do their jobs more efficiently and more effectively. These tools 
support the drawing and analysis of system models. Some CASE tools also provide 
prototyping  and  code generation capabilities.  Some examples are:  Oracle’s Designer 
2000, Rational’s Rose, Platinum’s Erwin, Popkin’s System Architect 2001, and Visible 
System’s Visible Analyst. 

At the center of any CASE tool’s architecture is a developer’s database called a CASE 
repository. CASE repository is a system developer’s database where developers can 
store system models, detailed description and specification, and other products of system 
development. It is also called dictionary or encyclopedia. 

Around the CASE repository is a collection of tools or facilities for creating system 
models and documentation. These facilities generally include: 
•    Diagramming tools –These tools are used to draw system models. 
• Dictionary tools – These tools are used to record, delete, edit, and output detailed 

documentation and specification. 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

 
 
• Design tools – These tools are used to construct system components including system 

inputs and outputs. These are also called prototyping tools. 
• Documentation tools – These tools are used to assemble, organize, and report on 

 

 
 

system models, descriptions and specifications, and prototypes. 
• Quality  management  tools  –  These  tools  are  used  to  analyze  system  models, 

descriptions and specifications, and prototypes for completeness, consistency, and 
conformance to accepted rules of methodologies. 

• Design and code generator tools – These tools automatically generate database 
designs and application programs or significant portions of those programs. 

Today’s CASE tools provide two distinct ways to develop system models – forward 
engineering and reverse engineering. Forward engineering requires the system analyst 
to draw system models, either from scratch or from templates. The resulting models are 



Systems Analysis and Design   Unit 1 
 

Source: www.csitsansar.com 

 
 
subsequently transformed into program code. Reverse engineering, on the other hand, 
allows a CASE tool to read existing program code and transform that code into a 
representative system model that can be edited and refined by the systems analyst. CASE tools 
that allow for bi-directional, forward and reverse engineering are said to provide for “round-
trip engineering”. The figure below shows CASE tool architecture. 

 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

 
Unit 2. Modeling Tools for Systems Analyst                                                            5 Hrs. 

 
 
Data Flow Diagram (DFD) 
Process  modeling  involves  graphically  representing  the  functions  or  processes  that 
capture, manipulate, store, and distribute data between a system and its environment and 
between components within a system. A common form of a process model is a data flow 
diagram (DFD). 

A data flow diagram (DFD) is a tool that depicts the flow of data through a system 
and the work or processing performed by that system. It is also called bubble chart, 
transformation graph, or process model. There are two different sets of data flow 
diagram symbols, but each set consists of four symbols that represent the same things: 
data flows, data stores, processes, and sources/sinks (or external entities). The figure 
below shows two different sets of symbols developed by DeMacro and Yourdon and 
Gane and Sarson. The set of symbols we will use here was deviced by Gane and Sarson. 

 
According to Gane and Sarson, rounded rectangles represent process or work to be 
done, squares represent external agents, open-ended boxes represent data store 
(sometimes called files or databases), and arrows represent data flows or inputs and 
outputs to and from the processes. 

Process is the work or actions performed on data so that they are transformed, 
stored or distributed. Data store is the data at rest (inside the system) that may take the 
form of many different physical representations. External entity (source/sink) is the origin 
and/or destination of data. Data flow represents data in motion, moving from one place in 
a system to another. 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

 
 
Developing DFDs 
The highest-level view of a system is called context diagram or context DFD. A context 
DFD is used to document the scope of the project of development. It is also called 
environmental model. 

A project’s scope defines what  aspect of the business, an information system or 
application is supposed to support and how the system being modeled must interact with 
other systems and the business as a whole. Because the scope of any project is always 
subject to change, the context diagram is also subject to constant change. The context 
DFD contains one and only one process and  it  has no data storage. Sometimes this 
process is identified by the number “0”. The figure below shows the context diagram of 
library system. 

 
The next step is to draw a DFD with major processes that are represented by the single 
process in the context diagram. These major processes represent the major functions of 
the system. This diagram also includes data stores and called level-0 diagram (or level-0 
DFD). A level-0 diagram is a DFD that represents a system’s major processes, data 
flows, and data stores at a high level of detail. In this diagram, sources/sinks should be 
same as in the context diagram. Each process has a number that ends in .0. The figure 
below shows level-0 DFD. 
Here,  we  started  with  a  high-level context  diagram.  Upon  thinking  more  about  the 
system, we saw that the larger system consisted of four processes. This process is called 
functional decomposition. Functional decomposition is an iterative process of breaking 
the description or perspective of a system down into finer and finer detail. When we 
repeat the decomposition until we reached the point where no subprocesses can logically 
be broken down any further, we get the lowest level of DFD called primitive DFD. 

When we decompose level-0 DFD, we get level-1 DFD. In level-1 DFD, we label 
subprocesses of process 1.0 to 1.1, 1.2, and so on. Similarly, subprocesses of process 2.0 
to 2.1, 2.2, and so on. In general, a level-n diagram is a DFD that is generated from n 
nested decompositions from a level-0 diagram. 

 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

 
 

 
Entity Relationship Diagram (E-R Diagram) 

During analysis phase, a systems analyst uses entity relationship data model (E-R 
model) as a conceptual data model. A conceptual data model is a detailed model that 
captures the overall structure of organizational data while being independent of any 
database management system or other implementation consideration. And an E-R model 
is a detailed, logical representation of the data for an organization or for a business area. 
The E-R model is expressed in terms of entities in the business environment, the 
relationships or associations among those entities, and the attributes or properties of both 
the entities and their relationships. An E-R model is normally expressed as an entity 
relationship diagram (E-R diagram), which is a graphical representation of an E-R 
model. It has three basic concepts: entities, attributes, and relationships. 

 

Entities: 
An entity is a person, place, object, event, or concept in the user environment about 
which the organization wishes to  capture and store data. An entity type (sometimes 
called  an  entity  class  or  entity  set)  is  a  collection  of  entities  that  share  common 
properties or characteristics. An entity instance (or instance) is a single occurrence of an 
entity type. 

Each entity type in E-R diagram is given a name. When naming entity types, we 
should use the following guidelines: 
• An  entity  type  name  is  a  singular  noun  like  CUSTOMER,  STUDENT,  or 

AUTOMOBILE. 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

• An entity type  name should  be  descriptive and  specific to  the organization  like 
PURCHASE ORDER for orders placed with suppliers to distinguish it from 
CUSTOMER ORDER for orders placed by customers. 

• An entity type name should be concise like REGISTRATION for the event of a 
student registering for a class rather than STUDENT REGISTRATION FOR CLASS. 

• Event entity types should be named for the result of the event, not the activity or 
process of the event like the event of a project manager assigning an employee to 
work on a project results in an ASSIGNMENT. 

Each entity type in E-R diagram should be defined.  When defining entity types, we 
should use the following guidelines: 
• An   entity   type   definition   should   include   a   statement   of   what   the   unique 

characteristic(s) is (are) for each instance. 
• An entity type definition should make clear what entity instances are included and 

not included in the entity type. 
• An entity type definition often includes a description of when an instance of the entity 

type is created or deleted. 
• For some entity types the definition must specify when an instance might change into 

an instance of another entity type. For example, a bid for a construction company 
becomes a contract once it is accepted. 

• For some entity types the definition must specify what history is to be kept about 
entity instances. 

An entity type  in  E-R diagram  is drawn using  rectangle.  This  shape represents all 
instances of the  named  entity.  We place entity type  name  inside  the rectangle.  For 
example, the figure below shows STUDENT entity type. 

 
 

STUDENT 
 
 

Attributes: 
Each entity type has a set of attributes associated with it. An attribute is a property or 
characteristic of an entity that is of interest to the organization. For example, STUDENT 
entity type may have Student_ID, Student_Name, Home_Address, Phone_Number, and 
Major as its attributes. Similarly, EMPLOYEE entity type may have Employee_ID, 
Employee_name, and Skill, Address as its attributes. 

Each attribute in E-R diagram is given a name. When naming attributes, we should use 
the following guidelines: 
• An attribute is a noun like Customer_ID, Age, or Skill. 
• An attribute name should be unique. No two attributes of the same entity type may 

have the same name, and it is desirable, for clarity purposes, that no two attributes 
across all entity types have the same name. 

• To make an attribute unique and clear, each attribute name should follow a standard 
form. For example, Student_GPA as opposed to GPA_of_Students. 

• Similar attributes of different entity types should use the similar but distinguishing 
names. For example, Student_Residence_City_Name for STUDENT entity type and 
Faculty_Residence_City_Name for FACULTY entity type. 

Each attribute in E-R diagram should be defined. When defining attributes, we should use 
the following guidelines: 
• An attribute definition states what the attribute is and possibly why it is important. 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

• An attribute definition should make it clear what is included and what is not included 
in the attributes value. For example, Employee_Monthly_Salary_Amount is the 
amount paid each month exclusive of any benefits, bonuses, or special payments. 

• An attribute definition may contain any aliases or alternative names. 
• An attribute definition may state the source of values for the attribute to make the 

meaning clearer. 
• An attribute definition should  indicate if  a value for the attribute is required or 

optional (to maintain data integrity). 
• An attribute definition  may indicate  if  a  value for the attribute may change  (to 

maintain data integrity). 
• An attribute definition may also indicate any relationships that an attribute has with 

other attributes. For example, Age is determined from for Date_of_Birth. 
An attribute in E-R diagram is drawn using an ellipse. We place attribute name inside the 
ellipse with a line connecting it to the associated entity type. For example, the figure 
below shows Student_Name  and Age attributes of STUDENT entity type. 

 
 

Student_Nam Ag 
 
 
 
 
 

STUDENT 
 
 
Every entity type must have an attribute or set of attributes that distinguishes one instance 
from other instances of the same type. A candidate key is an attribute or combination of 
attributes  that  uniquely  identifies  each  instance  of  an  entity  type.  For  example,  a 
candidate key for a STUDENT entity type might be Stident_ID. 

Some entity type may have more than one candidate key. In such a case, we must 
choose one of the candidate keys as the identifier. An identifier (or primary key) is a 
candidate key that has been selected to be used as the unique characteristic for an entity 
type. We can use the following selection rules to select identifiers: 
• Choose a candidate key that will not change its value over the life of each instance of 

the entity type. 
• Choose a candidate key that will never be null. 
• Avoid using intelligent keys. 
• Consider substituting single value surrogate keys for large composite keys. 

The name of the identifier is underlined on an E-R diagram. For example, the figure 
below shows Student_Id as an identifier for a STUDENT entity type. 

 
Student_ID 

 
 
A multivalued attribute may take more than one value for each entity instance. For 
example  Phone_Number  attribute  of STUDENT  entity  type.  We use  a  double-lined 
ellipse to represent multivalued attribute. 

 
 

Phone_ 
Number 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

 

 
An attribute that has meaningful component parts is called composite attribute. For 
example, Student_Name attribute of STUDENT entity type has First_Name, 
Middle_Name, and Last_Name as its component parts. 
   

                               

An attribute whose value can be computed from related attribute values is called derived 
attribute. For example, value of Age attribute is computed from Date_of_Birth attribute. 
We use dashed ellipse to denote derived attribute. 

 

 
Ag 
 

Relationships 
A relationship is an association between the instances of one or more entity types that is 
of interest to the organization. We use diamond to denote relationships. Relationships are 
labeled  with  verb  phrases.  For  example,  if  a  training  department  in  a  company  is 
interested in tracking with training courses each of its employees has completed, this 
leads to a relationship (called Completes) between the EMPLOYEE and COURSE entity 
types as shown in the figure below. 

 
As indicated by arrows, the cardinality of this relationship is many-to-many since each 
employee may complete more than one course, and each course may be completed by 
more than one employee. 

The cardinality of a relationship is the number of instances of one entity type that 
can (or must) be associated with each instance of another entity type. The cardinality of a 
relationship can be in one of the following four forms: one-to-one, one-to-many, many-to- 
one, and many-to-many. 
• One-to-one: An instance in entity type A is associated with at most one instance in 

entity type B, and an instance in entity type B is associated with at most one instance 
in entity type A. For example, cardinality between DEPARTMENT and 
CHAIRPERSON. 

 
 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

 
• One-to-many: An instance in entity type A is associated with any number (zero or 

more) of instances in entity type B, and an instance in entity type B, however, can be 
associated with at most one instance in entity type A. For example, cardinality 
between MOTHER and CHILD. 

 
• Many-to-one: An instance in entity type A is associated with at most one instance in 

entity type B, and an instance in entity type B, however, can be associated with any 
number  (zero  or  more)  of  instances  in  entity  type  A.  For  example,  cardinality 
between CHILD and MOTHER. 

 
• Many-to-many: An instance in entity type A is associated with any number (zero or 

more) of instances in entity type B, and an instance in entity type B is associated with 
any number (zero or more) of instances in entity type A. For example, cardinality 
between STUDENT and COURSE. 

 
The degree of a relationship is the number of entity types that participate in the 
relationship. The three most common relationships in E-R models are unary (degree one), 
binary (degree two), and ternary (degree three). Higher degree relationships are also 
possible, but they are rarely encountered.

 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

 

Fig: Example relationships of different degrees 
 
 
A unary relationship is a relationship between the instances of one entity type. It is also 
called a recursive relationship.  A binary relationship is a relationship between 
instances of two entity types. This is the most common type of relationship encountered 
in data modeling. A ternary relationship is a simultaneous relationship among the 
instances of three entity types. 

We can also use the concept minimum and maximum cardinality when we draw E-R 
diagrams. The minimum cardinality of a relationship is the minimum number of 
instances of an entity type that may be associated with each instance of another entity 
type. The maximum cardinality of a relationship is the maximum number of instances 
of an entity type that may be associated with each instance of another entity type. For 
example, suppose a portion of banking database as shown in the figure below. Here, the 
minimum  number  of  accounts  for  a  customer  is  one  and  the  maximum  number  of 
accounts is many (unspecified number greater than one). Similarly, the minimum number 
of customers associated with an account is one and the maximum number of customers is 
many. 

 
When the minimum cardinality of a relationship is zero, then we say that the entity type 
is an optional participation or partial participation in the relationship. When the 
minimum cardinality of a relationship is one, then we say that the entity type is a 
mandatory participation or total participation in the relationship. In the figure above, 
the entity type ACCOUNT is a mandatory participation in the relationship. Similarly, the 
entity type CUSTOMER is a mandatory participation. 

 

 
 

Fig: Cardinality symbols 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

 
 
Each relationship in E-R diagram is given a name. When naming relationships, we should 
use the following guidelines: 
• A relationship name is verb phrase like Assigned_to, Supplies, or Teaches. This 

name represents action taken, not the result of the action, usually in the present tense. 
• A relationship name should avoid vague names, such as Has or Is_related_to. 

Each relationship in E-R diagram should be defined. When defining relationships, we 
should use the following guidelines: 
• A relationship definition should explain what action is being taken and possibly why 

it is important. 
• It may be important to give examples to clarify the action. 
• The definition should explain any optional participation. 
• A  relationship  definition  should  explain  any  restrictions  on  participation  in  the 

relationship. 
• A relationship  definition should  explain  the extent  of  history that  is kept  in  the 

relationship. 
• A  relationship  definition  should  explain  the  reason  for  any  explicit  maximum 

cardinality other than many. 
• A relationship definition should explain whether an entity instance involved in a 

relationship instance can transfer participation to another relationship instance. 
 

Other E-R Notations 
• Associative Entity: An entity type that associates the instances of one or more entity 

types and contains attributes that are peculiar to the relationship between those entity 
instances is called associative entity. Associative entity is also called a gerund. For 
example, the first figure below shows a relationship with an attribute and the second 
figure shows an associative entity. 

 
 

 

 



Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 
 

 
 
 

• Weak Entity Type: An entity type may not have sufficient attributes to form a 
primary key. Such an entity type is termed as a weak entity type. An entity type that 
has a primary key is termed as a strong entity type. For a weak entity type to be 
meaningful, it must be associated with another entity type, called the identifying or 
owner entity type, using one of the key attribute of owner entity type. The weak entity 
type is said to be existence dependent on the identifying entity type. The relationship 
associating the weak entity type with the identifying entity type is called the 
identifying relationship. The identifying relationship is many-to-one form the weak 
entity type to the identifying entity type, and the participation of the weak entity type 
in the relationship is total. Although a weak entity type does not have a primary key, 
we use discriminator (or partial key) as a set of attributes that allows the distinction to 
be made among all the entities in the weak entity type. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supertypes and Subtypes 
• Subtype: Subtype is a subgrouping of the entities in an entity type that is meaningful 

to the organization and that shares common attributes or relationships distinct from 
other  subgroupings.  For e x a m p l e , a n  e n t i t y  type  S T U D E N T  t o  
GRADUATE STUDENT and UNDERGRADUATE SUTDENT. 

• Supertype: Supertype is a generic entity type that has a relationship with one or more 
subtypes. For example PATIENT with OUTPATIENT and RESIDENTPATIENT. 

There are several important business rules for supertype/subtype relationships. 
• Total specialization rule: Specifies that each entity instance of the supertype must be 

a member of some subtype in the relationship. 
• Partial specialization rule: Specifies that an entity instance of the supertype does not 

have to belong to any subtype. May or may not be an instance of one of the subtypes. 
• Disjoint rule: Specifies that if an entity instance of the supertype is a member of one 

subtype, it cannot simultaneously be a member of any other subtype. 
• Overlap rule: Specifies that an entity instance can simultaneously be a member of 

two (or more) subtypes. 



 

 

Systems Analysis and Design   Unit 2 
 

Source: www.csitsansar.com 

 
Fig: Example of supertype/subtype hierarchy 

 

In the figure above, PERSON is  supertype  and  EMPLOYEE,  ALUMNUS,  
and STUDENT are subtypes. Similarly, EMPLOYEE is supertype for 
F A C U L T Y  and STAFF subtypes and STUDENT is supertype for 
GRADUATE STUDENT and UNDERGRADUATE STUDENT subtypes. 
Supertype is connected with a line to a circle, which in turn is connected by a 
line to the subtypes. The U-shaped symbol indicates that the subtype is a subset of 
the supertype. Total specialization is shown by a double line from the supertype 
to the circle and partial specialization is shown by a single line. Disjoint versus 
overlap is shown by a “d” or an “o” in the circle. 
 

Some Exercises 
1.  Construct an ER diagram for a car-insurance company whose customers own 
one or more cars each. Each car has associated with it  zero to any number of 
recorded accidents. 
2.  Construct an ER diagram for a hospital with a set of patients and a set of 
doctors. Associate with each patient a log of the various tests and examinations 
conducted. 
3.  Construct an ER diagram of the library system in your college. 
4. Construct an ER diagram to maintain data about students, instructors, 

semester, and courses in a college. 
5. Construct an ERD to record the marks that students get in different exams of 

different course offerings. 



Systems Analysis and Design   Unit 3 

Source:www.csitsansar.com 

 
Unit 3. Structured Methodologies                                                                                   6 Hrs. 

 
Structured Methodologies  
Structured methodologies (or structured systems analysis and design) have been used to 
document, analyze, and design information systems since the 1970s. Structured refers to the 
fact that the techniques are step by step, with each step building on the previous one. Structured 
methodologies are top-down, progressing from the highest, most abstract level to the lowest 
level of detail – from the general to the specific.  
Structured development methods are process-oriented, focusing primarily on modeling the 
processes, or actions that capture, store, manipulate, and distribute data as the data flow through 
a system. These methods separate data from processes.  
The primary tool for representing a system’s component processes and the flow of data between 
them is the data flow diagram (DFD). The data flow diagram offers a logical graphic model of 
information flow, partitioning a system into modules that show manageable levels of detail. It 
rigorously specifies the processes or transformations that occur within each module and the 
interfaces that exist between them.  
Another tool for structured analysis is a data dictionary, which contains information about 
individual pieces of data and data groupings within a system. The data dictionary defines the 
contents of data flows and data stores so that systems builders understand exactly what pieces 
of data they contain. Process specification is another tool that describes the transformation 
occurring within the lowest level of data flow diagrams. They express the logic for each 
process. We can express the logic using structured English, decision table, decision tree etc.  
In structured methodology, software design is modeled using hierarchical structure charts. The 
structure chart is a top-down chart, showing each level of design, its relationship to other 
levels, and its place in the overall design structure. The design first considers the main function 
of a program or system, then breaks this function into sub functions, and decomposes each 
subfunction until the lowest level of detail has been reached. A structure chart may document 
one program, one system (a set of programs) or part of one program. 

 
Need for Structured Methodology  
Most information systems development organizations use structured methodology because it 
offers the following advantages:  
• Improve project management & control  
• Make more effective use of experienced and inexperienced development staff  
• Develop better quality systems with low cost  
• Make projects resilient to the loss of staff  
• Enable projects to be supported by computer-based tools such as computer-aided software 

engineering (CASE) systems  
• Establish a framework for good communications between participants in a project  
 
• Enable projects to deliver the product on time because it allows to plan, manage and control 

a project well  
• Respond to the changes in the business environment while project progresses  
• Improves the overall productivity by encouraging on-time delivery, meeting business 

requirements, ensuring better quality, and using human resources effectively.  
 
 



Systems Analysis and Design   Unit 3 

Source:www.csitsansar.com 

Advantages and Disadvantages of Modeling and Data Dictionaries 
 
Advantages:  

• It minimizes planning overhead because all the phases are planned up front.  
• Requirements analysis tends to be more thorough and better documented.  
• Business requirements and system designs are easier to validate with pictures.  
• It is easier to identify, conceptualize and analyze alternative technical solutions.  
• Design specifications tend to be sound, stable, adaptable, and flexible because of 

models.  
• Systems can be constructed more correctly the first time from complete and clear model 

based specifications  
•  

Disadvantages:  
• It is time consuming because it takes time to collect facts, draw models and validate 

those models.  
• The models can only be as good as the users’ understanding of those requirements.  
• It reduces the users’ role in project to passive participation because most users want to 

see working software instead of models.  
• It is considered to be inflexible; users must fully specify requirements before design; 

design must fully document technical specifications before construction; and so forth.  
 

 
Role of CASE in Data Modeling  
Data models are stored in a repository. CASE (computer-aided systems engineering) provides 
the repository for storing the data models and its detail description. Most CASE tools support 
computer-assisted data modeling and database design. CASE supports in drawing and 
maintaining the data models and their underlying details.  
Using CASE product, you can easily create professional, readable data models without the use 
of paper, pencil, erasers, and templates. The models can be easily modified to reflect 
corrections and changes suggested by end users – you don’t have to start over. Also, most 
CASE products provide powerful analytical tools that can check your models for mathematical 
errors, completeness, and consistency. Some CASE products can even help you analyze the 
data models for consistency, completeness, and flexibility.  
Also, some CASE tools support reverse engineering of existing files and database structures 
into data models. The resulting data models represent physical data models that can be revised 
and reengineered into a new file or database, or they may be translated into their equivalent 
logical models. The logical data models could then be edited and forward engineered into a 
revised physical data model and subsequently a file or database implementations. 



                                                Systems Analysis and Design                                              Unit 4 

Source: www.csitsansar.com 

 
 
Unit 4. Systems Analysis                                                                                                       8 Hrs. 

Systems Planning and Initial Investigation 
The primary purpose of systems planning is to identify problem’s nature and its scope. It 
also includes preliminary (or initial) investigation and feasibility study. Initial investigation 
is used to understand the problem, define the project scope and constraints, identify the 
benefits, estimate the time and costs, and interact with managers and users. Feasibility 
study is used to determine some feasibility (economic, operational, technical feasibility 
etc) of the system. 

The purpose of this phase is twofold. First, it answers the question, “Is this project 
worth looking at?” Second, assuming that the problem is worth looking at, it establishes 
the size and boundaries of the project, the project vision, any constraints or limitations, 
the required project participants, and the budget and schedule. 
 
Information Gathering Techniques 
To develop an information system, we first must be able to correctly identify, analyze, 
and understand what the users’ requirements are or what the user wants the system to do. 
To know users’ requirements, we use information gathering techniques. Information 
gathering techniques are also called requirements discovery techniques or fact finding 
techniques or data collection techniques. Information gathering includes those 
techniques to be used by system analysts to identify or extract system problems and 
solution requirements from the user community. Systems analysts need an organized 
method for information gathering. Some information gathering techniques are discussed 
below: 
 

Sampling of Existing Documentation, Forms, and Files 
When we are studying an existing system, we can develop a good feel for the system by 
studying existing documentation, forms, and files. A good analyst always gets facts from 
the existing documentation rather than from people. 

Because it would be impractical to study every occurrence of every form or record in a 
file or database, system analysts normally use sampling techniques to determine what can 
happen in the system. 

Sampling is the process of collecting a representative sample of documents, forms, and 
records. The most commonly used sampling techniques are randomization and 
stratification. 

Randomization is a sampling technique in which there is no predetermined pattern or 
plan for selecting sample data. 

Stratification is a systematic sampling technique that attempts to reduce the variance 
of the estimates by spreading out the sampling. 
 
Research and Site Visits 
In this technique, we perform site visits at systems they know have experienced similar 
problems. If these systems are willing to share, valuable information can be obtained that 
may save tremendous time and cost in the development process. 

Computer trade journals and reference books are also a good source of information. 
They can provide us with information how others have solved similar problems. Also, 
through the Internet we can collect immeasurable amounts of information. 
 

Observation of the Work Environment 
Observation is an effective data-collection technique for obtaining an understanding of a 



                                                Systems Analysis and Design                                              Unit 4 

Source: www.csitsansar.com 

system. In this technique, the systems analyst either participates in or watches a person 
performing activities to learn about the system. 
Advantages: 

→  Data gathered can be highly reliable. Sometimes observations can be conducted to 
check the validity of data obtained directly from individuals. 

→  The systems analyst is able to see exactly what is being done. 
→  It is relatively inexpensive compared to other fact-finding techniques, because 

other techniques usually require more employees. 
→  It allows the system analyst to do work measurement. 

Disadvantages: 
→  People usually feel uncomfortable when being watched to their work. 
→  Some  system  activities  may  take  place  at  odd  times,  causing  a  scheduling 

inconvenience for the system analyst. 
→  It may cause interruption. 
→  Some tasks may not always be performed by observation. 

 

Questionnaires 
This technique is used to conduct surveys through questionnaires. Questionnaires are 
special purpose documents that allow the analyst to collect information and opinions 
from  the  respondents.   The  document  can   be  mass-produced   and   distributed  to 
respondents, who can then complete the questionnaire on their own time. Questionnaires 
allow the analyst to collect facts from a large number of people. 
Types of Questionnaires 

There are two formats of questionnaire, free-format and fixed-format. Free-format 
questionnaire offer the respondent to record the answer in the space provided after the 
questionnaire. 

Fixed-format questionnaire contain questions that require selection of predefined 
responses. In this format, the respondent must choose from the available answer. 
There are three types of fixed-format questions: 
→  Multiple Choice Questions: - The respondent is given several answers of a 

question. The respondent should be told if more than one answer can be selected. 
→  Rating  Questions:  -  The  respondent  is  given  a  statement  and  asked  to  use 

supplied responses to state an opinion. 
→  Ranking questions: - The respondent is given several possible answers, which 

are to be ranked in the order of preference or experience. 
Advantages 

→  Most questionnaires can be answered quickly. 
→  Inexpensive for gathering data from a large number of individuals. 
→  Responses can be tabulated and analyzed quickly. 

Disadvantages 
→  There  is  no  guarantee  that  an  individual  will  answer  or  expand  on  all  the 

questions. 
→  Questionnaires tend to be inflexible. 
→  It not possible for the systems analyst to observe and analyze the respondent’s 

body language. 
→  There is no immediate opportunity to clarify a vague or incomplete answer to 

questions. 
→  Good questionnaires are difficult to prepare. 
→  The number of respondents is often low. 

 



                                                Systems Analysis and Design                                              Unit 4 

Source: www.csitsansar.com 

Interviews 
The  personal  interview  is  generally  recognized  as  the  most  often  used  fact-finding 
technique.  Interviews  are  the  fact-finding  techniques  whereby  the  systems  analysts 
collect information from individuals through face-to-face interaction. 

There are two roles assumed in an interview. The systems analyst is the interviewer, 
responsible for organizing and conducting the interview. The system user or system 
owner is the interviewee, who is asked to respond to a series of questions. 
Types of Interviews 

There  are  two  types  of  interviews:  unstructured  and  structured.  Unstructured 
interviews are conducted with only a general goal or subject in mind and with few, if 
any, specific questions. Structured interviews on the other hand are conducted with a 
set of specific questions to ask the interviewee. 

Types of Questions 
There are two types of questions in interview: open-ended and closed-ended. Open- 
ended questions allow the interviewee to respond in any way that seems appropriate. 
But, closed-ended questions restrict answers to either specific choices or short, direct 
responses. 

Advantages 
→  Interviews give the analyst an opportunity to motivate the interviewee to respond 

freely and openly to questions. 
→  Interviews allow more feedback from the interviewee. 
→  Interviews give the analyst an opportunity to observe the interviewee’s nonverbal 

communication. 
Disadvantages 

→  Interviewing is a very time-consuming and therefore costly fact-finding approach. 
→  Success  of  interviews  is  highly  dependent  on  the  systems  analyst’s  human 

relational skills. 
→  Interviewing may be impractical due to the location of interviewees. 

 

Discovery Prototyping 
Discovery prototyping is the act of building a small-scale, representative or working 
model of the users’ requirements to discover or verify the requirements. 

Usually  only  the  areas  where  the  requirements  are  not  clearly  understood  are 
prototyped. Creating discovery prototypes enables the developers as well as the users to 
better understand and refine the requirements involved with developing the system. 
Advantages 

→ Allows users and developers to experiment with the software and develop an 
understanding of how the system might work. 

→ Aids in determining the feasibility and usefulness of the system before high 
development costs are incurred. 

→  Serves as a training mechanism for users. 
→  Aids in building system test plans and scenarios to be used last in the system 

testing process. 
→  May minimize the time spent for fact-finding and help to define more stable and 

reliable requirements. 
Disadvantages 

→  Users and developers may need to be trained in the prototyping approach. 
→ Doing prototyping may extend the development schedule and increase the 

development costs 
→  Users may develop unrealistic expectations. 



                                                Systems Analysis and Design                                              Unit 4 

Source: www.csitsansar.com 

 

 
Joint Requirements Planning (JRP) 
It is a process whereby highly structured group meeting is conducted to analyze problems 
and define requirements. JRP is a subset of a more comprehensive joint application 
development (JAD). The JRP participants are: 

→  Sponsor: - This person is normally an individual who is in top management and 
has  authority  that  spans  the  different  departments  and  users  who  are  to  be 
involved in the systems project. 

→  Facilitator: - The JRP facilitator or leader is usually responsible for leading all 
sessions that are held for a systems project. 

→  Users  and  Managers:  -  Users  devote  themselves  to  the  JRP  sessions  to 
effectively communicate business rules and requirements, review design prototypes 
and make acceptance decisions. Managers approve project objectives, establish 
project priorities, approve schedules and costs, and approve identified 
training needs and implementation plans. 

→  Scribe(s): - Scribes are responsible for keeping records pertaining to everything 
discussed in the meeting. 

→  IT Staff: - IT personnel listen and take notes regarding issues and requirements 
voiced by the users and managers. Normally, IT personnel do not speak unless 
invited to do so. 

Benefits 
→  It actively involves users and managers in the development project. 
→  It reduces the amount of time required to develop systems. 
→  When JRP incorporates prototyping as a means for conforming requirements and 

obtaining design approvals, the benefits of prototyping are realized. 
 
 
Structured Analysis Tools 
Structured analysis includes different tools like DFD (data flow diagram), ERD (entity 
relationship diagram), data dictionary, structured English, decision table, and decision 
tree. 
 
Feasibility Study 
Feasibility is the measure of how beneficial or practical the development of information 
system will be to an organization. Feasibility study is the process by which feasibility is 
measured. Feasibility analysis is appropriate to the systems analysis phase. 
 

Four Tests for Feasibility 
During systems analysis phase, the system analyst identifies different alternate solutions and 
analyzes  those  solutions  for  feasibility.  To  analyze  different  alternative  solutions,  most 
analysts use  four  categories  of  feasibility  tests:   
•  Operational feasibility  
• Technical feasibility  
• Schedule feasibility and  
• Economic feasibility 
1. Operational Feasibility: It is a measure of how well the solution will work in an 

organization. It is also a measure of how people feel about the system/project. So, this 
feasibility is people oriented. Operational feasibility addresses two major issues: 

a.   Is the problem worth solving, or will the solution to the problem work? 



                                                Systems Analysis and Design                                              Unit 4 

Source: www.csitsansar.com 

b.   How do end users and management feel about the problem (solution)? 
When determining operational feasibility, usability analysis is often performed 
with a working prototype of the proposed system. Usability analysis is a test of 
system’s user interfaces and is measured in how easy they are to learn and to use 
and how they support the desired productivity levels of the users. Usability is 
measured in terms of ease of learning, ease of use, and satisfaction. 

2.   Technical  Feasibility:  It  is  a  measure  of  practically  of  a  specific  technical 
solution and availability of technical resources and expertise. Technical feasibility 
is computer oriented. This feasibility addresses three major issues: 

a.   Is the proposed technology or solution practical? 
b.   Do we currently possess the necessary technology? 
c.   Do  we  possess  the  necessary  technical  expertise,  and  is  the  schedule 

reasonable? 
3.   Schedule Feasibility: It is a measure of how reasonable the project timetable is. 

Schedule  feasibility is  the  determination  of  whether  the  time  allocated  for  a 
project  seems  accurate.  Projects  are  initiated  with  specific  deadlines.  It  is 
necessary to determine whether the deadlines are mandatory or desirable. If the 
deadlines are desirable rather than mandatory, the analyst can propose alternative 
schedules. 

4.   Economic Feasibility: It is the measure of the cost-effectiveness of a project or 
solution. This feasibility deals with costs and benefits of the information system. 
The bottom-line in many projects is economic feasibility. During the early phases 
of the project, economic feasibility analysis amounts to little more than judging 
whether the possible benefits of solving the problem are worthwhile. However, as 
soon as specific requirements and alternative solutions have been identified, the 
analyst can determine the costs and benefits of each alternative. 

Some other feasibility tests are also possible. These are legal and contractual feasibility 
and political feasibility. Legal and contractual feasibility is the process of assessing 
potential legal and contractual ramifications due to the construction of a system. Political 
feasibility is the process of evaluating how key stakeholders within the organization view 
the proposed system. 
 
Cost-Benefit Analysis Techniques 
 

Economic feasibility has been defined as a cost-benefit analysis. Most schools offer 
coerces like financial management, financial decision analysis, and engineering economics 
and analysis for cost benefit analysis. The cost benefit analysis techniques include: 

• How much will the system costs? 
• What benefits will the system provide? 
• Is the proposed system cost-effective? 

 
How much will the system costs? 
Costs fall into two categories: costs associated with developing the system and costs 
associated with operating the system. The former costs can be estimated from the start of 
the project and should be refined at the end of each phase of the project. The later can be 
estimated only after specific computer-based solution has been defined. 

System development costs are usually onetime costs that will not recur after the 
project has been completed. Many organizations have standard cost categories that must be 
evaluated. In the absence of such categories, we use the following list: 

• Personnel cost – The salaries of systems analysts, programmers, consultants, data 
entry personnel, computer operators, secretaries, and the like who work on the 



                                                Systems Analysis and Design                                              Unit 4 

Source: www.csitsansar.com 

project. 
• Computer usage – The cost in the use of computer resources. 
• Training – Expenses for the training of computer personnel or end-users. 
• Supply, duplication, and equipment costs. 
• Cost of any new computer equipment and software. 

The operating costs tend to recur throughout the lifetime of the system. The costs in this 
case can be classified as fixed or variable. 

• Fixed costs – Fixed costs occur at regular intervals but at relatively fixed rates. 
Some examples include: lease payments and software license payments, salaries 
of IS operators and support personnel etc. 

• Variable costs – Variable costs occur in proportion to some usage factor. Some 
examples include: costs of computer usage (e.g., CPU time used, storage used), 
supplies  (e.g.,  printer  paper,  floppy  disks),  overhead  costs  (e.g.,  utilities, 
maintenance, and telephone service) etc. 

 

What benefits will the system provide? 
Benefits normally increase profits or decrease costs. Benefits can be classified into two 
categories: tangible and intangible. 

• Tangible benefits – Tangible benefits are those that can be easily quantified. 
These benefits are usually measured in terms of monthly or annual savings or of 
profit to the firm. Alternatively, these benefits might be measured in terms of unit 
cost savings or profit. Some examples of tangible benefits are: fewer processing 
errors, increased throughput, decreased response time, elimination of job steps, 
increased sales, reduced credit losses, and reduce expenses. 

• Intangible benefits – Intangible benefits are believed to be difficult or impossible 
to quantify. Unless these benefits are at least identified, it is entirely possible that 
many projects would not be feasible. Some examples of intangible benefits are: 
improved customer goodwill, improved employee morale, better service to 
community, and better decision making. 

Unfortunately, if a benefit cannot be quantified, it is difficult to accept the validity of an 
associated cost-benefit analysis that is based on incomplete data. 
 

Is the proposed system cost-effective? 
There  are  three  popular  techniques  to  assess  economic  feasibility,  also  called  cost- 
effectiveness: payback analysis, return to investment, and net present value. 

One concept that is shared by all three techniques is the time value of money – a 
dollar today is worth more than a dollar one-year from now. 

Some of the costs of the system will be accrued in after implementation. Before cost- 
benefit analysis, these costs should be brought back to the current dollars. Present value 
is the current value of a dollar at any time in the future. It is calculated using the formula: 

PVn = 1/(1 + i)n
 

 

Where PVn is the present value of $1.00 n years from now and i is the discount rate. 
• Payback analysis – It is a technique for determining if and when an investment 

will pay for itself. Because system development costs are incurred long before 
benefits begin to occur, it will take some time for the benefits to overtake the 
costs. After implementation, there will be additional operating expenses that must 
be recovered. Payback analysis determines how much time will lapse before 
accrued benefits overtake accrued and continuing costs. This period of time is 
called payback period, that is, the period of time that will lapse before accrued 
benefits overtake accrued costs. 



                                                Systems Analysis and Design                                              Unit 4 

Source: www.csitsansar.com 

• Return-on-investment   analysis   –   This   technique   compares   the   lifetime 
profitability of the solution. It is a percentage rate that measures the relationship 
between the amounts the business gets back from an investment and the amount 
invested. It is calculated as follows: 

 

Lifetime ROI = (Estimated lifetime benefits – Estimated lifetime  costs)/Estimated 
lifetime costs 

 

• Net present value – It is an analysis technique that compares costs and benefits 
for each year of the system’s lifetime. Many managers consider it the preferred 
cost-benefit analysis technique. 



Systems Analysis and Design   Unit 5 
 

Source: www.csitsansar.com 

   Systems Design                                                                                                8 Hrs. 
 
The Processes and Stages of System Design 
Information systems design is defined as those tasks that focus on the specification of a 
detailed computer-based solution.  It is also called physical design. Hence, systems 
design focuses on the technical or implementation concerns of the information system. 

The purpose of design is to transform the requirements represented in analysis phase 
into physical design specifications that will guide system construction. The design 
specification is used to write computer programs during implementation phase. In other 
words, the design phase addresses how technology will be used in the new system. 
Design process represents a specific technical solution of the information system. The 
design phase is concerned with designing files and databases, forms and reports, 
dialogues and interfaces and system and program structure. 

 
Designing Forms and Reports 
Forms are used to present or collect information on a single item such as a customer, 
product, or event. Forms can be used for both input and output. Reports, on the other 
hand, are used to convey information on a collection of items. Forms and report design is 
a key ingredient for successful systems. As users often equate the quality of a system to 
the quality of its input and out methods, the design process of for forms and reports is an 
especially important activity. 

Forms and reports are identified during requirements structuring. The kinds of forms 
and reports the system will handle are established as a part of the design strategy formed 
at the end of the analysis phase of the system development process. Forms and reports are 
integrally related to various diagrams developed during requirements structuring. For 
example, every input form will be associated with a data flow entering a process on a 
DFD, and every output form or report will be a data flow produced by a process on a 
DFD. Further, the data on all forms and reports must consists of data elements on data 
stores and on the E-R data model for the application, or must be computed from these 
data elements. 

 

The Process of Designing Forms and Reports 
Designing forms and reports is a user-focused activity that typically follows a prototyping 
approach. First, you must gain an understanding of the intended user and task objectives 
by collecting initial requirements during requirements determination. During this process, 
several questions must be answered. These questions attempt to answer the “who, what, 
when, where, and how” related to the creation of all forms and reports as given below. 

1.   Who will use the form or report? 
2.   What is the purpose of the form or report? 
3.   When is the form or report needed or used? 
4.   Where does the form or report need to be delivered and used? 
5.   How many people need to use or view the form or report? 

Gaining an understanding of these questions is a required first step in the creation of any 
form or report. 

After collecting the initial requirements, you structure and refine this information into 
an initial prototype. Structuring and refining the requirements are completely independent 
of the users, although you may need to occasionally contact users in order to clarify some 
issue overlooked during analysis. Finally, you ask users to review and evaluate the 
prototype. After reviewing the prototype, users may accept the design or request that 
changes be made. If changes are needed, you will repeat the construction-evaluate- 



Systems Analysis and Design   Unit 5 
 

Source: www.csitsansar.com 

refinement cycle until the design is accepted. Usually, several iterations of this cycle 
occur during the design of a single form or report. As with any prototyping process, you 
should make sure that these iterations occur rapidly in order to gain the greatest benefits 
from this design approach. 

The initial prototype may be constructed in numerous environments. The obvious 
choice is to use CASE tool or the standard development tools used within your 
organization. Often, initial prototypes are simply mock screens that are not working 
modules or systems. Mock screens can be produced from a word processor, computer 
graphics design package, or electronic spreadsheet. 

 

Deliverables and Outcomes 
Design   specifications   are  the  major  deliverables  and   are  inputs  to  the  system 
implementation phase. Design specifications have three sections: 

1. Narrative  overview  – This section  contains general overview  of the 
characteristics of the target users, tasks, system, and environmental factors in 
which the form or report will be used. The purpose is to explain to those who will 
actually develop the final form, why this form exists, and how it will be used so 
that they can make the appropriate decisions. 

2.   Sample design – This section provides a sample design of the form. This design 
may be hand drawn using a coding sheet although, in most instances, it is 
developed using CASE or standard development tool. Using actual development 
tools allows the design to be more thoroughly tested and assessed. 

3.   Testing and usability assessment – This section provides all testing and usability 
assessment information. Assessing usability depends on speed, accuracy, and 
satisfaction. 

 
Formatting Forms and Reports 
A wide variety of information can be provided to users of information systems and, as 
technology continues to evolve, a greater variety of data types will be used. There are 
numerous guidelines for formatting information. 

 

General Formatting Guidelines 
Over the past several years, industry and academic researchers have spent considerable 
effort investigating how information formatting influences individual task, performance, 
and perceptions of usability. Through this work, several guidelines for formatting 
information have emerged as given below: 

1.   Meaningful titles – Titles should be clear and specific describing content and 
use. They should include version information and current date. 

2.   Meaningful information  – Forms should include only necessary information 
with no need to modification. 

3.  Balance of layout – Adequate spacing and margins should be used. All data and 
entry fields should be clearly labeled. 

4.   Easy navigation system – Clearly show how to move forward and backward. 
Clearly show where you are (e.g., page 1 of 3) currently. Notify the user when on 
the last page of a multipaged sequence. 

 

Highlighting Information 
As  the  display technologies  continue  to  improve,  there  will  be  a  greater  variety of 
methods available to you for highlighting information. Most commonly used methods for 
highlighting information are: 

1.   Blinking and audible tones 



Systems Analysis and Design   Unit 5 
 

Source: www.csitsansar.com 

2.   Color differences 
3.   Intensity differences 
4.   Size differences 
5.   Font differences 
6.   Reverse video 
7.   Boxing 
8.   Underlining 
9.   All capital letters 
10. Offsetting the position of nonstandard information 

There are several situations when highlighting can be a valuable technique for conveying 
special information: 

1.   Notifying users of errors in data entry or processing 
2.   Providing warnings to users regarding possible problems such as unusual data 

values or an unavailable device 
3.   Drawing attention to keywords, commands, high priority messages, and data that 

have changed or gone outside normal operating ranges 
 

Color versus No-color 
Color is a powerful tool for the designer in influencing the usability of a system. When 
applied appropriately, color provides many potential benefits to forms and reports as 
given below: 

1.   Soothes and strikes the eye 
2.   Accents an uninteresting display 
3.   Facilitates subtle discriminations in complex displays 
4.   Emphasizes the logical organization of information 
5.   Draws attention to warnings 
6.   Evokes more emotional reactions 

Color also provides problems as given below: 
1.   Color  pairings  may  wash  out  or  cause  problems  for  some  users  (e.g.,  color 

blindness) 
2.   Resolution may degrade with different displays 
3.   Color fidelity may degrade on different displays 
4.   Printing or conversion to other media may not easily translate 

 
Displaying Text 
In business-related systems, textual output is becoming increasingly important. Some of 
the guidelines that have emerged from past research are: 

1. Case – Display text in mixed upper and lower case and use conventional 
punctuations. 

2.   Spacing – Use double spacing if space permits. If not, place a blank line between 
paragraphs. 

3.   Justification – Left-justify text and leave a ragged right margin. 
4.   Hyphenation – Do not hyphenate words between lines. 
5.  Abbreviations – Use abbreviations and acronyms only when they are widely 

understood by users and are significantly shorter than the full text. 
 

Designing Tables and Lists 
The context and meaning of tables and lists are significantly derived from the format of 
the information. Consequently, the usability of information displayed in tables and 
alphanumeric lists is likely to be much more influenced by effective layout than most 
other types of information display. As with the display of textual information, tables and 



Systems Analysis and Design   Unit 5 
 

Source: www.csitsansar.com 

lists can also be greatly enhanced by following a few simple guidelines. 
1.   Use meaningful labels – All columns and rows should have meaningful labels. 

Labels should be separated from other information by using highlighting. Re- 
display labels when the data extend beyond a single screen or page. 

2.   Formatting  columns,  rows,  and  text  –  Sort  in  a  meaningful  order  (e.g., 
ascending, descending, or alphabetic). Place a blank line between every five rows 
in long columns. Similar information displayed in multiple columns should be 
sorted vertically (that is, read from top to bottom, not left to right). Columns 
should have at least two spaces between them. Allow white space on printed 
reports for user to write notes. Use a single typeface, except for emphasis. Use 
same family of typefaces within and across displays and reports. Avoid overly 
fancy fonts. 

3.   Formatting numeric, textual, and alphanumeric data – Right justify numeric 
data and align columns by decimal points or other delimiter. Left justify textual 
data. Use short line length, usually 30 to 40 characters per line. Break long 
sequences of alphanumeric data into small groups of three to four characters each. 

When you design the display of numeric information, you must determine whether a table 
or a graph should be used. A considerable amount of research focusing on this topic has 
been conducted. In general, tables are best when the user’s task is related to finding an 
individual data value from a larger data set whereas line and bar graphs are more 
appropriate for an understanding of data changes over time. Some guidelines for selecting 
tables versus graphs are given below: 
Use tables for 

• Reading individual data values 
Use graphs for 

• Providing quick summary of data 
• Displaying trends over time 
• Comparing points and patterns of variables 
• Forecasting activities 
• Reporting of vast amounts of information when relatively simple impressions are 

to be drawn 
 

Paper versus Electronic Reports 
When a report is produced on paper rather than on a computer display, you must consider 
type of printer to use. For example, laser printers (especially color laser printers) and ink 
jet printers allow you to produce a report that looks exactly as it does on the display 
printer.  However, other types of printers are not able to closely reproduce the display 
screen image onto paper. For example, many business reports are produced using high 
spend impact printers that produce characters and a limited range of graphics by printing 
a fine pattern of dots. 



1

Unit-6

System Implementation

System Implementation is the way of carrying out a developed system into working condition.

The process of Coding, Testing and Installation

Coding is the process whereby the physical design specifications created by the analysis team are turned into
working computer code by the programming team. Depending on the size and complexity of the system, coding
can be an involved, intensive activity.

Once coding has begun, the testing process can begin and proceed in parallel.  As each program module is
produced, it can be tested individually, then as part of a larger program, and then as part of a larger system.
Although testing is  done during implementation,  we must begin planning for testing earlier  in  the project.
Planning involves determining what needs to be tested and collecting test data. This is often done during the
analysis phase because testing requirements are related to system requirements.

Installation  is  the  process  during  which  the  current  system is  replaced  by the  new system.  This  includes
conversion of existing data, software, documentation, and work procedures to those consistent with the new
system.

The process of Documenting the system, Training Users and Supporting Users.

Although the process of documentation proceeds throughout the life cycle, it receives, formal attention during
the implementation phase because the end of implementation largely marks the end of the analysis  team’s
involvement in systems development.

Larger organizations also tend to provide training and support to computer users throughout the organization.
Some of the training and support is very specific to particular application systems, whereas the rest is general to
particular operating systems or off-the-shelf software packages.

Software Application Testing

Software testing is a method of assessing the functionality of a software program.

Different types of Tests

1. Inspections: A testing technique in which participants examine program code for predictable language
specific errors. Syntax, grammar, and some other routine errors can be checked by automated inspection
software. 60 to 90 percent of all software effects as well as provide programmers with feedback that
enables them to avoid making the same types of errors in future work.

2. Desk checking: A testing technique in which the programmer or someone else who understands the logic
of the program works through the code with a paper and pencil. The reviewer acts as the computer,
mentally checking each step and its results for the entire set of computer instructions.

3. Unit testing: Automated technique whereby each module is tested alone in an attempt to discover any
errors that may exist in the module’s code. 

4. Integration testing: The process of bringing together more than one modules that a program comprises
for testing purposes.



2

5. System testing: The process of bringing together of all of the programs that a system comprises for
testing purposes. Programs are typically integrated in a top-down incremental fashion. The system can
be tested in two ways:

i. Black box testing: In Black box test (also called functional test) internal code of the program are
tested. It is called black box testing because the test cases are totally hidden for the general users.

ii. White box testing:  In white box test (also called glass box test) structure of the program is
tested. It called white box testing because the test cases are totally visible to the general users and
they can also make test cases.

6. Stub testing: A technique used in testing modules, especially where modules are written and tested in a
top down fashion, where a few lines of codes are used to substitute for subordinate modules. Top-level
modules contain many call to subordinate modules, we may wonder how they can be tested if the lower-
level modules haven’t been written yet. This is called stub testing.

7. User acceptance testing: Once the system tests have been satisfactorily completed, the system is ready 
for acceptance testing, which is testing the system in the environment where it will eventually be used. 

i. Alpha testing:

User  testing  of  a  completed  information  system  using  simulated  data.  The  types  of  tests
performed during alpha testing include the following:

a. Recovery testing:  Forces the software to  fail  in  order  to  verify that  recovery is  properly
performed.

b. Security testing: Verifies that protection mechanisms built into the system will protect it from
improper penetration.

c. Stress testing: Tries to break the system (eg: what happens when a record is written to the
database  with  incomplete  information  or  what  happens  under  extreme online  transaction
loads or with a large number of concurrent users).

d. Performance  testing:  Determines  how  the  system  performs  in  the  range  of  possible
environments  in  which  it  may be  used  (eg:  different  hardware  configurations,  networks,
operating systems).

iii. Beta testing:

User testing of a completed information system using real data in the real user environment. The
intent of the beta test is to determine whether the software, documentation, technical support and
training activities work as intended. Beta testing can be viewed as a rehearsal of the installation
phase.

Installation 

The process of moving from the current information system to the new one is called installation. Different ways
of installation are:

1. Direct installation: Changing over from the old information system to a new one by turning off the old
system when the new one is turned on. Any errors resulting from the new system will have a direct
impact on the users. If the new system fails, considerable delay may occur until the old system can again
be made operational and business transactions are reentered to make the database up to date. Direct
installation can be very risky. Direct installation requires a complete installation of the whole system.
For a large system, this may mean a long time until the new system can be installed, thus delaying



3

system benefits  or  even missing  the opportunities  that  motivated the  system request.  It  is  the  least
expensive installation method, and it creates considerable interest in making the installation a success.

2. Parallel  installation: Running the old information system and the new one at  the same time until
management  decides  the old system can be turned off.  All  of  the work done by the  old system is
concurrently performed by the new system. Outputs are compared to help determine whether the new
system is performing as well as the old. Errors discovered in the new system do not cost the organization
much, if anything, because errors can be isolated and the business can be supported with the old system.
Because all work is essentially done twice, a parallel installation can be very expensive, running two
systems implies employing two staffs to operate and maintain. A parallel approach can also be confusing
to users because they must deal with both systems. A parallel approach may not be feasible, especially if
the users of the system cannot tolerate redundant effort or if the size of the system is large.

3. Pilot  installation: It  is  also known as single-location installation.  Rather  than converting all  of the
organization at once, single location installation involves changing form the current to the new system in
only one place or in a series of separate sites over time. The single location may be a branch office, a
single factory, or one department, and the actual approach used for installation in that location may be
any of the other approaches. The key advantage to single location installation is that it limits potential
damage and potential cost by limiting the effects to a single site. Once management has determined that
installation has been successful at one location,  the new system may be deployed in the rest of the
organization, possibly continuing with installation at one location at a time. Problems with the system
can be resolved before deployment to other sites. Even though the single location approach may be
simpler for users, it still places a large burden on information system staff to support two versions of the
system. Problems are isolated at one site at a time. IS staff members can devote all of their efforts to
success at the pilot site. If different locations require sharing of data, extra programs will need to be
written to synchronize the current and new systems.

4. Phased installation: It is also called staged installation. Different parts of the old and new systems are
used in cooperation until the whole new system is installed. By converting gradually, the organization’s
risk is spread out over time and place. Also phased installation allows for some benefits from the new
system before the whole system is ready. For example, a new data-capture methods can be used before
all reporting modules are ready. For a phased installation, the new and replaced systems must be able to
coexist and probably share data. Thus bridge programs connecting old and new databases and programs
often must be built. Sometimes the new and old systems are so incompatible  that pieces of the old
system cannot be incrementally replaced so this strategy is not feasible. A phased approach requires
careful version control, repeated conversions at each phase, and a long period of change, which may be
frustrating and confusing to users. 

Documenting the system

Documentation is the process of collecting, organizing, storing and maintaining a complete record of system
and other documents used or prepared during the different phases of the life cycle of system. System cannot be
considered to be complete, until it is properly documented. Proper documentation of system is necessary due to
the following reasons:

1. It solves the problem of indispensability of an individual for an organization. Even if the person, who
has designed or developed the system, leaves the organization, the documented knowledge remains with
the organization, which can be used for the continuity of that software.



4

2. It makes system easier to modify and maintain in the future. The key to maintenance is proper and
dynamic documentation. It is easier to understand the concept of a system from the documented records.

3. It helps in restarting a system development, which was postponed due to some reason. The job need not
be started from scratch, and old ideas may still be easily recapitulated from the available documents,
which avoids duplication of work, and saves lot of times and effort.

Types of documentation

a. System documentation
System documentation records detailed information about a system’s design specification, its internal
workings  and  its  functionality.  System  documentation  is  intended  primarily  for  maintenance
programmers. It contains the following information:

1. A description of the system specifying the scope of the problem, the environment in which it
functions, its limitation, its input requirement, and the form and type of output required.

2. Detailed diagram of system flowchart and program flowchart.
3. A source listing of all the full details of any modifications made since its development.
4. Specification of all input and output media required for the operation of the system.
5. Problem definition and the objective of developing the program.
6. Output and test report of the program.
7. Upgrade or maintenance history, if modification of the program is made.

There are two types of system documentation. They are:

i. Internal documentation
Internal documentation is part of the program source code or is generated at compile time.

ii. External documentation
External  documentation  includes  the outcome of  structured  diagramming techniques  such as
dataflow and entity-relationship diagrams.

b. User documentation
User documentation consists of written or other visual information about an application system, how it
works and how to use it. User documentation is intended primarily for users. It contains the following
information:

1. Set up and operational details of each system.
2. Loading and unloading procedures.
3. Problems which could arise, their meaning reply and operation action.
4. Special checks and security measures.
5. Quick reference guides about operating a system in a short, concise format.

Training and supporting users

The type of training needed will vary by system type and user expertise. Types of training methods are:

a. Resident expert
b. Traditional instructor-led classroom training
c. E-learning/distance learning
d. Blended learning (combination of instructor-led and e-learning)
e. Software help components

 Electronic performance support system: component of a software package or an application in
which training and educational information is embedded.

f. External sources, such as vendors



5

Computing supports for users has been provided in one of a few forums: 

Automating support:  online support forums provide users access to information on new releases, bugs and tips
for more effective users access to information on new releases, bugs and tips form more effective usage. Forums
are offered over the internet or over company intranets.

Providing support through a help desk:  A help desk is an information systems department function and is
staffed by IS personnel. The help desk is the first place users should call when they need assistance with an
information system. The help desk staff members either deal with the users questions or refer the users to the
most appropriate person.

Quality assurance

A process or procedure for minimizing errors and ensuring quality in products. Poor quality can result from
inaccurate requirements, design problems, coding errors, faulty documentation, and ineffective testing. A quality
assurance  (QA)  team reviews  and  tests  all  applications  and  systems  changes  to  verify  specifications  and
software  quality  standards.  A successful  organization  must  improve  quality  in  every  area,  including  its
information systems. Top management must provide the leadership, encouragement, and support needed for
high-quality IT resources. The main objective of quality assurance is to avoid problems or to detect them as
soon as possible. In an effort to achieve high standards of quality, software systems developers should consider
software engineering concepts, internationally recognized quality standards, and careful project management
techniques.

Software Engineering:  Because quality is so important, you can use an approach called software engineering to
manage and improve the quality of the finished system. Software engineering is a software development process
that stresses solid design, accurate documentation, and careful testing.

International  Organization  for  Standardization  (ISO):  International  Organization  for  Standardization  (ISO)  is  a
worldwide body that establishes quality standards for products and services. ISO standards include everything
from internationally recognized symbols, to the ISBN numbering system that identifies textbook. In addition,
ISO seeks to offer a global consensus of what constitutes good management practices — practices that can help
firms deliver consistently high-quality products and services. Because software is so important to a company’s
success, many firms seek assurance that software systems either purchased or developed in-house, will meet
rigid quality standards. In 1991, ISO established a set of guidelines called ISO 9000-3, which provided a quality
assurance framework for developing and maintaining software. A company can specify ISO 9000-3 standards
when it purchases software from a supplier or use ISO guidelines for in-house software development to ensure
that the final result measures up to ISO standards. ISO requires a specific development plan, which outlines a
step-by-step process for transforming user requirements into a finished product. ISO standards can be quite
detailed. For example, ISO requires that a software supplier document all testing and maintain records of test
results. If problems are found, they must be resolved, and any modules affected must be retested. Additionally,
software and hardware specifications of all test equipment must be documented and included in the test records.

Levels  of  assurance:  Analysts  use  four  levels  of  quality  assurance:  testing,  verification,  validation,  and
certification.

a. Testing:  Systems testing is an expensive but critical process that can take as much as 50 percent of the
budget for program development. The common view of testing held by users is that it is performed to
prove that there are no errors in a program. However, this is virtually impossible, since analysts cannot



6

prove that software is free and clear of errors. Therefore, the most useful and practical approach is with
the understanding that testing is the process of executing a program with explicit intention of finding
errors that is, making the program fail. The tester, who may be an analyst, programmer, or specialist
trained in software testing, is actually trying to make the program fail. A successful test, then, is one that
finds an error. Analysts know that an effective testing program does not guarantee systems reliability.
Reliability is a design issue. Therefore, reliability must be designed into the system. Developers cannot
test for it.

b. Verification and Validation: Like testing, verification is also intended to find errors. Executing a program in
a  simulated  environment  performs  it.  Validation  refers  to  the  process  of  using  software  in  a  live
environment in order to find errors. When commercial systems are developed with the explicit intention
of distributing them to dealers for sale or marketing them through company – owned field offices, they
first go through verification, some-times called alpha testing. The feedback from the validation phase
generally produces changes in the software to deal with errors and failures that are uncovered. Then a set
of user sites is selected that puts the system into use on a live basis. These beta test sites use the system
in day- to - day activities; they process live transactions and produce normal system output. The system
in live is very sense of the word, except that the users are aware they are using a system that can fail. But
the transactions that are entered and the persons using the system are real. Validation many continue for
several months. During the course of validating the system, failure may occur and the software will be
changed. Continued use may produce additional failures and the need for still more change.

c. Certification: Software certification is an endorsement of the correctness of the program, an issue that is
rising in importance for information systems applications. There is an increasing dependence on the
purchase or lease of commercial software rather than on its in-house development. However, before
analysts  are  willing  to  approve the  acquisition  of  a  package,  they often  require  certification of  the
software by the developer or an unbiased third party. For example, selected accounting firms are now
certifying that a software package in fact does what the vendor claims it does and in a proper manner. To
so certify the  software,  the  agency appoints  a  team of  specialists  who of  specialists  who carefully
examine the documentation for the system to determine what the vendor claims the system does and
how it is accomplished. Then they test the software against those claims. If no serious discrepancies or
failures are encountered, they will certify that the software does what the documentation claims. They do
not, however, certify that the software is the right package for a certain organization. That responsibility
remains with the organization and its team of analysts.

Maintenance

Correcting and upgrading process of the system is called system maintenance. Maintenance is necessary to
eliminate errors in the working system during its working life and to tune the system to any variations in its
working environment. Different types of maintenance are:

1. Corrective maintenance: Corrective maintenance refers to changes made to repair defects in the design ,
coding or implementation of the system. For example if  we had recently purchased a new home ,
corrective maintenance would involve repairs made to things that had never worked as designed, such
as a faulty electrical outlet or misaligned door. More corrective maintenance problems surface soon
after installation. When corrective maintenance problems surface, they are typically urgent and need to
be resolved to curtail possible interruptions in normal business activities. Of all types of maintenance,
corrective accounts for as much as 75 percent of all maintenance activity. It simply focuses on removing
defects from an existing system without adding new functionality.

2. Adaptive maintenance: Adaptive maintenance involves making changes to an information system to
evolve its functionality to changing business needs or to migrate it to a different operating environment.
Within  a  home,  adaptive  maintenance  might  be  adding  storm  windows  to  improve  the  cooling
performance of an air conditioner. Adaptive maintenance is less urgent than corrective maintenance



7

because  business  and  technical  changes  typically  occur  over  some  period  of  time.  Adaptive
maintenance is generally a small part of an organizations maintenance effort, but it adds value to the
organization.

3. Perfective maintenance: Perfective maintenance involves making enhancements to improve processing
performance or interface usability or to add desired, but not necessarily required, system features. In
home perfective  maintenance  would  be  adding a  new room.  Many systems professionals  feel  that
perfective maintenance is not really maintenance but rather new development. Perfective maintenance
usually is cost effective during the middle of the system’s operational life. Early in systems operation,
perfective maintenance usually is not needed. Later, perfective maintenance might be necessary, but
have a high cost. 

4. Preventive maintenance:  Preventive maintenance involves  changes  made to  a  system to reduce the
chance of future system failure. An example of preventive maintenance might be to increase the number
of records that a system can process far beyond what is currently needed or to generalize how a system
sends  a  report  information  to  a  printer  so  that  the  system can  easily  adapt  to  changes  in  printer
technology.  In  our  home example,  preventive  maintenance  could  be  painting  the  exterior  to  better
protect the home from severe weather conditions.

The process of maintaining information system

Maintenance phase is the last phase of SDLC. The major activity occur within maintenance:

1. Obtaining maintenance requests
Obtaining maintenance requests requires that a formal process be established whereby users can submit
system  change  requests.  When  developing  the  procedures  for  obtaining  maintenance  requests,
organizations  must  also  specify  an  individual  within  the  organization  to  collect  these  requests  and
manage their dispersal to maintenance personnel.

2. Transforming requests into changes
Once a request is received, analysis must be conducted to gain an understanding of the scope of the
request. It must be determined how the request will affect the current system and how long such a
project will take. As with the initial development of a system, the size of a maintenance request can be
analyzed for risk and feasibility.

3. Designing changes
Change  request  can  be  transformed  into  a  formal  design  change,  which  can  then  be  fed  into  the
maintenance implementation phase.

4. Implementing changes

The cost of Maintenance

Information systems maintenance costs are a significant expenditure. For some organizations, as much as 60 to
80 percent of their information systems budget is allocated to maintenance activities. On average, 52 percent of
a company’s  programmers are assigned to  maintain existing software.  Only 3 percent  are assigned to  new
application development.



8

Numerous factors influence the maintainability of a system. Of these factors, three are most significant; the
number of latent defects, the number of customers, and documentation quality. The others are personnel, tools
and software structure.

 Latent defects: This is the number of unknown errors existing in the system after it is installed. Because
corrective maintenance accounts for most maintenance activity, the number of latent defects in a system
influences most of the cost associated with maintaining a system.

 Number of customers for a given system: Greater the number of customers, the greater the maintenance
costs. For example, if a system has only one customer, problem and change requests will come from
only one source. Training, error reporting and support will be simpler.

 Quality  of  system documentation:  Without  quality  documentation,  maintenance  efforts  can  increase
exponentially.  Quality documentation makes it  easier  to  find code that  needs  to  be changed and to
understand how the code needs to be changed. Good documentation also explains why a system does
what it does and why alternatives were not feasible.

 Maintenance personnel: In some organizations, best programmers are assigned to maintenance. Highly
skilled  programmers  are  needed  because  the  maintenance  programmer  is  typically  not  the  original
programmer and must quickly understand and carefully change the software.

 Tools: Tools that can automatically produce system documentation where none exists can also lower
maintenance  costs.  Tools  that  can  automatically  generate  new  code  based  on  system specification
changes can dramatically reduce maintenance time and costs.

 Well structured programs: Well designed programs are easier to understand and fix.

Managing Maintenance

Maintenance activities consume more and more of the systems development budget, maintenance management
has become increasingly important. 

Managing Maintenance Personnel

Many organizations had a “maintenance group” that was separate from the “development group”. With the
increased number of maintenance personnel, the development of formal methodologies and tools, changing
organizational  forms,  end  user  computing,  and  the  widespread  use  of  very  high  level  languages  for  the
development of some systems, organizations have rethought the organization of maintenance and development
personnel. One key issue is that many systems professionals don’t want to perform maintenance because they
feel that it is more exciting to build something new than change an existing system.

Measuring Maintenance Effectiveness 

To measure effectiveness, we must measure the following factors:

 Number of failures
 Time between each failure
 Type of failure

Measuring the number of and time between failures will provide us with the basis to calculate a widely used
measure of system quality. This metric is referred to as the mean time between failures (MTBF).

A more revealing method of measurement is to examine the failures that are occurring. Over time, logging the
types of failures will provide a very clear picture of where, when and how failures occur. Tracking the types of



9

failures also provides important management information for future projects. For example, if a higher frequency
of errors occurs when a particular development environment is used, such information can help guide personnel
assignments, training courses, or the avoidance of a particular package, language, or environment during future
development. Without measuring and tracking maintenance activities, we cannot gain the knowledge to improve
or know how well we are doing relative to the past. To effectively manage and to continuously improve, we
must measure and assess performance over time.

Hardware/Software selection and the Computer Contract

Selecting hardware and software for implementing information system in an organization is a serious and time-
consuming process that passes through several phases. The main steps of the selection process are listed below:

1. Requirement analysis: - System configuration requirements are clearly identified and a decision to acquire
the system is taken in this step. 

2.   Preparation of tender specifications: - After studying the feasibility and deciding upon the configuration,
tender documents are prepared for the benefit of vendors to clarify the details of various specifications, as
listed below. 

i. Purchase procedure and schedule: it includes 

a)      Date of tender submission 
b)      Evaluation criteria 
c)      Scope for negotiations, if any and 
d)      Expected usage environment and load pattern

ii. Equipment specification:  Detailed technical specifications of each item required for both mandatory and
optional items.

iii. Quotation format: 

a)      Format for stating technical details and quoting prices 

b)      Whether deviations from specifications should be specifically listed 

c)      Prices and levies (duties, taxes etc.) could be quoted as lumpsum or required separately. 
d)      Required validity of the quotation. 
e)      Earnest money deposit required, if any. 

iv. Proposed terms of contract
a)      Expected delivery schedule. 
b)      Uptime warranties required 

c)      Penalty clause, if any 

d)      Payment terms (Whether advance payment acceptable) 

e)      Arbitrary clauses 

f)       Training needs. 
g)      Post warranty maintenance terms expected.

v. Any additional information required
3. Inviting tenders:  After the preparation of tender specifications, tenders are invited. Invitation of tenders

may depend upon the magnitude of purchase (estimate equipment cost). It may be through

i)        Open tender (through newspaper advertisement) 

ii)       Limited tender (queries sent to a few selected vendors) 



10

iii)     Propriety purchase (applies mostly to upgrade requirements) 

iv)    Direct purchase from market. (applies mostly to consumables) 

4. Technical scrutiny and short listing

i)        All tendered bids are opened on a pre-defined date and time. 

ii)       Deviations from the specifications, if any, in each bid are noted. 

iii)     A comparative summary is prepared against the list of tendered technical features.

Additional factors to considered are: 

  i)        Financial health of the vendor (from balance sheets) 

ii)       Nature and extent of support (from information provided on number of support staff per
installed site and cross-check with selected customers) 

iii)     Engineering quality pf products (factory inspection of product facilities, QA procedures
and R&D) 

5. Detailed evaluation of short listed vendors: - This step primarily involves getting any finer technical
clarifications. Visits to customer sites and factory inspections may be planned. If any specific performance
requirement is stipulated, the offered product is to be examined at this stage through suitable benchmark
tests. For benchmark tests, standard benchmarks may be used as adequate performance indicators. 

6. Negotiation and procurement decision: - Because of the extensive competition, computer system vendors
may offer significant concessions. Negotiations are held to maximize these concessions. However, price
negotiations are often not permitted by some organizations. 

When price  negotiations  are  permitted,  the committee  members  should  have  a  good knowledge of  the
prevailing market prices, current trends, and also the duty/tax structure. 

i)      Computer magazines 

ii)     Vendor directories. 
iii)    Contact with other users 

iv)    Past personal experience. 

7. Delivery  and  installation:  - In  this  step,  the  vendor  delivers  the  hardware/software  to  the  buyer’s
organization, where it is matched with the specifications mentioned in the purchase order. If conforms to
these specifications, the vendor installs the system in the premises of the organization. 

8. Post-installation review: - After the system is installed, a system evaluation is made to determine how

closely the new system conforms to the plan. A post-installation review, in which system specifications and

user  requirements  are  audited,  is  made.  The  feedback  obtained  in  this  step  helps  in  taking  corrective

decision. 

Project Scheduling and Software



11

A project schedule is a specific timetable, usually in the form of charts that show tasks, task dependencies, and
critical tasks that might delay the project. Project scheduling also involves selecting and staffing the project
team, assigning specific tasks to team members, and arranging for other necessary resources.
When scheduling a project, the project manager must know the duration of each task, the order in which the
activities will be performed, the start and end times for each task, and the person(s) assigned to each specific
task. Two tools use for scheduling projects are GANTT chart and PERT chart.
GANTT chart
Gantt charts were developed by Henry L. Gantt, a mechanical engineer and management consultant. His goal
was to design a chart that could show planned and actual progress on a complex project.
A  Gantt  chart  is  a  horizontal  bar  chart  that  represents  a  series  of  tasks.  The chart  displays  time  on the
horizontal axis and arranges the tasks vertically, from top to bottom. The position of the bar shows the planned
start and end of the task, and the length of the bar indicates its duration. On the horizontal axis, time can be
shown as elapsed time from a fixed starting point, or as actual calendar dates.

Gantt charts offer the advantage of clearly showing overlapping tasks, that is, tasks that can be performed at the
same time. The bars can be shaded to clearly indicate percentage completion and project progress. Gantt charts
are more effective when you are seeking to communicate schedule.

PERT chart
A PERT (Program Evaluation Review Technique) chart is a graphical network model that depicts a project's
tasks  and  the  relationships  between  those  tasks.  PERT was  developed  to  make  clear  the  interdependence
between project tasks before those tasks are scheduled. The arrows indicate that one task is dependent on the
start or completion of another task. PERT charts are more effective when you want to study the relationships
between tasks.

2015



12

Intertask 
Dependency

Scope Defination

5-3-2015 N/A

5-3-2015 N/A

Problem Analysis

5-3-2015 5-12-2015

5-3-2015 5-11-2015

Requirement Analysis

5-12-2015 6-12-2015

5-12-2015 6-14-2015

Logical Design

5-28-2015 7-15-2015

5-30-2015 7-18-2015

Decision Analysis

6-13-2015 7-30-2015

6-13-2015 8-3-2015

Physical Design

7-3-2015 6-12-2015

7-5-2015 6-14-2015

Construction and Testing

7-19-2015 11-13-2015

7-20-2015 In progress

Implement and delivery

9-10-2015 12-14-2015

TBD TBD

Task

Scheduled 
Start

Scheduled 
Finish

Actual Start Actual 
Finish

Task

Scheduled 
Start

Scheduled 
Finish

Actual Start Actual 
Finish

Legend

TBD:   To Be Determined
N/A:   Not Applicable

University Exam questions

1. Explain the process of maintaining the information system with example. (2069) (10 marks).
2. What are the two important things to remember about testing systems? (2069) (5 marks).
3. Differentiate between system documentation and user documentation. (2069) (5 marks).
4. What are the different types of maintenance? (2069) (5 marks).
5. What do you mean by quality assurance? Explain with example. (2070) (5 marks).
6. Comparison between corrective, adaptive, perfective and preventive maintenance. (2070) (5 marks).
7. What are the main deliverable from testing and installation? (2070) (5 marks).
8. Explain the various types of system testing with example. (2071)(5 marks).
9. Explain the process of software maintenance. (2071)(5 marks).



1

Unit-7

Object Oriented Analysis and Design

Introduction

Object-oriented analysis is a method of analysis that examines requirements from the perspective of the classes
and objects found in the vocabulary of the problem domain.
Object-oriented design is a method of design encompassing the process of object-oriented decomposition and a
notation for depicting logical and physical as well as static and dynamic models of the system under design.

Object Oriented Development life cycle
The Object Oriented Methodology of Building Systems takes the objects as the basis. For this, first the system
to be developed is observed and analyzed and the requirements are defined as in any other method of system
development. Once this is done, the objects in the required system are identified. For example in case of a
Banking System, a customer is an object, a chequebook is an object, and even an account is an object.
Object oriented development life cycle contains:

1. System Analysis  As in any other  system development  model,  system analysis  is  the first  phase  of
development in case of Object Modeling too. In this phase, the developer interacts with the user of the
system to find out the user requirements and analyses the system to understand the functioning. Based
on this system study, the analyst prepares a model of the desired system. This model is purely based on
what the system is required to do. At this stage the implementation details are not taken care of. Only the
model of the system is prepared based on the idea that the system is made up of a set of interacting
objects. The important elements of the system are emphasized.

2. System Design  System Design is  the next  development  stage where the overall  architecture of  the
desired system is decided. The system is organized as a set of sub systems interacting with each other.
While designing the system as a set of interacting subsystems, the analyst takes care of specifications as
observed in system analysis as well as what is required out of the new system by the end user. As the
basic philosophy of Object-Oriented method of system analysis is to perceive the system as a set of
interacting objects, a bigger system may also be seen as a set of interacting smaller subsystems that in
turn are composed of a set of interacting objects. While designing the system, the stress lies on the
objects comprising the system and not on the processes being carried out in the system as in the case of
traditional Waterfall Model where the processes form the important part of the system.

3. Object Design In this phase, the details of the system analysis and system design are implemented. The
Objects identified in the system design phase are designed. Here the implementation of these objects is
decided as the data structures get defined and also the interrelationships between the objects are defined.
Object Oriented Philosophy is very much similar to real world and hence is gaining popularity as the
systems here are seen as a set of interacting objects as in the real world. To implement this concept, the
process-based structural programming is not used; instead objects are created using data structures. Just
as every programming language provides various data types and various variables of that type can be
created, similarly, in case of objects certain data types are predefined. For example, we can define a data
type called pen and then create and use several objects of this data type. This concept is known as
creating a class.
Class: A class is a collection of similar objects. It is a template where certain basic characteristics of a
set of objects are defined. The class defines the basic attributes and the operations of the objects of that
type.  Defining a  class does not  define any object,  but it  only creates a template.  For objects  to be
actually created instances of the class are created as per the requirement of the case.
 Abstraction: Classes are built on the basis of abstraction, where a set of similar objects are observed
and their common characteristics are listed. Of all these, the characteristics of concern to the system
under observation are picked up and the class definition is made. The attributes of no concern to the



2

system are left out. This is known as abstraction. The abstraction of an object varies according to its
application. For instance, while defining a pen class for a stationery shop, the attributes of concern might
be the pen color,  ink color,  pen type etc.,  whereas  a  pen class for  a manufacturing firm would be
containing the other dimensions of the pen like its diameter, its shape and size etc. 
Inheritance: Inheritance is another important concept in this regard. This concept is used to apply the
idea of reusability of the objects. A new type of class can be defined using a similar existing class with a
few new features. For instance, a class vehicle can be defined with the basic functionality of any vehicle
and a new class called car can be derived out of it  with a few modifications.  This would save the
developers time and effort as the classes already existing are reused without much change. Coming back
to our development process, in the Object Designing phase of the Development process, the designer
decides onto the classes in the system based on these concepts. The designer also decides on whether the
classes need to be created from scratch or any existing classes can be used as it is or new classes can be
inherited from them.

4. Implementation During this  phase,  the class  objects  and the interrelationships  of  these  classes  are
translated and actually coded using the programming language decided upon. The databases are made
and the complete system is given a functional shape.

The complete OO methodology revolves around the objects identified in the system. When observed closely,
every object exhibits some characteristics and behavior. The objects recognize and respond to certain events.
For example, considering a Window on the screen as an object, the size of the window gets changed when
resize button of the window is clicked. Here the clicking of the button is an event to which the window responds
by changing its state from the old size to the new size.
While developing systems based on this approach, the analyst makes use of certain models to analyze and 
depict these objects. The methodology supports and uses three basic Models: 
Object Model - This model describes the objects in a system and their interrelationships. This model observes 
all the objects as static and does not pay any attention to their dynamic nature. 

Dynamic Model - This model depicts the dynamic aspects of the system. It portrays the changes occurring in 
the states of various objects with the events that might occur in the system. 

Functional Model - This model basically describes the data transformations of the system. This describes the 
flow of data and the changes that occur to the data throughout the system. 

While the Object Model is most important of all as it describes the basic element of the system, the objects, all 
the three models together describe the complete functional system. As compared to the conventional system 
development techniques, OO modeling provides many benefits. Among other benefits, there are all the benefits 
of using the Object Orientation. Some of these are: 
Reusability - The classes once defined can easily be used by other applications. This is achieved by defining 
classes and putting them into a library of classes where all the classes are maintained for future use. Whenever a
new class is needed the programmer looks into the library of classes and if it is available, it can be picked up 
directly from there. 

Inheritance - The concept of inheritance helps the programmer use the existing code in another way, where 
making small additions to the existing classes can quickly create new classes. 

Programmer has to spend less time and effort and can concentrate on other aspects of the system due to the 
reusability feature of the methodology. 

Data Hiding - Encapsulation is a technique that allows the programmer to hide the internal functioning of the 
objects from the users of the objects. Encapsulation separates the internal functioning of the object from the 
external functioning thus providing the user flexibility to change the external behaviour of the object making the
programmer code safe against the changes made by the user. 



3

The systems designed using this approach are closer to the real world as the real world functioning of the 
system is directly mapped into the system designed using this approach .

Advantages of object oriented methodology

 Object Oriented Methodology closely represents the problem domain. Because of this, it is easier to 
produce and understand designs. 

 The objects in the system are immune to requirement changes. Therefore, allows changes more easily. 
 Object Oriented Methodology designs encourage more re-use. New applications can use the existing 

modules, thereby reduces the development cost and cycle time. 

 Object Oriented Methodology approach is more natural. It provides nice structures for thinking and 
abstracting and leads to modular design. 

The Unified Modeling Language

The Unified Modeling Language (UML) is a general-purpose modeling language in the field of software 
engineering, which is designed to provide a standard way to visualize the design of a system. It was created and 
developed by Grady Booch, Ivar Jacobson and James Rumbaugh.

UML is designed to enable users to develop an expressive, ready to use visual modeling language. In addition, it
supports high level development concepts such as frameworks, patterns and collaborations. UML includes a
collection of elements such as: 

 Programming Language Statements 

 Actors: specify a role played by a user or any other system interacting with the subject. 

 Activities: These are tasks, which must take place in order to fulfill an operation contract. They are 
represented in activity diagrams. 

 Business Process: includes a collection of tasks producing a specific service for customers and is 
visualized with a flowchart as a sequence of activities. 

 Logical and Reusable Software Components 

UML diagrams can  be divided into  two categories.  The first  type includes  six  diagram types  representing
structural  information.  The  second  includes  the  remaining  seven  representing  general  types  of  behavior.
Structure diagrams are used in documenting the architecture of software systems and are involved in the system
being modeled. Different structure diagrams are: 

1. Class Diagram: represents system class, attributes and relationships among the classes. 

2. Component Diagram: represents how components are split in a software system and dependencies 
among the components. 

3. Deployment Diagram: describes the hardware used in system implementations. 



4

4. Composite Structure Diagram: describes internal structure of classes. 

5. Object Diagram: represents a complete or partial view of the structure of a modeled system. 

6. Package Diagram: represents splitting of a system into logical groupings and dependency among the 
grouping. 

Behavior  diagrams represent  functionality of  software  system and emphasize  on what  must  happen in  the
system being modeled. The different behavior diagrams are: 

 Activity Diagram: represents step by step workflow of business and operational components. 

 Use Case Diagram: describes functionality of a system in terms of actors, goals as use cases and 
dependencies among the use cases. 

 UML State Machine Diagram: represents states and state transition. 

 Communication Diagram: represents interaction between objects in terms of sequenced messages. 

 Timing Diagrams: focuses on timing constraints. 

 Interaction Overview Diagram: provides an overview and nodes representing communication diagrams. 

 Sequence Diagram: represents communication between objects in terms of a sequence of messages. 

UML diagrams represent static and dynamic views of a system model. The static view includes class diagrams
and  composite  structure  diagrams,  which  emphasize  static  structure  of  systems  using  objects,  attributes,
operations and relations. The dynamic view represents collaboration among objects and changes to internal
states of objects through sequence, activity and state machine diagrams.

Use Case Diagram

Use case diagram is used to capture the dynamic nature of a system. It consists of use cases, actors and their
relationships. Use case diagram is used at a high level design to capture the requirements of a system. So it
represents the system functionalities and their flow. Although the use case diagrams are not a good candidate for
forward and reverse engineering but still they are used in a slightly differently way to model it.

Purpose of Use Case Diagram

 Used to gather requirements of a system. 
 Used to get an outside view of a system. 
 Identify external and internal factors influencing the system. 
 Show the interacting among the requirements are actors. 

Use Case Diagram objects

Use case diagrams consist of 4 objects.

 Actor



5

 Use case

 System

 Package

The objects are further explained below.

Actor
Actor in a use case diagram is any entity that performs a role in one given system. This could be a person,
organization or an external system and usually drawn like skeleton shown below.

Use Case

A use case represents a function or an action within the system. Its drawn as an oval and named with the

function.

System
System is used to define the scope of the use case and drawn as a rectangle. This an optional element but
useful when you are visualizing large systems. For example you can create all the use cases and then use the
system object to define the scope covered by your project. Or you can even use it to show the different areas
covered in different releases.



6

Package
Package is another optional element that is extremely useful in complex diagrams. Similar to class diagrams,
packages are used to group together use cases. They are drawn like the image shown below.

Example of use case diagram for a restaurant

http://creately.com/diagram-type/class-diagram


7

Object modeling: Class Diagram

The class diagram describes the attributes and operations of a class and also the constraints imposed on the
system. The class diagrams are widely used in the modeling of object oriented systems because they are the
only UML diagrams which can be mapped directly with object oriented languages. The class diagram shows a
collection of classes, interfaces, associations, collaborations and constraints. It is also known as a structural
diagram. The purpose of the class diagram is to model the static view of an application. The class diagrams are
the only diagrams which can be directly mapped with object oriented languages and thus widely used at the
time of construction.



8

In the example, a class called “loan account” is depicted. Classes in class diagrams are represented by boxes 
that are partitioned into three:

1. The top partition contains the name of the class.

2. The middle part contains the class’s attributes.

3. The bottom partition shows the possible operations that are associated with the class.

Those should be pretty easy to see in the example: the class being described is a loan account, some of whose
attributes include the type of loan, the name of the borrower/loaner, the specific date the loan was released and
the loan amount. As in the real world, various transactions or operations may be implemented on existing loans
such as renew and extend.  The example shows how class diagrams can encapsulate all the relevant data in a
particular scenario in a very systematic and clear way.

In object-oriented modeling,  class diagrams are considered the key building blocks that enable information
architects,  designers,  and  developers  to  show  a  given  system’s  classes,  their  attributes,  the  functions  or
operations that are  associated with them, and the relationships among the different  classes that  make up a
system.

Relationships in Class Diagrams

Classes are interrelated to each other in specific ways. In particular, relationships in class diagrams include
different types of logical connections.

Association



9

Association is a broad term that encompasses just about any logical connection or relationship between classes.
For example, passenger and airline may be linked as above.

Directed Association

Directed Association refers to a directional relationship represented by a line with an arrowhead. The arrowhead

depicts a container-contained directional flow.

Reflexive Association

Reflexive Association occurs when a class may have multiple functions or responsibilities. For example, a staff

working in an airport may be a pilot, aviation engineer, a ticket dispatcher, a guard, or a maintenance crew

member. If the maintenance crew member is managed by the aviation engineer there could be a managed by

relationship in two instances of the same class.

Multiplicity



10

Multiplicity is  the active logical association when the cardinality of a class in relation to another is  being
depicted. For example, one fleet may include multiple airplanes, while one commercial airplane may contain
zero to many passengers. The notation 0..* in the diagram means “zero to many”.

Aggregation

Aggregation refers to the formation of a particular class as a result of one class being aggregated or built as a
collection.  For  example,  the  class  “library”  is  made up of  one or  more  books,  among other  materials.  In
aggregation, the contained classes are not strongly dependent on the life cycle of the container. In the same
example, books will remain so even when the library is dissolved. To render aggregation in a diagram, draw a
line from the parent class to the child class with a diamond shape near the parent class.

Composition

Composition is very similar to the aggregation relationship, with the only difference being its key purpose of
emphasizing the dependence of the contained class to the life cycle of the container class. That is, the contained
class will be obliterated when the container class is destroyed. For example, a shoulder bag’s side pocket will
also cease to exist once the shoulder bag is destroyed. To depict a composition relationship in a UML diagram,
use a directional line connecting the two classes, with a filled diamond shape adjacent to the container class and
the directional arrow to the contained class.



11

Inheritance / Generalization

Inheritance refers  to a type of relationship wherein one associated class is  a child of another by virtue of
assuming the same functionalities of the parent class. In other words, the child class is a specific type of the
parent class. To depict inheritance in a UML diagram, a solid line from the child class to the parent class is
drawn using an unfilled arrowhead

Realization

Realization denotes the implementation of the functionality defined in one class by another class. To show the
relationship in UML, a broken line with an unfilled solid arrowhead is drawn from the class that defines the
functionality to the class that implements the function. In the example, the printing preferences that are set using
the printer setup interface are being implemented by the printer.



12

Dynamic Modeling: State Diagram

State diagrams are used to describe the behavior of a system. State diagrams describe all of the possible states of
an object as events occur. Each diagram usually represents objects of a single class and track the different states
of its objects through the system. A state is a specific condition or situation of an element during its lifecycle.
Simple States 
A simple state indicates a condition or situation of an element. For example, the project management system 
may be in one of the following simple states: 
Inactive: Indicates that the project management system is not available to its users, because it is not started or
has been shut down.
Active: Indicates that the project management system has been started and is available to its users. 
Suspended: Indicates that the project management system has encountered some severe error, perhaps because
it is running low on secondary storage and requires user intervention before becoming active again.
Initial and Final States 
An initial state indicates the state of an element when it is created. In the UML, an initial state is shown using a
small solid filled circle. A final state indicates the state of an element when it is destroyed. In the UML, a final
state is shown using a circle surrounding a small solid filled circle.
A state diagram may have only one initial state, but may have any number of final states initial, simple and
final states



13

Events
An event is an occurrence, including the reception of a request. There are a number of different types of events within the
UML. 

 CallEvent. Associated with an operation of a class, this event is caused by a call to the given operation. The
expected effect is that the steps of the operation will be executed. 

 SignalEvent. Associated with a signal, this event is caused by the signal being raised. 
 TimeEvent. An event cause by expiration of a timing deadline. 
 ChangeEvent. An event caused by a particular expression (of attributes and associations) 

becoming true.

Figure: State diagram of online banking system

Logging in can be factored into four non-overlapping states:  Getting PIN,  Validating, and Rejecting. From each state
comes a complete set of transitions that determine the subsequent state.

States  are  rounded  rectangles.  Transitions  are  arrows  from one  state  to  another.  Events  or  conditions  that  trigger
transitions are written beside the arrows. Our diagram has self-transition, on Getting PIN.

The initial state (black circle) is a dummy to start the action. Final states are also dummy states that terminate the action.

The action that occurs as a result of an event or condition is expressed in the form action. While in its Validating state, the
object does not wait for an outside event to trigger a transition. Instead, it performs an activity. The result of that activity
determines its subsequent state.

Dynamic Modeling: Sequence Diagram

A sequence diagram shows elements as they interact over time, showing an interaction or interaction instance.
Sequence diagrams are organized along two axes: the horizontal axis shows the elements that are involved in
the interaction, and the vertical axis represents time proceeding down the page. The elements on the horizontal
axis may appear in any order.



14

Class Roles or Participants
Class roles describe the way an object will behave in context. Use the UML object symbol to 
illustrate class roles, but don't list object attributes. 

Activation or Execution Occurrence
Activation boxes represent the time an object needs to complete a task. When an object is busy 
executing a process or waiting for a reply message, use a thin gray rectangle placed vertically on 
its lifeline. 

Messages
Messages are arrows that represent communication between objects. Use half-arrowed lines to 
represent asynchronous messages. Asynchronous messages are sent from an object that will 
not wait for a response from the receiver before continuing its tasks. For message types, see 
below. 



15

Lifelines
Lifelines are vertical dashed lines that indicate the object's presence over time. 

Destroying Objects
Objects can be terminated early using an arrow labeled "<< destroy >>" that points to an X. This 



16

object is removed from memory. When that object's lifeline ends, you can place an X at the end 
of its lifeline to denote a destruction occurrence. 

Loops
A repetition or loop within a sequence diagram is depicted as a rectangle. Place the condition for
exiting the loop at the bottom left corner in square brackets [ ]. 

Types of messages in Sequence Diagram

Synchronous Message
A synchronous message requires a response before the interaction can continue. It's usually 
drawn using a line with a solid arrowhead pointing from one object to another. 

Asynchronous Message
Asynchronous messages don't need a reply for interaction to continue. Like synchronous 
messages, they are drawn with an arrow connecting two lifelines; however, the arrowhead is 
usually open and there's no return message depicted. 

Reply or Return Message
A reply message is drawn with a dotted line and an open arrowhead pointing back to the original
lifeline. 

Self Message
A message an object sends to itself, usually shown as a U shaped arrow pointing back to itself. 

Create Message
This is a message that creates a new object. Similar to a return message, it's depicted with a 
dashed line and an open arrowhead that points to the rectangle representing the object created.



17

Delete Message
This is a message that destroys an object. It can be shown by an arrow with an x at the end. 

Found Message
A message sent from an unknown recipient, shown by an arrow from an endpoint to a lifeline. 

Lost Message
A message sent to an unknown recipient. It's shown by an arrow going from a lifeline to an 
endpoint, a filled circle or an x. 

The Sequence diagram allows the person reading the documentation to follow the flow of messages from each
object. The vertical lines with the boxes on top represent instances of the classes (or objects). The label to the
left of the colon is the instance and the label to the right of the colon is the class. The horizontal arrows are the
messages passed between the instances and are read from top to bottom. Here 

 a customer (user) depositing money into MyAccount which is an instance of Class SavingsAccount. 
 Then MyAccount object Validates the account by asking the Bank object, MyBank to ValidateAccount. 
 Finally, the Customer Asks the ATM object for a Receipt by calling the ATM‘s operation GetReceipt. 



18

The white rectangle indicate the scope of a method or set of methods occurring on the Object My Bank. The
dotted line is a return from the method ValidateAccount.

Analysis verses Design

Analysis Design
1. Analysis  focus  on  determining  what  the

business needs is.
1. Design takes those business needs and determines

how they will  be  met  through a  specific  system
implementation.

2. The  analysis  phase  includes  activities
designed  to  discover  and  document  the
features  and  functions  the  system  must
have.

2. The focus in design phase is to figure out how to
create  a  system technically  that  will  provide  all
those needed features and functions.

3. Analyst  thoroughly  studies  the
organization’s  current  procedures  and the
information  systems  used  to  perform
organizational task.

3. Analyst  convert  the  description  of  the
recommended alternative solution into logical and
then physical system specifications.

4. In this  phase analysts  work with users to
determine  what  the  users  want  from  a
proposed system.

4. In  this  phase  analysts  design  all  aspects  of  the
system, from input and output screens to reports,
databases and computer processes.

5. This phase comes before design phase. 5. This phase comes after analysis phase.
6. The  output  of  the  analysis  phase  is  a

description  of  the  alternative  solution
recommended by the analysis team.

6. The  output  of  the  design  phase  is  the  physical
system specifications in a form ready to be turned
over to programmers and other system builders for
construction.

University Exam questions
1. Explain the Unified Modeling Language with example. (2069)(5 marks)
2. Differentiate between object modeling and dynamic modeling (2070)(2071)(5 marks)
3. What are the major differences between analysis and design? (2071)(5 marks)


	Use Case Diagram objects
	Actor
	Use Case
	System
	Package

	Association
	Directed Association
	Reflexive Association
	Aggregation
	Composition
	Inheritance / Generalization
	Realization

