
Unit1.pdf

Unit2.pdf

Unit3.pdf

Unit4.pdf

Unit5.pdf

Unit6.pdf

Unit7.pdf

Notes By: Nav Raj Vinady, Patan Multiple Campus, Lalitpur

Downloaded From: csitascolhelp

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

Introduction

1. HTTP Protocol

1>HTTP is the foundation of data communication for the in the World Wide Web

2> HTTP functions as a request-response protocol in the client-server computing Model. In HTTP, a web

browser for example, acts as a client, while an application running on a computer hosting a website

functions as a server. The client submits an HTTP request message to the server. The server, which stores

content, or provides resources, such as HTML files or performs other functions on behalf of the client,

returns a response message to the client. A response contains completion status information about the

request and may contain any content requested by the client in its message body.

It is a stateless protocol, you send request and it responds does not maintain any state. To maintain the

state, we can use

1>Session Object in the server side

2>Cookies in the client side.

3>Hidden variables in the form

2 Static and Dynamic Pages

Static Web Pages

A static web page (sometimes called a flat page) is a web page that is delivered to the user exactly as

stored, in contrast to dynamic web pages which are generated by a web application.

Consequently a static web page displays the same information for all users, from all contexts, subject to

modern capabilities of a web server to negotiate content-type or language of the document where such

versions are available and the server is configured to do so.

Static web pages are often HTML documents stored as files in the file system and made available by the

web server over HTTP.

Advantages

 No programming skills are required to create a static page.

 Inherently publicly cacheable (ie. a cached copy can be shown to anyone).

 No particular hosting requirements are necessary.

 Can be viewed directly by a web browser without needing a web server or application server

Disadvantages

 Any personalization or interactivity has to run client-side (ie. in the browser), which is restricting.

 Maintaining large numbers of static pages as files can be impractical without automated tools.

Dynamic Web pages

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

A dynamic web page is a kind of web page that has been prepared with recent information, for each

individual viewing. It changes with the time. For ex. News content, events. The content of the site

changes when the user logs in and logs out. Page contents are displayed according to the location of the

user. In facebook, you can see suggestions to add friends since it knows your friends and those are mostly

friend of your friends. Facebook gets updated with recent feeds etc.

Dynamic web pages can be created in two ways

1>Client-Side Scripting

Using client-side scripting to change interface behaviors within a specific web page, in response to mouse

or keyboard actions or at specified timing events. In this case the dynamic behavior occurs within the

presentation.

Client-Side scripting languages like JavaScript or Actionscript, used for DHTML and Flash technologies

respectively, are frequently used to play with the media types (sound, animations, changing text, etc.) of

the presentation

The Client-side content is generated on the user's computer. The web browser retrieves a page from the

server, then processes the code embedded in the page (often written in JavaScript) and displays the

retrieved page's content to the user.

2>Server-Side Scripting

A program running on the web server (server-side scripting) is used to change the web content on various

web pages, or to adjust the sequence of or reload of the web pages. Server responses may be determined

by such conditions as data in a posted HTML form, parameters in the URL, the type of browser being

used, the passage of time, or a database or server state.

Such web pages are often created with the help of server-side languages such as ASP, PHP, JSP etc.

3>Combined Client Side and Server Side

Ajax is a web development technique for dynamically interchanging content with the server-side, without

reloading the web page. Google Maps is an example of a web application that uses Ajax techniques and

database.

Disadvantages

Search engines work by creating indexes of published HTML web pages that were, initially, "static".

With the advent of dynamic web pages, often created from a private database, the content is less visible.

Unless this content is duplicated in some way (for example, as a series of extra static pages on the same

site), a search may not find the information it is looking for. It is unreasonable to expect generalized web

search engines to be able to access complex database structures, some of which in any case may be

secure.

Introduction to ASP

Microsoft Active Server Pages (ASP) is a server-side scripting technology. ASP is a technology that

Microsoft created to ease the development of interactive Web applications.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

Using server side scripting language like ASP we can manage the content of any page and such dynamic

code (or content) for the web browsers can be generated based on various conditions we set in our ASP

program.

ASP engine finishes its job of processing the code and then send the codes to users browser. From this

point on words till again the page request comes back to server, there is no control of ASP on the page. So

we should not expect ASP to perform some tasks which are likely to happen at the client browser end.

This will be clear when we discuss some of the task and where (client or server side) the task is to be

completed and which script will take care of it.

ASP provides solutions for transaction processing and managing session state. Asp is one of the most

successful language used in web development.

Benefits and Application of ASP

 Dynamically edit, change, or add any content of a Web page

 Respond to user queries or data submitted from HTML forms

 Access any data or databases and return the results to a browser

 Customize a Web page to make it more useful for individual users

 Provide security - since ASP code cannot be viewed from the browser

 Clever ASP programming can minimize the network traffic

Problems with traditional ASP

1. Interpreted and Loosely-Typed Code
ASP scripting code is usually written in languages such as JScript or VBScript. The script-

execution engine that Active Server Pages relies on interprets code line by line, every time the

page is called. In addition, although variables are supported, they are all loosely typed as variants

and bound to particular types only when the code is run. Both these factors impede performance,

and late binding of types makes it harder to catch errors when you are writing code.

2. Mixes layout (HTML) and logic (scripting code)
ASP files frequently combine script code with HTML. This results in ASP scripts that are

lengthy, difficult to read, and switch frequently between code and HTML. The interspersion of

HTML with ASP code is particularly problematic for larger web applications, where content must

be kept separate from business logic.

3. Limited Development and Debugging Tools

Microsoft Visual InterDev, Macromedia Visual UltraDev, and other tools have attempted to

increase the productivity of ASP programmers by providing graphical development

environments. However, these tools never achieved the ease of use or the level of acceptance

achieved by Microsoft Windows application development tools, such as Visual Basic or

Microsoft Access. ASP developers still rely heavily or exclusively on Notepad.

Debugging is an unavoidable part of any software development process, and the debugging tools

for ASP have been minimal. Most ASP programmers

resort to embedding temporary Response. Write statements in their code to trace the progress of

its execution.

4. No real state management
Session state is only maintained if the client browser supports cookies. Session state information

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

can only be held by using the ASP Session object. And you have to implement additional code if

you, for example, want to identify a user.

5. Update files only when server is down
If your Web application makes use of components, copying new files to your application should

only be done when the Web server is stopped. Otherwise it is like pulling the rug from under your

application's feet, because the components may be in use (and locked) and must be registered.

6. Obscure Configuration Settings
The configuration information for an ASP web application (such as session state and server

timeouts) is stored in the IIS metabase. Because the metabase is stored in a proprietary format, it

can only be modified on the server machine with utilities such as the Internet Service Manager.

With limited support for programmatically manipulating or extracting these settings, it is often an

arduous task to port an ASP application from one server to another.

Introduction to ASP.NET

ASP.NET Overview

Some point that gives the quick overview of ASP.NET.

 ASP.NET provides services to allow the creation, deployment, and execution of Web

Applications and Web Services

 Like ASP, ASP.NET is a server-side technology

 Web Applications are built using Web Forms. ASP.NET comes with built-in Web Forms

controls, which are responsible for generating the user interface. They mirror typical HTML

widgets like text boxes or buttons. If these controls do not fit your needs, you are free to create

your own user controls.

 Web Forms are designed to make building web-based applications as easy as building Visual

Basic applications

Advantages of ASP.NET

1. Separation of Code from HTML
To make a clean sweep, with ASP.NET you have the ability to completely separate layout and

business logic. This makes it much easier for teams of programmers and designers to collaborate

efficiently. This makes it much easier for teams of programmers and designers to collaborate

efficiently.

2. Support for compiled languages
Developer can use VB.NET and access features such as strong typing and object-oriented

programming. Using compiled languages also means that ASP.NET pages do not suffer the

performance penalties associated with interpreted code. ASP.NET pages are precompiled to byte-

code and Just In Time (JIT) compiled when first requested. Subsequent requests are directed to

the fully compiled code, which is cached until the source changes.

3. Use services provided by the .NET Framework
The .NET Framework provides class libraries that can be used by your application. Some of the

key classes help you with input/output, access to operating system services, data access, or even

debugging. We will go into more detail on some of them in this module.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

4. Graphical Development Environment

Visual Studio .NET provides a very rich development environment for Web

developers. You can drag and drop controls and set properties the way you do in Visual Basic 6.

And you have full Intelligence support, not only for your code, but also for HTML and XML.

5. State management
To refer to the problems mentioned before, ASP.NET provides solutions for session and

application state management. State information can, for example, be kept in memory or stored in

a database. It can be shared across Web farms, and state information can be recovered, even if the

server fails or the connection breaks down.

6. Update files while the server is running!
Components of your application can be updated while the server is online and clients are

connected. The Framework will use the new files as soon as they are copied to the application.

Removed or old files that are still in use are kept in memory until the clients have finished.

7. XML-Based Configuration Files

Configuration settings in ASP.NET are stored in XML files that you can easily read and edit. You

can also easily copy these to another server, along with the other files that comprise your

application.

ASP.NET Architecture

ASP.NET is based on the fundamental architecture of .NET Framework.

Architecture is explained form bottom to top in the following discussion.

1. At the bottom of the Architecture is Common Language Runtime. NET Framework common

language runtime resides on top of the operating system services. The common language runtime

loads and executes code that targets the runtime. This code is therefore called managed code. The

runtime gives you, for example, the ability for cross-language integration.

2. .NET Framework provides a rich set of class libraries. These include base classes, like

networking and input/output classes, a data class library for data access, and classes for use by

programming tools, such as debugging services. All of them are brought together by the Services

Framework, which sits on top of the common language runtime.

3. ADO.NET is Microsoft ActiveX Data Object (ADO) model for the .NET Framework. ADO.NET

is not simply the migration of the popular ADO model to the managed environment but a

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

completely new paradigm for data access and manipulation.

ADO.NET is intended specifically for developing web applications. This is evident from its two

major design principles:

1. Disconnected Datasets In ADO.NET, almost all data manipulation is done outside the

context of an open database connection.

2. Effortless Data Exchange with XMLDatasets can converse in the universal data format of

the Web, namely XML.

4. The 4th layer of the framework consists of the Windows application model and, in parallel, the

Web application model.

The Web application model-in the slide presented as ASP.NET-includes Web Forms and Web

Services.

ASP.NET comes with built-in Web Forms controls, which are responsible for generating the user

interface. They mirror typical HTML widgets like text boxes or buttons. If these controls do not

fit your needs, you are free to create your own user controls.

Web Services brings you a model to bind different applications over the Internet. This model is

based on existing infrastructure and applications and is therefore standard-based, simple, and

adaptable.

Web Services are software solutions delivered via Internet to any device. Today, that means Web

browsers on computers, for the most part, but the device-agnostic design of .NET will eliminate

this limitation.

5. One of the obvious themes of .NET is unification and interoperability between various

programming languages. In order to achieve this; certain rules must be laid and all the languages

must follow these rules. In other words we can not have languages running around creating their

own extensions and their own fancy new data types. CLS(Common Language Specification) is

the collection of the rules and constraints that every language (that seeks to achieve .NET

compatibility) must follow.

6. The CLR and the .NET Frameworks in general, however, are designed in such a way that code

written in one language can not only seamlessly be used by another language. Hence ASP.NET

can be programmed in any of the .NET compatible language whether it is VB.NET, C#, Managed

C++ or JScript.NET.

Execution Process

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

Compilation, when page is requested the first time

The first time a page is requested, the code is compiled. Compiling code in .NET means that a compiler in

a first step emits Microsoft intermediate language (MSIL) and produces metadata if you compile your

source code to managed code. In a following step MSIL has to be converted to native code.

Microsoft intermediate language (MSIL)

Microsoft intermediate language is code in an assembly language like style. It is CPU independent and

therefore can be efficiently converted to native code.

The conversion in turn can be CPU-specific and optimized. The intermediate language provides a

hardware abstraction layer.

MSIL is executed by the common language runtime.

Common language runtime

The common language runtime contains just-in-time (JIT) compilers to convert the MSIL into native

code. This is done on the same computer architecture that the code should run on.

The runtime manages the code when it is compiled into MSIL the code is therefore called managed code.

IIS(Internet Information Server)
Internet Information Services (IIS) – formerly called Internet Information Server – is a web server

application and set of feature extension modules created by Microsoft for use with Microsoft Windows. It

is the most used web server after Apache HTTP Server. IIS 7.5 supports HTTP, HTTPS, FTP, FTPS,

SMTP .

Hypertext Transfer Protocol Secure (HTTPS) is a combination of the Hypertext Transfer Protocol

(HTTP) with SSL/TLS protocol to provide encrypted communication and secure identification of a

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

network web server. HTTPS connections are often used for payment transactions on the World Wide Web

and for sensitive transactions in corporate information systems

It is an integral part of Windows Server family of products, as well as certain editions of Windows XP,

Windows Vista and Windows 7. IIS is not turned on by default when Windows is installed.

IIS Features

The architecture of IIS 7 is modular. Modules, also called extensions, can be added or removed

individually so that only modules required for specific functionality have to be installed. IIS 7 includes

native modules as part of the full installation. These modules are individual features that the server uses to

process requests and include the following:

Native modules – Come with the IIS installation

 HTTP modules – Used to perform tasks specific to HTTP in the request-processing pipeline,

such as responding to information and inquiries sent in client headers, returning HTTP

errors, and redirecting requests.

 Security modules – Used to perform tasks related to security in the request-processing pipeline,

such as specifying authentication schemes, performing URL authorization, and filtering requests.

Prohibits file listing.

 Content modules – Used to perform tasks related to content in the request-processing pipeline,

such as processing requests for static files, returning a default page when a client does not specify

a resource in a request, and listing the contents of a directory. We can set the default file names in

IIS.

 Compression modules – Used to perform tasks related to compression in the request-processing

pipeline, such as compressing responses, applying Gzip compression transfer coding to responses,

and performing pre-compression of static content.

 Caching modules – Used to perform tasks related to caching in the request-processing pipeline,

such as storing processed information in memory on the server and using cached content in

subsequent requests for the same resource.

 Logging and Diagnostics modules – Used to perform tasks related to logging and diagnostics in

the request-processing pipeline, such as passing information and processing status to HTTP.sys

for logging, reporting events, and tracking requests currently executing in worker processes.

Sites, Applications, and Virtual Directories in IIS

IIS formalizes the concepts of sites, applications, and virtual directories. Virtual directories and

applications are now separate objects, and they exist in a hierarchical relationship in the IIS configuration

schema. Briefly, a site contains one or more applications, an application contains one or more virtual

directories, and a virtual directory maps to a physical directory on a computer.

As in IIS 6.0, a site contains all the content, both static and dynamic, that is associated with that site.

However, each site must contain at least one application, which is named the root application. And each

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

application (including the root application) must contain at least one virtual directory, which is named the

root virtual directory. These objects work together to form the site.

The following sections explain sites, applications, virtual directories, and their related configurations in

more detail.

Sites

A site is a container for applications and virtual directories, and you can access it through one or more

unique bindings.

The binding includes two attributes important for communication: the binding protocol and the binding

information. The binding protocol defines the protocol over which communication between the server

and client occurs. The binding information defines the information that is used to access the site. For

example, the binding protocol of a Web site can be either HTTP or HTTPS, and the binding information

is the combination of IP address, port, and optional host header.

A site may contain more than one binding if the site requires different protocols or binding information.

In earlier versions of IIS, only the HTTP and HTTPS protocols were supported. For example, a Web site

might have had both an HTTP binding and an HTTPS binding when sections of the site required secure

communication over HTTPS(for example when you do transactions online, credit card information

sharing) .

Applications

An application is a group of files that delivers content or provides services over protocols, such as HTTP.

When you create an application in IIS, the application's path becomes part of the site's URL.

In IIS 7, each site must have an application which is named the root application, or default application.

However, a site can have more than one application. For example, you might have an online commerce

Web site that has several applications, such as a shopping cart application that lets users gather items

during shopping and a login application that allows users to recall saved payment information when they

make a purchase.

Virtual Directories

A virtual directory is a directory name (also referred to as path) that you specify in IIS and map to a

physical directory on a local or remote server. The directory name then becomes part of the application's

URL, and users can request the URL from a browser to access content in the physical directory, such as a

Web page or a list of additional directories and files. If you specify a different name for the virtual

directory than the physical directory, it is more difficult for users to discover the actual physical file

structure on your server because the URL does not map directly to the root of the site.

In IIS 7, each application must have a virtual directory, which is named the root virtual directory, and

which maps the application to the physical directory that contains the application's content. However, an

application can have more than one virtual directory. For example, you might use a virtual directory when

you want your application to include images from another location in the file system, but you do not want

to move the image files into the physical directory that is mapped to the application's root virtual

directory.

By default, IIS uses configuration from Web.config files in the physical directory to which the virtual

directory is mapped, as well as in any child directories in that physical directory.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

Optionally, when you need to specify credentials and a method to access the virtual directory, you can

specify values for the username, password, and logonMethod attributes.

Response Object

The ASP Response object is used to send output to the user from the server. Its collections, properties,

and methods are described below:

Collections

Cookies

The Cookies collection is used to set or get cookie values. If the cookie does not exist, it will be created,

and take the value that is specified.

Syntax

Response.Cookies(name)[(key)|.attribute]=value

variablename=Request.Cookies(name)[(key)|.attribute]

Parameter Description

Name Required. The name of the cookie

Value Required for the Response.Cookies command. The value of the cookie

Attribute Optional. Specifies information about the cookie. Can be one of the following

parameters:

 Domain - Write-only. The cookie is sent only to requests to this domain

 Expires - Write-only. The date when the cookie expires. If no date is

specified, the cookie will expire when the session ends

 HasKeys - Read-only. Specifies whether the cookie has keys (This is the

only attribute that can be used with the Request.Cookies command)

 Path - Write-only. If set, the cookie is sent only to requests to this path. If

not set, the application path is used

 Secure - Write-only. Indicates if the cookie is secure

Key Optional. Specifies the key to where the value is assigned

Examples

The "Response.Cookies" command is used to create a cookie or to set a cookie value:

<%

Response.Cookies("firstname")="Alex"

%>

In the code above, we have created a cookie named "firstname" and assigned the value "Alex" to it.

It is also possible to assign some attributes to a cookie, like setting a date when a cookie should expire:

<%

Response.Cookies("firstname")="Alex"

Response.Cookies("firstname").Expires=#May 10,2002#

%>

Now the cookie named "firstname" has the value of "Alex", and it will expire from the user's computer at

May 10, 2002.

The "Request.Cookies" command is used to get a cookie value.

In the example below, we retrieve the value of the cookie "firstname" and display it on a page:

<%

fname=Request.Cookies("firstname")

response.write("Firstname=" & fname)

%>

Output:

Firstname=Alex

A cookie can also contain a collection of multiple values. We say that the cookie has Keys.

In the example below, we will create a cookie-collection named "user". The "user" cookie has Keys that

contains information about a user:

<%

Response.Cookies("user")("firstname")="John"

Response.Cookies("user")("lastname")="Smith"

Response.Cookies("user")("country")="Norway"

Response.Cookies("user")("age")="25"

%>

The code below reads all the cookies your server has sent to a user. Note that the code checks if a cookie

has Keys with the HasKeys property:

<html>

<body>

<%

dim x,y

for each x in Request.Cookies

 response.write("<p>")

 if Request.Cookies(x).HasKeys then

 for each y in Request.Cookies(x)

 response.write(x & ":" & y & "=" & Request.Cookies(x)(y))

 response.write("<br /")

 next

 else

 Response.Write(x & "=" & Request.Cookies(x) & "
")

 end if

 response.write "</p>"

next

%>

</body>

</html>

%>

Output:

firstname=Alex

user:firstname=John

user:lastname=Smith

user:

country=Norway

user:

age=25

Properties

1. Buffer

The Buffer property specifies whether to buffer the output or not. When the output is buffered, the server

will hold back the response to the browser until all of the server scripts have been processed, or until the

script calls the Flush or End method.

Note: If this property is set, it should be before the <html> tag in the .asp file

Syntax

response.Buffer[=flag]

Parameter Description

Flag A boolean value that specifies whether to buffer the page output or not.

False indicates no buffering. The server will send the output as it is processed. False

is default for IIS version 4.0 (and earlier). Default for IIS version 5.0 (and later) is

true.

True indicates buffering. The server will not send output until all of the scripts on the

page have been processed, or until the Flush or End method has been called.

Examples

Example 1

In this example, there will be no output sent to the browser before the loop is finished. If buffer was set to

False, then it would write a line to the browser every time it went through the loop.

<%response.Buffer=true%>

<html>

<body>

<%

for i=1 to 100

 response.write(i & "
")

next

%>

</body>

</html>

Example 2

<%response.Buffer=true%>

<html>

<body>

<p>I write some text, but I will control when

the text will be sent to the browser.</p>

<p>The text is not sent yet. I hold it back!</p>

<p>OK, let it go!</p>

<%response.Flush%>

</body>

</html>

Example 3

<%response.Buffer=true%>

<html>

<body>

<p>This is some text I want to send to the user.</p>

<p>No, I changed my mind. I want to clear the text.</p>

<%response.Clear%>

</body>

</html>

2. ContentType

The ContentType property sets the HTTP content type for the response object.

Syntax

response.ContentType[=contenttype]

Parameter Description

Contenttype A string describing the content type.

For a full list of content types, see your browser documentation or the HTTP

specification.

Examples

If an ASP page has no ContentType property set, the default content-type header would be:

content-type:text/html

Some other common ContentType values:

<%response.ContentType="text/HTML"%>

<%response.ContentType="image/GIF"%>

<%response.ContentType="image/JPEG"%>

<%response.ContentType="text/plain"%>

This example will open an Excel spreadsheet in a browser (if the user has Excel installed):

<%response.ContentType="application/vnd.ms-excel"%>

<html>

<body>

<table>

<tr>

<td>1</td>

<td>2</td>

<td>3</td>

<td>4</td>

</tr>

<tr>

<td>5</td>

<td>6</td>

<td>7</td>

<td>8</td>

</tr>

</table>

</body>

</html>

3. Expires

The Expires property sets how long (in minutes) a page will be cached on a browser before it expires. If a

user returns to the same page before it expires, the cached version is displayed.

Syntax

response.Expires[=number]

Parameter Description

Number The time in minutes before the page expires

Examples

Example 1

The following code indicates that the page will never be cached:

<%response.Expires=-1%>

Example 2

The following code indicates that the page will expire after 1440 minutes (24 hours):

<%response.Expires=1440%>

4. ExpiresAbsolute

he ExpiresAbsolute property sets a date and time when a cached page on a browser will expire. If a user

returns to the same page before this date/time, the cached version is displayed.

Syntax

response.ExpiresAbsolute[=[date][time]]

Parameter Description

Date Specifies the date on which the page will expire.

If this parameter is not specified, the page will expire at the specified time on the day

that the script is run.

Time Specifies the time at which the page will expire.

If this parameter is not specified, the page will expire at midnight of the specified

day.

Examples

The following code indicates that the page will expire at 4:00 PM on October 11, 2012:

<%response.ExpiresAbsolute=#October 11,2012 16:00:00#%>

5. Status

The Status property specifies the value of the status line returned by the server.

Tip: Use this property to modify the status line returned by the server.

Syntax

response.Status=statusdescription

Parameter Description

statusdescription A three-digit number and a description of that code, like 404 Not Found.

Note: Status values are defined in the HTTP specification.

Examples

<%

ip=request.ServerVariables("REMOTE_ADDR")

if ip<>"194.248.333.500" then

 response.Status="401 Unauthorized"

 response.Write(response.Status)

 response.End

end if

%>

Methods
1.Clear

The Clear method clears any buffered HTML output.

Note: This method does not clear the response headers, only the response body.

Note: If response.Buffer is false, this method will cause a run-time error.

Syntax

response.Clear

Examples

<%

response.Buffer=true

%>

<html>

<body>

<p>This is some text I want to send to the user.</p>

<p>No, I changed my mind. I want to clear the text.</p>

<%

response.Clear

%>

</body>

</html>

Output:

(nothing)

2.End

The End method stops processing a script, and returns the current result.

Note: This method will flush the buffer if Response.Buffer has been set to true. If you do not want to

return any output to the user, you should call Response.Clear first.

Syntax

Response.End

Examples

<html>

<body>

<p>I am writing some text. This text will never be

<%

Response.End

%>

finished! It's too late to write more!</p>

</body>

</html>

Output:

I am writing some text. This text will never be

3. Flush

The Flush method sends buffered HTML output immediately.

Note: If response.Buffer is false, this method will cause a run-time error.

Syntax

Response.Flush

Example

<%

Response.Buffer=true

%>

<html>

<body>

<p>I write some text, but I will control when the

text will be sent to the browser.</p>

<p>The text is not sent yet. I hold it back!</p>

<p>OK, let it go!</p>

<%

Response.Flush

%>

</body>

</html>

Output:

I write some text, but I will control when the

text will be sent to the browser.

The text is not sent yet. I hold it back!

OK, let it go!

4. Redirect

The Redirect method redirects the user to a different URL.

Syntax

Response.Redirect URL

Parameter Description

URL Required. The URL that the user (browser) is redirected to

Examples

<%

Response.Redirect "http://cloudfactory.com"

%>

5. Write

The Write method writes a specified string to the output.

Syntax

Response.Write variant/variable

Parameter Description

Variant Required. The data to write

Examples

Example 1

<%

Response.Write "Hello World"

%>

Output:

Hello World

Example 2

<%

name="John"

Response.Write(name)

%>

Output:

John

Example 3

<%

Response.Write("Hello
World")

%>

Output:

Hello

World

Request Object

When a browser asks for a page from a server, it is called a request. The Request object is used to get

information from a visitor. Its collections, properties, and methods are described below:

Collections
1.Cookies(Refer to Response Object)

2.Form

The Form collection is used to retrieve the values of form elements from a form that uses the POST

method.

Syntax

Request.Form(element)[(index)|.Count]

Parameter Description

Element Required. The name of the form element from which the collection is to retrieve

values

Index Optional. Specifies one of multiple values for a parameter. From 1 to

Request.Form(parameter).Count.

Examples

Example 1

You can loop through all the values in a form request. If a user filled out a form by specifying two values

- Blue and Green - for the color element, you could retrieve those values like this:

<% for i=1 to Request.Form("color").Count

 Response.Write(Request.Form("color")(i) & "
")

next

%>

Output:

Blue

Green

Example 2

Consider the following form:

<form action="submit.asp" method="post">

<p>First name: <input name="firstname"></p>

<p>Last name: <input name="lastname"></p>

<p>Your favorite color:

<select name="color">

<option>Blue</option>

<option>Green</option>

<option>Red</option>

<option>Yellow</option>

<option>Pink</option>

</select>

</p>

<p><input type="submit"></p>

</form>

The following request might be sent:

firstname=John&lastname=Dove&color=Red

Now we can use the information from the form in a script:

Hi, <%=Request.Form("firstname")%>.

Your favorite color is <%=Request.Form("color")%>.

Output:

Hi, John. Your favorite color is Red.

If you do not specify any element to display, like this:

Form data is: <%=Request.Form%>

the output would look like this:

Form data is: firstname=John&lastname=Dove&color=Red

3.QueryString:

The QueryString collection is used to retrieve the variable values in the HTTP query string.

The HTTP query string is specified by the values following the question mark (?), like this:

Link with a query string

The line above generates a variable named txt with the value "this is a query string test".

Query strings are also generated by form submission, or by a user typing a query into the address bar of

the browser.

Note: If you want to send large amounts of data (beyond 100 kb) the Request.QueryString cannot be

used.

Syntax

Request.QueryString(variable)[(index)|.Count]

Parameter Description

Variable Required. The name of the variable in the HTTP query string to retrieve

Index Optional. Specifies one of multiple values for a variable. From 1 to

Request.QueryString(variable).Count

Examples

Example 1

To loop through all the n variable values in a Query String:

The following request is sent:

http://www.w3schools.com/test/names.asp?n=John&n=Susan

and names.asp contains the following script:

<%

for i=1 to Request.QueryString("n").Count

 Response.Write(Request.QueryString("n")(i) & "
")

next

%>

The file names.asp would display the following:

John

Susan

Example 2

The following string might be sent:

http://cloudfactory.com/names.asp?name=John&age=30

this results in the following QUERY_STRING value:

name=John&age=30

Now we can use the information in a script:

Hi, <%=Request.QueryString("name")%>.

Your age is <%= Request.QueryString("age")%>.

Output:

Hi, John. Your age is 30.

If you do not specify any variable values to display, like this:

Query string is: <%=Request.QueryString%>

the output would look like this:

Query string is: name=John&age=30

4. ServerVariables:

The ServerVariables collection is used to retrieve the server variable values.

Syntax

Request.ServerVariables (server_variable)

Parameter Description

server_variable Required. The name of the server variable to retrieve

Server Variables

Variable Description

ALL_HTTP Returns all HTTP headers sent by the client. Always prefixed with

HTTP_ and capitalized

ALL_RAW Returns all headers in raw form

APPL_MD_PATH Returns the meta base path for the application for the ISAPI DLL

APPL_PHYSICAL_PATH Returns the physical path corresponding to the meta base path

AUTH_PASSWORD Returns the value entered in the client's authentication dialog

AUTH_TYPE The authentication method that the server uses to validate users

AUTH_USER Returns the raw authenticated user name

CERT_COOKIE Returns the unique ID for client certificate as a string

CERT_FLAGS bit0 is set to 1 if the client certificate is present and bit1 is set to 1 if the

cCertification authority of the client certificate is not valid

CERT_ISSUER Returns the issuer field of the client certificate

CERT_KEYSIZE Returns the number of bits in Secure Sockets Layer connection key size

CERT_SECRETKEYSIZE Returns the number of bits in server certificate private key

CERT_SERIALNUMBER Returns the serial number field of the client certificate

CERT_SERVER_ISSUER Returns the issuer field of the server certificate

CERT_SERVER_SUBJECT Returns the subject field of the server certificate

CERT_SUBJECT Returns the subject field of the client certificate

CONTENT_LENGTH Returns the length of the content as sent by the client

CONTENT_TYPE Returns the data type of the content

GATEWAY_INTERFACE Returns the revision of the CGI specification used by the server

http://www.w3schools.com/asp/coll_servervariables.asp#sv

HTTP_<HeaderName> Returns the value stored in the header HeaderName

HTTP_ACCEPT Returns the value of the Accept header

HTTP_ACCEPT_LANGUAGE Returns a string describing the language to use for displaying content

HTTP_COOKIE Returns the cookie string included with the request

HTTP_REFERER Returns a string containing the URL of the page that referred the request

to the current page using an <a> tag. If the page is redirected,

HTTP_REFERER is empty

HTTP_USER_AGENT Returns a string describing the browser that sent the request

HTTPS Returns ON if the request came in through secure channel or OFF if the

request came in through a non-secure channel

HTTPS_KEYSIZE Returns the number of bits in Secure Sockets Layer connection key size

HTTPS_SECRETKEYSIZE Returns the number of bits in server certificate private key

HTTPS_SERVER_ISSUER Returns the issuer field of the server certificate

HTTPS_SERVER_SUBJECT Returns the subject field of the server certificate

INSTANCE_ID The ID for the IIS instance in text format

INSTANCE_META_PATH The meta base path for the instance of IIS that responds to the request

LOCAL_ADDR Returns the server address on which the request came in

LOGON_USER Returns the Windows account that the user is logged into

PATH_INFO Returns extra path information as given by the client

PATH_TRANSLATED A translated version of PATH_INFO that takes the path and performs

any necessary virtual-to-physical mapping

QUERY_STRING Returns the query information stored in the string following the question

mark (?) in the HTTP request

REMOTE_ADDR Returns the IP address of the remote host making the request

REMOTE_HOST Returns the name of the host making the request

REMOTE_USER Returns an unmapped user-name string sent in by the user

REQUEST_METHOD Returns the method used to make the request

SCRIPT_NAME Returns a virtual path to the script being executed

SERVER_NAME Returns the server's host name, DNS alias, or IP address as it would

appear in self-referencing URLs

SERVER_PORT Returns the port number to which the request was sent

SERVER_PORT_SECURE Returns a string that contains 0 or 1. If the request is being handled on

the secure port, it will be 1. Otherwise, it will be 0

SERVER_PROTOCOL Returns the name and revision of the request information protocol

SERVER_SOFTWARE Returns the name and version of the server software that answers the

request and runs the gateway

URL Returns the base portion of the URL

Examples

You can loop through all of the server variables like this:

<%

for each x in Request.ServerVariables

 response.write(x & "
")

next

%>

The following example demonstrates how to find out the visitor's browser type, IP address, and more:

<html>

<body>

<p>

You are browsing this site with:

<%Response.Write(Request.ServerVariables("http_user_agent"))%>

</p>

<p>

Your IP address is:

<%Response.Write(Request.ServerVariables("remote_addr"))%>

</p>

<p>

The DNS lookup of the IP address is:

<%Response.Write(Request.ServerVariables("remote_host"))%>

</p>

<p>

The method used to call the page:

<%Response.Write(Request.ServerVariables("request_method"))%>

</p>

<p>

The server's domain name:

<%Response.Write(Request.ServerVariables("server_name"))%>

</p>

<p>

The server's port:

<%Response.Write(Request.ServerVariables("server_port"))%>

</p>

<p>

The server's software:

<%Response.Write(Request.ServerVariables("server_software"))%>

</p>

</body>

</html>

Properties

TotalBytes

The TotalBytes property is a read-only property that returns the total number of bytes the client sent in the

body of the request.

Syntax

varbytes=Request.Totalbytes

Example

The following code sets the variable a equal to the total number of bytes sent in the body of the request:

<%

dim a

a=Request.TotalBytes

%>

Server Object

The ASP Server object is used to access properties and methods on the server. Its properties and methods

are described below:

Properties
ScriptTimeOut

The ScriptTimeout property sets or returns the maximum number of seconds a script can run before it is

terminated.

Syntax

Server.ScriptTimeout[=NumSeconds]

Parameter Description

NumSeconds The maximum number of seconds a script can run before the server terminates it.

Default is 90 seconds

Examples

Example 1

Set the script timeout:

<%

Server.ScriptTimeout=200

%>

Example 2

Retrieve the current value of the ScriptTimeout property:

<%

response.write(Server.ScriptTimeout)

%>

Methods

1.CreateObject

The CreateObject method creates an instance of an object.

Note: Objects created with this method have page scope. They are destroyed when the server are finished

processing the current ASP page. To create an object with session or application scope, you can either use

the <object> tag in the Global.asa file, or store the object in a session or application variable.

Syntax

Server.CreateObject(progID)

Part Description

progID Required. The type of object to create

Example 1

This example creates an instance of the server component MSWC.AdRotator:

<%

Set adrot=Server.CreateObject("MSWC.AdRotator")

%>

Example 2

An object stored in a session variable is destroyed when the session ends. However, you can also destroy

the object by setting the variable to Nothing or to a new value:

<%

Session("ad")=Nothing

%>

or

<%

Session("ad")="a new value"

%>

Example 3

You cannot create an instance of an object with the same name as a built-in object:

<%

Set Application=Server.CreateObject("Application")

%>

2. Execute

The Execute method executes an ASP file from inside another ASP file. After executing the called .asp

file, the control is returned to the original .asp file.

Syntax

Server.Execute(path)

Parameter Description

Path Required. The location of the ASP file to execute

Example

File1.asp:

<%

response.write("I am in File 1!
")

Server.Execute("file2.asp")

response.write("I am back in File 1!")

%>

File2.asp:

<%

response.write("I am in File 2!
")

%>

Output:

I am in File 1!

I am in File 2!

I am back in File 1!

Also look at the Server.Transfer method to see the difference between the Server.Execute and

Server.Transfer methods.

3.GetLastError

The GetLastError method returns an ASPError object that describes the error condition that occurred.

By default, a Web site uses the file \iishelp\common\500-100.asp for processing ASP errors. You can

either use this file, or create your own. If you want to change the ASP file for processing the 500;100

custom errors you can use the IIS snap-in.

Note: A 500;100 custom error will be generated if IIS encounters an error while processing either an ASP

file or the application's Global.asa file.

Note: This method is available only before the ASP file has sent any content to the browser.

Syntax

Server.GetLastError()

Examples

Example 1

In the example an error will occur when IIS tries to include the file, because the include statement is

missing the file parameter:

<!--#include f="header.inc" -->

<%

response.write("sometext")

%>

Example 2

In this example an error will occur when compiling the script, because the "next" keyword is missing:

<%

dim i

for i=1 to 10

nxt

%>

Example 3

In this example an error will occur because the script attempts to divide by 0:

<%

dim i,tot,j

i=0

tot=0

j=0

for i=1 to 10

 tot=tot+1

next

tot=tot/j

%>

4. MapPath

The MapPath method maps a specified path to a physical path.

Note: This method cannot be used in Session.OnEnd and Application.OnEnd.

Syntax

Server.MapPath(path)

Parameter Description

Path Required. A relative or virtual path to map to a physical path. If this parameter starts

with / or \, it returns a path as if this parameter is a full virtual path. If this parameter

doesn't start with / or \, it returns a path relative to the directory of the .asp file being

processed

Examples

Example 1

For the example below, the file "test.asp" is located in C:\Inetpub\Wwwroot\Script.

The file "test.asp" (located in C:\Inetpub\Wwwroot\Script) contains the following code:

<%

response.write(Server.MapPath("test.asp") & "
")

response.write(Server.MapPath("script/test.asp") & "
")

response.write(Server.MapPath("/script/test.asp") & "
")

response.write(Server.MapPath("\script") & "
")

response.write(Server.MapPath("/") & "
")

response.write(Server.MapPath("\") & "
")

%>

Output:

c:\inetpub\wwwroot\script\test.asp

c:\inetpub\wwwroot\script\script\test.asp

c:\inetpub\wwwroot\script\test.asp

c:\inetpub\wwwroot\script

c:\inetpub\wwwroot

c:\inetpub\wwwroot

Example 2

How to use a relative path to return the relative physical path to the page that is being viewed in the

browser:

<%

response.write(Server.MapPath("../"))

%>

or

<%

response.write(Server.MapPath("..\"))

%>

5. Transfer

The Transfer method sends (transfers) all the state information (all application/session variables and all

items in the request collections) created in one ASP file to a second ASP file.

When the second ASP page completes its tasks, it will NOT return to the first ASP page (like the Execute

method).

Note: The Transfer method is an efficient alternate for the Response.Redirect. A redirect forces the Web

server to handle an extra request while the Server.Transfer method transfers execution to a different ASP

page on the server, and avoids the extra round trip.

Syntax

Server.Transfer(path)

Parameter Description

Path Required. The location of the ASP file to which control should be transferred

Example

File1.asp:

<%

response.write("Line 1 in File 1
")

Server.Transfer("file2.asp")

response.write("Line 2 in File 1
")

%>

File2.asp:

<%

response.write("Line 1 in File 2
")

response.write("Line 2 in File 2
")

%>

Output:

Line 1 in File 1

Line 1 in File 2

Line 2 in File 2

Application Object

An application on the Web may consists of several ASP files that work together to perform some purpose.

The Application object is used to tie these files together.

The Application object is used to store and access variables from any page, just like the Session object.

The difference is that ALL users share ONE Application object (with Sessions there is ONE Session

object for EACH user).

The Application object holds information that will be used by many pages in the application (like

database connection information). The information can be accessed from any page. The information can

also be changed in one place, and the changes will automatically be reflected on all pages.

The Application object is initialized by IIS when the first .asp page from within the given virtual directory

is requested. It remains in the server's memory until either the web service is stopped or the application is

explicitly unloaded from the web server

The Application object's collections, methods, and events are described below:

Collections
1.Contents

The Contents collection contains all the items appended to the application/session through a script

command.

Tip: To remove items from the Contents collection, use the Remove and RemoveAll methods.

Syntax

Application.Contents(Key)

Parameter Description

Key Required. The name of the item to retrieve

Example 1

Notice that both name and objtest would be appended to the Contents collection:

<%

Application("name")="Harry"

Set Application("objtest")=Server.CreateObject("ADODB.Connection")

%>

Example 2

To loop through the Contents collection:

<%

for each x in Application.Contents

 Response.Write(x & "=" & Application.Contents(x) & "
")

next

%>

or:

<%

For i=1 to Application.Contents.Count

 Response.Write(i & "=" & Application.Contents(i) & "
")

Next

%>

Example 3

<%

Application("date")="2001/05/05"

Application("author")="Michael"

for each x in Application.Contents

 Response.Write(x & "=" & Application.Contents(x) & "
")

next

%>

Output:

date=2001/05/05

author= Michael

2.StaticObjects

The StaticObjects collection contains all the objects appended to the application/session with the HTML

<object> tag.

Syntax

Application.StaticObjects(Key)

Parameter Description

key Required. The name of the item to retrieve

Example 1

To loop through the StaticObjects collection:

<%

for each x in Application.StaticObjects

 Response.Write(x & "
")

next

%>

Example 2

In Global.asa:

<object runat="server" scope="application"

id="MsgBoard" progid="msgboard.MsgBoard">

</object>

<object runat="server" scope="application"

id="AdRot" progid="MSWC.AdRotator">

</object>

In an ASP file:

<%

for each x in Application.StaticObjects

 Response.Write(x & "
")

next

%>

Output:

MsgBoard

AdRot

Methods
1. Contents.Remove

The Contents.Remove method deletes an item from the Contents collection.

Syntax

Application.Contents.Remove(name|index)

Parameter Description

name The name of the item to remove

index The index of the item to remove

Example 1

<%

Application("test1")=("First test")

Application("test2")=("Second test")

Application("test3")=("Third test")

Application.Contents.Remove("test2")

for each x in Application.Contents

 Response.Write(x & "=" & Application.Contents(x) & "
")

next

%>

Output:

test1=First test

test3=Third test

Example 2

<%

Application("test1")=("First test")

Application("test2")=("Second test")

Application("test3")=("Third test")

Application.Contents.Remove(2)

for each x in Application.Contents

 Response.Write(x & "=" & Application.Contents(x) & "
")

next

%>

Output:

test1=First test

test3=Third test

2.Contents.RemoveAll

The Contents.RemoveAll method deletes all items from the Contents collection.

Syntax

Application.Contents.RemoveAll()

<%

Application.Contents.RemoveAll()

%>

3. Lock and UnLock

Lock Method

The Lock method prevents other users from modifying the variables in the Application object (used to

ensure that only one client at a time can modify the Application variables).

Unlock Method

The Unlock method enables other users to modify the variables stored in the Application object (after it

has been locked using the Lock method).

Syntax

Application.Lock

Application.Unlock

Example

The example below uses the Lock method to prevent more than one user from accessing the variable

visits at a time, and the Unlock method to unlock the locked object so that the next client can increment

the variable visits:

<%

Application.Lock

Application("visits")=Application("visits")+1

Application.Unlock

%>

This page has been visited

<%=Application("visits")%> times!

Events

Application_OnEnd

Application_OnStart

Application_OnStart Event

The Application_OnStart event occurs before the first new session is created (when the Application object

is first referenced).

This event is placed in the Global.asa file.

Note: Referencing to a Session, Request, or Response objects in the Application_OnStart event script will

cause an error.

Application_OnEnd Event

The Application_OnEnd event occurs when the application ends (when the web server stops).

This event is placed in the Global.asa file.

Note: The MapPath method cannot be used in the Application_OnEnd code.

Syntax

<script language="vbscript" runat="server">

Sub Application_OnStart

. . .

End Sub

Sub Application_OnEnd

. . .

End Sub

</script>

Examples

Global.asa:

<script language="vbscript" runat="server">

Sub Application_OnEnd()

Application("totvisitors")=Application("visitors")

End Sub

Sub Application_OnStart

Application("visitors")=0

End Sub

Sub Session_OnStart

Application.Lock

Application("visitors")=Application("visitors")+1

Application.UnLock

End Sub

Sub Session_OnEnd

Application.Lock

Application("visitors")=Application("visitors")-1

Application.UnLock

End Sub

</script>

To display the number of current visitors in an ASP file:

<html>

<head>

</head>

<body>

<p>

There are <%response.write(Application("visitors"))%>

online now!

</p>

</body>

</html>

The Global.asa file

The Global.asa file is an optional file that can contain declarations of objects, variables, and methods that

can be accessed by every page in an ASP application.

All valid browser scripts (JavaScript, VBScript, JScript, PerlScript, etc.) can be used within Global.asa.

The Global.asa file can contain only the following:

 Application events

 Session events

 <object> declarations

 TypeLibrary declarations

 the #include directive

Note: The Global.asa file must be stored in the root directory of the ASP application, and each

application can only have one Global.asa file.

Session Object

When you are working with an application on your computer, you open it, do some changes and then you

close it. This is much like a Session. The computer knows who you are. It knows when you open the

application and when you close it. However, on the internet there is one problem: the web server does not

know who you are and what you do, because the HTTP address doesn't maintain state.

ASP solves this problem by creating a unique cookie for each user. The cookie is sent to the user's

computer and it contains information that identifies the user. This interface is called the Session object.

The Session object stores information about, or change settings for a user session.

Variables stored in a Session object hold information about one single user, and are available to all pages

in one application. Common information stored in session variables are name, id, and preferences. The

server creates a new Session object for each new user, and destroys the Session object when the session

expires.

The Session object's collections, properties, methods, and events are described below:

Collections
1.Contents

The Contents collection contains all the items appended to the session through a script command.

Tip: To remove items from the Contents collection, use the Remove and RemoveAll methods.

Syntax
Session.Contents(Key)

Example 1

Notice that both name and objtest would be appended to the Contents collection:

<%

Session("name")="Hege"

Set Session("objtest")=Server.CreateObject("ADODB.Connection")

%>

Example 2

To loop through the Contents collection:

<%

for each x in Session.Contents

 Response.Write(x & "=" & Session.Contents(x) & "
")

next

%>

or:

<%

For i=1 to Session.Contents.Count

 Response.Write(i & "=" & Session.Contents(i) & "
")

Next

%>

Example 3

<%

Session("name")="Hege"

Session("date")="2001/05/05"

for each x in Session.Contents

 Response.Write(x & "=" & Session.Contents(x) & "
")

next

%>

Output:

name=Hege

date=2001/05/05

2. StaticObjects

The StaticObjects collection contains all the objects appended to the session with the HTML <object>

tag.

Syntax
Session.StaticObjects(Key)

Parameter Description

Key Required. The name of the item to retrieve

Example 1

To loop through the StaticObjects collection:

<%

for each x in Session.StaticObjects

 Response.Write(x & "
")

next

%>

Example 2

In Global.asa:

<object runat="server" scope="session"

id="MsgBoard" progid="msgboard.MsgBoard">

</object>

<object runat="server" scope="session"

id="AdRot" progid="MSWC.AdRotator">

</object>

In an ASP file:

<%

for each x in Session.StaticObjects

 Response.Write(x & "
")

next

%>

Output:

MsgBoard

AdRot

Properties
1.CodePage

The CodePage property specifies the character set that will be used when displaying dynamic content.

Example of some code pages:

 1252 - American English and most European languages

 932 - Japanese Kanji

Syntax

Session.CodePage(=Codepage)

Parameter Description

Codepage Defines a code page (character set) for the system running the script engine

Examples

<%

Response.Write(Session.CodePage)

%>

Output:

1252

2. LCID

The LCID property sets or returns an integer that specifies a location or region. Contents like date, time,

and currency will be displayed according to that location or region.

Syntax

Session.LCID(=LCID)

Parameter Description

LCID A locale identifier

Examples

<%

response.write("<p>")

response.write("Default LCID is: " & Session.LCID & "
")

response.write("Date format is: " & date() & "
")

response.write("Currency format is: " & FormatCurrency(350))

response.write("</p>")

Session.LCID=1036

response.write("<p>")

response.write("LCID is now: " & Session.LCID & "
")

response.write("Date format is: " & date() & "
")

response.write("Currency format is: " & FormatCurrency(350))

response.write("</p>")

Session.LCID=3079

response.write("<p>")

response.write("LCID is now: " & Session.LCID & "
")

response.write("Date format is: " & date() & "
")

response.write("Currency format is: " & FormatCurrency(350))

response.write("</p>")

Session.LCID=2057

response.write("<p>")

response.write("LCID is now: " & Session.LCID & "
")

response.write("Date format is: " & date() & "
")

response.write("Currency format is: " & FormatCurrency(350))

response.write("</p>")

%>

Output:

Default LCID is: 2048

Date format is: 12/11/2001

Currency format is: $350.00

LCID is now: 1036

Date format is: 11/12/2001

Currency format is: 350,00 F

LCID is now: 3079

Date format is: 11.12.2001

Currency format is: öS 350,00

LCID is now: 2057

Date format is: 11/12/2001

Currency format is: £350.00

3.SessionID

The SessionID property returns a unique id for each user. The unique id is generated by the server.

Syntax

Session.SessionID

Examples

<%

Response.Write(Session.SessionID)

%>

Output:

772766038

4. TimeOut

The Timeout property sets or returns the timeout period for the Session object for this application, in

minutes. If the user does not refresh or request a page within the timeout period, the session will end.

Syntax

Session.Timeout[=nMinutes]

Parameter Description

nMinutes The number of minutes a session can remain idle before the server terminates it.

Default is 20 minutes

Examples

<%

response.write("<p>")

response.write("Default Timeout is: " & Session.Timeout)

response.write("</p>")

Session.Timeout=30

response.write("<p>")

response.write("Timeout is now: " & Session.Timeout)

response.write("</p>")

%>

Output:

Default Timeout is: 20

Timeout is now: 30

Methods
1.Abandon

The Abandon method destroys a user session.

Note: When this method is called, the current Session object is not deleted until all of the script on the

current page have been processed. This means that it is possible to access session variables on the same

page as the call to Abandon, but not from another Web page.

Syntax

Session.Abandon

Examples

File1.asp:

<%

Session("name")="Hege"

Session.Abandon

Response.Write(Session("name"))

%>

Output:

Hege

File2.asp:

<%

Response.Write(Session("name"))

%>

Output:

(none)

2. Contents.Remove

The Contents.Remove method deletes an item from the Contents collection.

Syntax

Session.Contents.Remove(name|index)

Parameter Description

Name The name of the item to remove

Index The index of the item to remove

Example 1

<%

Session("test1")=("First test")

Session("test2")=("Second test")

Session("test3")=("Third test")

Session.Contents.Remove("test2")

for each x in Session.Contents

 Response.Write(x & "=" & Session.Contents(x) & "
")

next

%>

Output:

test1=First test

test3=Third test

Example 2

<%

Session("test1")=("First test")

Session("test2")=("Second test")

Session("test3")=("Third test")

Session.Contents.Remove(2)

for each x in Session.Contents

 Response.Write(x & "=" & Session.Contents(x) & "
")

next

%>

Output:

test1=First test

test3=Third test

3.Contents.RemoveAll

The Contents.RemoveAll method deletes all items from the Contents collection.

Syntax
Session.Contents.RemoveAll()

Example:

<%

Session.Contents.RemoveAll()

%>

Events

Session_OnStart Event

The Session_OnStart event occurs when the server creates a session.

This event is placed in the Global.asa file.

Session_OnEnd Event

The Session_OnEnd event occurs when the session ends (abandoned or times out).

This event is placed in the Global.asa file.

(see Application Object events for the example)

VBSCRIPT

 Scripting Language

 Light version of Microsoft‟s Programming Language Visual Basic

 Server side and client side both

 Client side is only supported by Internet Explorer

Client-Side Example

<html>

<body>

<script type=”text/vbscript”>

Document.write(“Hello World!”)

</script>

</body>

</html>

Variables

Declaring variables in ASP is simple, especially since all variables are of Variant type. What does this

mean to you? You don't have to declare if your variable is an integer, string, or object. You just declare it,

and it has the potential to be anything. To declare a variable in ASP/VBScript we use the Dim statement.

<%@ LANGUAGE="VBSCRIPT" %>

<%

'Commented lines starting with an apostrophe

'are not executed in VBScript

'First we will declare a few variables.

Dim myText, myNum

myText = "Have a nice day!"

myNum = 5

Response.Write(myText)

'To concatenate strings in VBScript, use the ampersand

Response.Write(" My favourite number is " & myNum)

%>

In ASP/VBScript, it is possible not to declare variables at all. A variable can appear in the program,

though it has never been declared. It is called default declaring. Variable in this case will be of Variant

type.

However, such practice leads to errors and should be avoided. For VB to consider any form or module

variable that was not declared explicitly as erroneous, Option Explicit statement should appear in the form

or module main section before any other statements. Option Explicit demands explicit declaration of all

variables in this form or module. If module contains Option Explicit statement, than upon the attempt to

use undeclared or incorrectly typed variable name, an error occurs at compile time.

In naming variables in VBScript you must be aware of these rules:

 Variables must begin with a letter not a number or an underscore

 They cannot have more than 255 characters

 They cannot contain a period (.) , a space or a dash

 They cannot be a predefined identifier (such as dim, variable, if, etc.)

 Case sensitivity is not important in VBScript

The variable value will be kept in memory for the life span of the current page and will be released from

memory when the page has finished executing. To declare variables accessible to more than one ASP file,

declare them as session variables or application variables.

Contstants

Constants just as variables are used to store information. The main difference between constants and

variables is that constant value can not be changed in the process of running program. If we attempt to re-

assign the value of the constant we'll get a run time error.

It can be mathematic constants, passwords, paths to files, etc. By using a constant you "lock in" the value

which prevents you from accidentally changing it. If you want to run a program several times using a

different value each time, you do not need to search throughout the entire program and change the value

at each instance. You only need to change it at the beginning of the program where you set the initial

value for the constant.

To declare a constant in VBScript we use the Const keyword. Have a look at the following example:

Const myConst = "myText"

'it is allowed to declare a few constants on the one line

Const PI = 3.14159, Wg = 2.78

Conditional Statements

If ... Then ... Else Statement

The If Statement is a way to make decisions based on a variable or some other type of data. For example,

you might have a script that checks if Boolean value is true or false or if variable contains number or

string value.

Use the if statement to execute a statement if a logical condition is true. Use the optional else clause to

execute a statement if the condition is false. The syntax for If statement looks as follows:

if condition then

 statements_1

else

 statements_2

end if

Condition can be any expression that evaluates to true or false. If condition evaluates to true, statements_1

are executed; otherwise, statements_2 are executed. statement_1 and statement_2 can be any statement,

including further nested if statements.

You may also compound the statements using elseif to have multiple conditions tested in sequence. You

should use this construction if you want to select one of many sets of lines to execute.

if condition_1 then

 statement_1

[elseif condition_2 then

 statement_2]

...

[elseif condition_n_1 then

 statement_n_1]

[else

 statement_n]

end if

Let's have a look at the examples. The first example decides whether a student has passed an exam with a

pass mark of 57

<%@ language="vbscript"%>

<%

Dim Result

Result = 70

if Result >= 57 then

 response.write("Pass
")

else

 response.write("Fail
")

end if

%>

Next example use the elseif variant on the if statement. This allows us to test for other conditions if the

first one wasn't true. The program will test each condition in sequence until:

 It finds one that is true. In this case it executes the code for that condition.

 It reaches an else statement. In which case it executes the code in the else statement.

 It reaches the end of the if ... elseif ... else structure. In this case it moves to the next statement

after the conditional structure.

<%@ language="vbscript"%>

<%

Dim Result

Result = 70

if Result >= 75 then

 response.write("Passed: Grade A
")

elseif Result >= 60 then

 response.write("Passed: Grade B
")

elseif Result >= 45 then

 response.write("Passed: Grade C
")

else

 response.write("Failed
")

end if

%>

Select Case Statement

The Select statements work the same as if statements. However the difference is that they can check for

multiple values. Of course you do the same with multiple if..else statements, but this is not always the

best approach.

The Select statement allows a program to evaluate an expression and attempt to match the expression's

value to a case label. If a match is found, the program executes the associated statement. The syntax for

the Select statement as follows:

select case expression

 case label_1

 statements_1

 case label_2

 statements_2

 ...

 case else

 statements_n

end select

The program first looks for a case clause with a label matching the value of expression and then transfers

control to that clause, executing the associated statements. If no matching label is found, the program

looks for the optional Case Else clause, and if found, transfers control to that clause, executing the

associated statements. If no Case Else clause is found, the program continues execution at the statement

following the end of Select. Use break to prevent the code from running into the next case automatically.

Let's consider an example:

<%@ language="vbscript">

<%

Dim Flower

Flower = "rose"

select case flower

 case "rose"

 response.write(flower & " costs $2.50")

 case "daisy"

 response.write(flower & " costs $1.25")

 case "orchild"

 response.write(flower & " costs $1.50")

 case else

 response.write("There is no such flower in our shop")

end select

%>

Looping Statements

ASP performs several types of repetitive operations, called "looping". Loops are set of instructions used

to repeat the same block of code till a specified condition returns false or true depending on how you need

it. To control the loops you can use counter variable that increments or decrements with each repetition of

the loop.

The two major groups of loops are For..Next and Do..Loop. The For...Next statements are best used when

you want to perform a loop a specific number of times. The Do...Loop statements are best used to perform

a loop an undetermined number of times. In addition, you can use the Exit keyword within loop

statements.

 The For ... Next Loop

 The For Each ... Next Loop

 The Do ... Loop

 The Exit Keyword

The For ... Next Loop

For...Next loops are used when you want to execute a piece of code a set number of times. The syntax

is as follows:

For counter = initial_value to finite_value [Step increment]

 statements

Next

The For statement specifies the counter variable and its initial and finite values. The Next statement

increases the counter variable by one. Optional the Step keyword allows to increase or decrease the

counter variable by the value you specify.

Have a look at the very simple example:

<%

For i = 0 to 10 Step 2 'use i as a counter

 response.write("The number is " & i & "
")

Next

%>

The preceding example prints out even numbers from 0 to 10, the
 tag puts a line break in between

each value.

Next example generates a multiplication table 2 through 9. Outer loop is responsible for generating a list

of dividends, and inner loop will be responsible for generating lists of dividers for each individual

number:

<%

response.write("<h1>Multiplication table</h1>")

response.write("<table border=2 width=50%")

For i = 1 to 9 'this is the outer loop

 response.write("<tr>")

 response.write("<td>" & i & "</td>")

http://webcheatsheet.com/asp/loops.php#for
http://webcheatsheet.com/asp/loops.php#for_each
http://webcheatsheet.com/asp/loops.php#do
http://webcheatsheet.com/asp/loops.php#exit

 For j = 2 to 9 'inner loop

 response.write("<td>" & i * j & "</td>")

 Next 'repeat the code and move on to the next value of j

 response.write("</tr>")

Next 'repeat the code and move on to the next value of i

response.write("</table>")

%>

The For Each ... Next Loop

The For Each...Next loop is similar to a For...Next loop. Instead of repeating the statements a specified

number of times, the For Each...Next loop repeats the statements for each element of an array (or each

item in a collection of objects).

The following code snippet creates drop-down list where options are elements of an array:

<%

Dim bookTypes(7) 'creates first array

bookTypes(0)="Classic"

bookTypes(1)="Information Books"

bookTypes(2)="Fantasy"

bookTypes(3)="Mystery"

bookTypes(4)="Poetry"

bookTypes(5)="Humor"

bookTypes(6)="Biography"

bookTypes(7)="Fiction"

Dim arrCars(4) 'creates second array

arrCars(0)="BMW"

arrCars(1)="Mercedes"

arrCars(2)="Audi"

arrCars(3)="Bentley"

arrCars(4)="Mini"

Sub createList(some_array) 'takes an array and creates drop-down list

 dim i

 response.write("<select name=""mylist"">" & vbCrLf) 'vbCrLf stands for Carriage Return and Line

Feed

 For Each item in some_array

 response.write("<option value=" & i & ">" & item & "</option>" & vbCrLf)

 i = i + 1

 Next 'repeat the code and move on to the next value of i

 response.write("</select>")

End Sub

'Now let's call the sub and print out our lists on the screen

Call createList(bookTypes) 'takes bookTypes array as an argument

Call createList(arrcars) 'takes arrCars array as an argument

%>

The Do..while Loop

The Do...Loop is another commonly used loop after the For...Next loop. The Do...Loop statement repeats

a block of statements an indefinite number of times. The statements are repeated either while a condition

is True or until a condition becomes True. The syntax looks as follows:

Do [While|Until] condition

 statements

Loop

Here is another syntax:

Do

 statements

Loop [While|Until] condition

In this case the code inside this loop will be executed at least one time. Have a look at the examples:

The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less

than, or equal to 10. i will increase by 1 each time the loop runs.

<%

Dim i 'use i as a counter

i = 0 'assign a value to i

Do While i<=10 'Output the values from 0 to 10

 response.write(i & "<br \>")

 i = i + 1 'increment the value of i for next time loop executes

Loop

%>

Now let's consider a more useful example which creates drop-down lists of days, months and years. You

can use this code for registration form, for example.

<%

'creates an array

Dim month_array(11)

month_array(0) = "January"

month_array(1) = "February"

month_array(2) = "March"

month_array(3) = "April"

month_array(4) = "May"

month_array(5) = "June"

month_array(6) = "July"

month_array(7) = "August"

month_array(8) = "September"

month_array(9) = "October"

month_array(10) = "November"

month_array(11) = "December"

Dim i

response.write("<select name=""day"">" & vbCrLf)

i = 1

Do While i <= 31

 response.write("<option value=" & i & ">" & i & "</option>" & vbCrLf)

 i = i + 1

Loop

response.write("</select>")

response.write("<select name=""month"">" & vbCrLf)

i = 0

Do While i <= 11

 response.write("<option value=" & i & ">" & month_array(i) & "</option>" & vbCrLf)

 i = i + 1

Loop

response.write("</select>")

response.write("<select name=""year"">")

i = 1900

Do Until i = 2005

 response.write("<option value=" & i & ">" & i & "</option>" & vbCrLf)

 i = i + 1

Loop

response.write("</select>")

%>

Note: Make sure the condition in a loop eventually becomes false; otherwise, the loop will never

terminate.

The Exit Keyword

The Exit keyword alters the flow of control by causing immediate exit from a repetition structure. You

can use the Exit keyword in different situations, for example to avoid an endless loop. To exit the

For...Next loop before the counter reaches its finite value you should use the Exit For statement. To exit

the Do...Loop use the Exit Do statement.

Have a look at the example:

<%

response.write("<p>Example of using the Exit For statement:<p>")

For i = 0 to 10

 If i=3 Then Exit For

 response.write("The number is " & i & "
")

Next

response.write("<p>Example of using the Exit Do statement:<p>")

i = 5

Do Until i = 10

 i = i - 1

 response.write("The number is " & i & "
")

 If i < 10 Then Exit Do

Loop

%>

Arrays

The VBScript arrays are 0 based, meaning that the array element indexing starts always from 0. The 0

index represents the first position in the array, the 1 index represents the second position in the array, and

so forth.

There are two types of VBScript arrays - static and dynamic. Static arrays remain with fixed size

throughout their life span. To use static VBScript arrays you need to know upfront the maximum number

of elements this array will contain. If you need more flexible VBScript arrays with variable index size,

then you can use dynamic VBScript arrays. VBScript dynamic arrays index size can be

increased/decreased during their life span.

Static Arrays

Let's create an array called 'arrCars' that will hold the names of 5 cars:

<%

'Use the Dim statement along with the array name

'to create a static VBScript array

'The number in parentheses defines the array‟s upper bound

Dim arrCars(4)

arrCars(0)="BMW"

arrCars(1)="Mercedes"

arrCars(2)="Audi"

arrCars(3)="Bentley"

arrCars(4)="Mini"

'create a loop moving through the array

'and print out the values

For i=0 to 4

response.write arrCars(i) & "
"

Next 'move on to the next value of i

%>

Here is another way to define the array in VBScript:

<%

'we use the VBScript Array function along with a Dim statement

'to create and populate our array

Dim arrCars

arrCars = Array("BMW","Mercedes","Audi","Bentley","Mini") 'each element must be separated by a

comma

'again we could loop through the array and print out the values

For i=0 to 4

response.write arrCars(i) & "
"

Next

%>

Dynamic Arrays

Dynamic arrays come in handy when you aren't sure how many items your array will hold. To create a

dynamic array you should use the Dim statement along with the array‟s name, without specifying upper

bound:

<%

Dim arrCars

arrCars = Array()

%>

In order to use this array you need to use the ReDim statement to define the array‟s upper bound:

<%

Dim arrCars

arrCars = Array()

Redim arrCars(27)

%>

If in future you need to resize this array you should use the Redim statement again. Be very careful with

the ReDim statement. When you use the ReDim statement you lose all elements of the array. Using the

keyword PRESERVE in conjunction with the ReDim statement will keep the array we already have and

increase the size:

<%

Dim arrCars

arrCars = Array()

Redim arrCars(27)

Redim PRESERVE arrCars(52)

%>

Multidimensional Arrays

Arrays do not have to be a simple list of keys and values; each location in the array can hold another

array. This way, you can create a multi-dimensional array.

The most commonly used are two-dimensional arrays. You can think of a two-dimensional array as a

matrix, or grid, with width and height or rows and columns. Here is how you could define two-

dimensional array and display the array values on the web page:

<%@ LANGUAGE="VBSCRIPT" %>

<%

Dim arrCars(2,4)

'arrCars(col,row)

arrCars(0,0) = "BMW"

arrCars(1,0) = "2004"

arrCars(2,0) = "45.000"

arrCars(0,1) = "Mercedes"

arrCars(1,1) = "2003"

arrCars(2,1) = "57.000"

arrCars(0,2) = "Audi"

arrCars(1,2) = "2000"

arrCars(2,2) = "26.000"

arrCars(0,3) = "Bentley"

arrCars(1,3) = "2005"

arrCars(2,3) = "100.00"

arrCars(0,4) = "Mini"

arrCars(1,4) = "2004"

arrCars(2,4) = "19.00"

Response.Write(" <TABLE border=0>")

Response.Write("<TR><TD>Row</TD> <TD>Car</TD>")

Response.Write("<TD>Year</TD><TD>Price</TD></TR>")

'The UBound function will return the 'index' of the highest element in an array.

For i = 0 to UBound(arrCars, 2)

Response.Write("<TR><TD>#" & i & "</TD>")

Response.Write("<TD>" & arrCars(0,i) & "</TD>")

Response.Write("<TD>" & arrCars(1,i) & "</TD>")

Response.Write("<TD>" & arrCars(2,i) & "</TD></TR>")

Next

Response.Write("</TABLE>")

%>

OR You can loop the above array as:

For i=0 to ubound(arrCars,1)

 For j=0 to ubound(arrCars,2)

 Response.write(arrCars(i,j) & “
”)

 Next

Next

Functions and Procedures

Functions and procedures provide a way to create re-usable modules of programming code and avoid

rewriting the same block of code every time you do the particular task. If you don't have any

functions/procedures in your ASP page, the ASP pages are executed from top to bottom, the ASP parsing

engine simply processes your entire file from the beginning to the end. VBScript functions and

procedures, however, are executed only when called, not inline with the rest of the code. A function or

procedure can be reused as many times as required, thus saving you time and making for a less clustered

looking page.

You can write functions in ASP similar to the way you write them in Visual Basic. It is good

programming practice to use functions to modularize your code and to better provide reuse. To declare a

subroutine (a function that doesn‟t return a value, starts with the Sub keyword and ends with End Sub),

you simply type:

<%@ LANGUAGE="VBSCRIPT" %>

<%

Sub subroutineName(parameter_1, ... , parameter_n)

 statement_1

 statement_2

 ...

 statement_n

end sub

%>

A function differs from a subroutine in the fact that it returns data, start with Function keyword and end

with End Function. Functions are especially good for doing calculations and returning a value. To declare

a function, the syntax is similar:

<%@ LANGUAGE="VBSCRIPT" %>

<%

Function functionName(parameter_1, ... , parameter_n)

 statement_1

 statement_2

 ...

 statement_n

end function

%>

Have a look at the code for a procedure that is used to print out information on the page:

<%@ LANGUAGE="VBSCRIPT" %>

<%

Sub GetInfo(name, phone, fee)

 Response.write("Name: "& name &"
")

 Response.write("Telephone: "& telephone &"
")

 Response.write("Fee: "& fee &"
")

End Sub

%>

Now let's consider how to call the sub. There are two ways:

<%

'the first method

Call GetInfo("Mr. O'Donnel","555-5555",20)

'the second one

GetInfo "Mr. O'Donnel","555-5555",20

%>

In each example, the actual argument passed into the subprocedure is passed in the corresponding

position. Note that if you use the Call statement, the arguments must be enclosed in parentheses. If you do

not use call, the parentheses aren't used.

Now let's look at the code for a function that takes an integer value and returns the square of that value.

Also included is code to call the function.

<%

Function Square(num)

 Square = num * num

end function

 'Returns 25

 Response.Write(Square(5))

 'Should print "45 is less than 8^2"

 if 40 < Square(7) then

 Response.Write("45 is less than 8^2")

 else

 Response.Write("8^2 is less than 40")

 end if

%>

How to process the data submitted from HTML form

The great advantage of ASP is possibility to respond to user queries or data submitted from HTML forms.

You can process information gathered by an HTML form and use ASP code to make decisions based off

this information to create dynamic web pages. In this tutorial we will show how to create an HTML form

and process the data.

Before you can process the information, you need to create an HTML form that will send information to

your ASP page. There are two methods for sending data to an ASP form: POST and GET. These two

types of sending information are defined in your HTML form element's method attribute. Also, you must

specify the location of the ASP page that will process the information.

Below is a simple form that will send the data using the POST method. Information sent from a form with

the POST method is invisible to others and has no limits on the amount of information to send. Copy and

paste this code and save it as "form.html".

<html>

<head>

<title>Process the HTML form data with the POST method</title>

</head>

<body>

<form method="POST" action="process.asp" name="form1">

<table width="70%" border="0" cellspacing="0" cellpadding="0">

<tr>

 <td>name:</td>

 <td colspan="2"><input type="text" name="name"></td>

</tr>

<tr>

 <td>email:</td>

 <td colspan="2"><input type="text" name="email"></td>

</tr>

<tr>

 <td>comments:</td>

 <td colspan="2"><textarea name="comment" cols="40" rows="5"></textarea></td>

</tr>

<tr>

 <td> </td>

 <td colspan="2"><input type="submit" name="Submit" value="Submit"></td>

</tr>

</table>

</form>

</body>

</html>

Next, we are going to create our ASP page "process.asp" that will process the data. In our example we

decided to send data with the POST method so to retrieve the information we can use the ASP

'Request.From' command. Copy and paste this code and save it in the same directory as "form.html".

<%@ Language="VBscript" %>

<html>

<head>

<title>Submitted data</title>

</head>

<body>

<%

'declare the variables that will receive the values

Dim name, email, comment

'receive the values sent from the form and assign them to variables

'note that request.form("name") will receive the value entered

'into the textfield called name

name=Request.Form("name")

email=Request.Form("email")

comment=Request.Form("comment")

'let's now print out the received values in the browser

Response.Write("Name: " & name & "
")

Response.Write("E-mail: " & email & "
")

Response.Write("Comments: " & comment & "
")

%>

</body>

</html>

Note: If you want to process the information sent through an HTML form with the GET method you

should use the 'Request.QueryString' command . In the preceding example you should replace all

instances of Form with QueryString. But remember that the data sent from a form with the GET method

is visible to everyone (it will be displayed in the browser's address bar) and has limits on the amount of

information to send.

The Dictionary Object

The Dictionary object is used to store information in name/value pairs (referred to as key and item). The

Dictionary object might seem similar to Arrays, however, the Dictionary object is a more desirable

solution to manipulate related data.

Comparing Dictionaries and Arrays:

 Keys are used to identify the items in a Dictionary object

 You do not have to call ReDim to change the size of the Dictionary object

 When deleting an item from a Dictionary, the remaining items will automatically shift up

 Dictionaries cannot be multidimensional, Arrays can

 Dictionaries have more built-in functions than Arrays

 Dictionaries work better than arrays on accessing random elements frequently

 Dictionaries work better than arrays on locating items by their content

The following example creates a Dictionary object, adds some key/item pairs to it, and retrieves the item

value for the key gr:

<%

Dim d

Set d=Server.CreateObject("Scripting.Dictionary")

d.Add "re","Red"

d.Add "gr","Green"

d.Add "bl","Blue"

d.Add "pi","Pink"

Response.Write("The value of key gr is: " & d.Item("gr"))

%>

Output:

The value of key gr is: Green

The Dictionary object's properties and methods are described below:

Properties

1.CompareMode

The CompareMode property sets or returns the comparison mode for comparing keys in a Dictionary

object.

Syntax

DictionaryObject.CompareMode[=compare]

Parameter Description

Compare Optional. Specifies the comparison mode.

Can take one of the following values:

0 = vbBinaryCompare - binary comparison

1 = vbTextCompare - textual comparison

2 = vbDatabaseCompare - database comparison

Example

<%

dim d

set d=Server.CreateObject("Scripting.Dictionary")

d.CompareMode=1

d.Add "n","Norway"

d.Add "i","Italy"

'The Add method will fail on the line below!

d.Add "I","Ireland" 'The letter i already exists

%>

2.Count

The Count property returns the number of key/item pairs in the Dictionary object.

Syntax

DictionaryObject.Count

Example

<%

dim d

set d=Server.CreateObject("Scripting.Dictionary")

d.Add "n","Norway"

d.Add "i","Italy"

d.Add "s","Sweden"

Response.Write("The number of key/item pairs: " & d.Count)

set d=nothing

%>

Output:

The number of key/item pairs: 3

3. Item

The Item property sets or returns the value of an item in a Dictionary object.

Syntax

DictionaryObject.Item(key)[=newitem]

Parameter Description

Key Required. The key associated with the item

Newitem Optional. Specifies the value associated with the key

Example

<%

Dim d

Set d=Server.CreateObject("Scripting.Dictionary")

d.Add "re","Red"

d.Add "gr","Green"

d.Add "bl","Blue"

d.Add "pi","Pink"

Response.Write("The value of key pi is: " & d.Item("pi"))

%>

Output:

The value of key pi is: Pink

4. Key

The Key property sets a new key value for an existing key value in a Dictionary object.

Syntax

DictionaryObject.Key(key)=newkey

Parameter Description

Key Required. The name of the key that will be changed

Newkey Required. The new name of the key

Example

<%

Dim d

Set d=Server.CreateObject("Scripting.Dictionary")

d.Add "re","Red"

d.Add "gr","Green"

d.Add "bl","Blue"

d.Add "pi","Pink"

d.Key("re")="r"

Response.Write("The value of key r is: " & d.Item("r"))

%>

Output:

The value of key r is: Red

Methods

1.Add

The Add method adds a new key/item pair to a Dictionary object.

Syntax

DictionaryObject.Add(key,item)

Parameter Description

key Required. The key value associated with the item

item Required. The item value associated with the key

Example

<%

Dim d

Set d=Server.CreateObject("Scripting.Dictionary")

d.Add "re","Red"

d.Add "gr","Green"

d.Add "bl","Blue"

d.Add "pi","Pink"

Response.Write("The value of key gr is: " & d.Item("gr"))

%>

Output:

The value of key gr is: Green

2. Exists

The Exists method returns a Boolean value that indicates whether a specified key exists in the Dictionary

object. It returns true if the key exists, and false if not.

Syntax

DictionaryObject.Exists(key)

Parameter Description

key Required. The key value to search for

Example

<%

dim d

set d=Server.CreateObject("Scripting.Dictionary")

d.Add "n","Norway"

d.Add "i","Italy"

d.Add "s","Sweden"

if d.Exists("n")=true then

 Response.Write("Key exists!")

else

 Response.Write("Key does not exist!")

end if

set d=nothing

%>

Output:

Key exists!

3.Items

The Items method returns an array of all the items in a Dictionary object.

Syntax

DictionaryObject.Items

Example

<%

dim d,a,i

set d=Server.CreateObject("Scripting.Dictionary")

d.Add "n","Norway"

d.Add "i","Italy"

d.Add "s","Sweden"

Response.Write("<p>Item values:</p>")

a=d.Items

for i=0 to d.Count-1

 Response.Write(a(i))

 Response.Write("
")

next

set d=nothing

%>

Output:

Item values:

Norway

Italy

Sweden

4.Keys

The Keys method returns an array of all the keys in a Dictionary object.

Syntax

DictionaryObject.Keys

Example

<%

dim d,a,i

set d=Server.CreateObject("Scripting.Dictionary")

d.Add "n","Norway"

d.Add "i","Italy"

d.Add "s","Sweden"

Response.Write("<p>Key values:</p>")

a=d.Keys

for i=0 to d.Count-1

 Response.Write(a(i))

 Response.Write("
")

next

set d=nothing

%>

Output:

Key values:

n

i

s

5.Remove

The Remove method removes one specified key/item pair from the Dictionary object.

Syntax

DictionaryObject.Remove(key)

Parameter Description

key Required. The key associated with the key/item pair to remove

Example

<%

dim d,a,i

set d=Server.CreateObject("Scripting.Dictionary")

d.Add "n","Norway"

d.Add "i","Italy"

d.Add "s","Sweden"

d.Remove("n")

Response.Write("<p>Key values:</p>")

a=d.Keys

for i=0 to d.Count-1

 Response.Write(a(i))

 Response.Write("
")

next

set d=nothing

%>

Output:

Key values:

i

s

6.RemoveAll

The Remove method removes all the key/item pairs from a Dictionary object.

Syntax

DictionaryObject.RemoveAll

Example

<%

dim d,a,i

set d=Server.CreateObject("Scripting.Dictionary")

d.Add "n","Norway"

d.Add "i","Italy"

d.Add "s","Sweden"

d.RemoveAll

Response.Write("<p>Key values:</p>")

a=d.Keys

for i=0 to d.Count-1

 Response.Write(a(i))

 Response.Write("
")

next

set d=nothing

%>

Output:

Key values:

(nothing)

FileSystemObject Object

The FileSystemObject object is used to access the file system on a server.This object can manipulate files,

folders, and directory paths. It is also possible to retrieve file system information with this object.The

following code creates a text file (c:\test.txt) and then writes some text to the file:

<%

dim fs,fname

set fs=Server.CreateObject("Scripting.FileSystemObject")

set fname=fs.CreateTextFile("c:\test.txt",true)

fname.WriteLine("Hello World!")

fname.Close

set fname=nothing

set fs=nothing

%>

The FileSystemObject object's properties and methods are described below:

Properties

Drives

The Drives property returns a collection of all Drive objects on the computer.

Methods

1.BuildPath

The BuildPath method appends a name to an existing path.

Syntax

[newpath=]FileSystemObject.BuildPath(path,name)

Parameter Description

Path Required. The path to append a name to

Name Required. The name to append to the path

Example

<%

dim fs,path

set fs=Server.CreateObject("Scripting.FileSystemObject")

path=fs.BuildPath("c:\mydocuments","test")

response.write(path)

set fs=nothing

%>

Output:

c:\mydocuments\test

2.CopyFile

The CopyFile method copies one or more files from one location to another.

Syntax

FileSystemObject.CopyFile source,destination[,overwrite]

Parameter Description

Source Required. The file or files to copy (wildcards can be used}

destination Required. Where to copy the file or files (wildcards cannot be used}

overwrite Optional. A Boolean value that specifies whether an existing file can be overwritten.

True allows existing files to be overwritten and False prevents existing files from

being overwritten. Default is True

Example

<%

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject")

fs.CopyFile "c:\mydocuments\web*.htm","c:\webpages\"

set fs=nothing

%>

3.CopyFolder

The CopyFolder method copies one or more folders from one location to another.

Syntax

FileSystemObject.CopyFolder source,destination[,overwrite]

Parameter Description

source Required. The folder or folders to copy (wildcards can be used)

destination Required. Where to copy the folder or folders (wildcards cannot be used)

overwrite Optional. A Boolean value that indicates whether an existing folder can be

overwritten. True allows existing folders to be overwritten and False prevents

existing folders from being overwritten. Default is True

Examples

<%

'copy all the folders in c:\mydocuments\web

'to the folder c:\webpages

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject")

fs.CopyFolder "c:\mydocuments\web*","c:\webpages\"

set fs=nothing

%>

<%

'copy only the folder test from c:\mydocuments\web

'to the folder c:\webpages

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject")

fs.CopyFolder "c:\mydocuments\web\test","c:\webpages\"

set fs=nothing

%>

4.CreateFolder

Creates a new folder

5.CreateTextFile

The CreateTextFile method creates a new text file in the current folder and returns a TextStream object

that can be used to read from, or write to the file.

Syntax

FileSystemObject.CreateTextFile(filename[,overwrite[,unicode]])

FolderObject.CreateTextFile(filename[,overwrite[,unicode]])

Parameter Description

Filename Required. The name of the file to create

Overwrite Optional. A Boolean value that indicates whether an existing file can be overwritten.

True indicates that the file can be overwritten and False indicates that the file can not

be overwritten. Default is True

Unicode Optional. A Boolean value that indicates whether the file is created as a Unicode or

an ASCII file. True indicates that the file is created as a Unicode file, False indicates

that the file is created as an ASCII file. Default is False

Example for the FileSystemObject object

<%

dim fs,tfile

set fs=Server.CreateObject("Scripting.FileSystemObject")

set tfile=fs.CreateTextFile("c:\somefile.txt")

tfile.WriteLine("Hello World!")

tfile.close

set tfile=nothing

set fs=nothing

%>

Example for the Folder object

<%

dim fs,fo,tfile

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set fo=fs.GetFolder("c:\test")

Set tfile=fo.CreateTextFile("test.txt",false)

tfile.WriteLine("Hello World!")

tfile.Close

set tfile=nothing

set fo=nothing

set fs=nothing

%>

6.DeleteFile

The DeleteFile method deletes one or more specified files.

Note: An error will occur if you try to delete a file that doesn't exist.

Syntax

FileSystemObject.DeleteFile(filename[,force])

Parameter Description

filename Required. The name of the file or files to delete (Wildcards are allowed)

force Optional. A Boolean value that indicates whether read-only files will be deleted.

True indicates that the read-only files will be deleted, False indicates that they will

not be deleted. Default is False

Example

<%

dim fs

Set fs=Server.CreateObject("Scripting.FileSystemObject")

fs.CreateTextFile("c:\test.txt",True)

if fs.FileExists("c:\test.txt") then

 fs.DeleteFile("c:\test.txt")

end if

set fs=nothing

%>

7.DeleteFolder

The DeleteFolder method deletes one or more specified folders.

Note: An error will occur if you try to delete a folder that does not exist.

Syntax

FileSystemObject.DeleteFolder(foldername[,force])

Parameter Description

foldername Required. The name of the folder or folders to delete (Wildcards are allowed)

force Optional. A Boolean value that indicates whether read-only folders will be deleted.

True indicates that read-only folders will be deleted, False indicates that they will

not be deleted. Default is False

Example

<%

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject")

if fs.FolderExists("c:\temp") then

 fs.DeleteFolder("c:\temp")

end if

set fs=nothing

%>

8.GetFile

The GetFile method returns a File object for the specified path.

Syntax

FileSystemObject.GetFile(path)

Parameter Description

path Required. The path to a specific file

Example

<%

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\test\test.htm")

Response.Write("The file was last modified on: ")

Response.Write(f.DateLastModified)

set f=nothing

set fs=nothing

%>

Output:

The file was last modified on 01/01/20 4:23:56 AM

9.MoveFile

The MoveFile method moves one or more files from one location to another.

Syntax

FileSystemObject.MoveFile source,destination

Parameter Description

source Required. The path to the file/files to be moved. Can contain wildcard characters in

the last component.

destination Required. Where to move the file/files. Cannot contain wildcard characters

Example

<%

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject")

fs.MoveFile "c:\web*.gif","c:\images\"

set fs=nothing

%>

10.OpenTextFile

The OpenTextFile method opens a specified file and returns a TextStream object that can be used to

access the file.

Syntax

FileSystemObject.OpenTextFile(fname,mode,create,format)

Parameter Description

fname Required. The name of the file to open

mode Optional. How to open the file

1=ForReading - Open a file for reading. You cannot write to this file.

2=ForWriting - Open a file for writing.

8=ForAppending - Open a file and write to the end of the file.

create Optional. Sets whether a new file can be created if the filename does not exist. True

indicates that a new file can be created, and False indicates that a new file will not be

created. False is default

format Optional. The format of the file

0=TristateFalse - Open the file as ASCII. This is default.

-1=TristateTrue - Open the file as Unicode.

-2=TristateUseDefault - Open the file using the system default.

Example

<%

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile(Server.MapPath("testread.txt"),8,true)

f.WriteLine("This text will be added to the end of file")

f.Close

set f=Nothing

set fs=Nothing

%>

The TextStream Object

The TextStream object is used to access the contents of text files.

The following code creates a text file (c:\test.txt) and then writes some text to the file (the variable f is an

instance of the TextStream object):

<%

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.CreateTextFile("c:\test.txt",true)

f.WriteLine("Hello World!")

f.Close

set f=nothing

set fs=nothing

%>

To create an instance of the TextStream object you can use the CreateTextFile or OpenTextFile methods

of the FileSystemObject object, or you can use the OpenAsTextStream method of the File object.

The TextStream object's properties and methods are described below:

Properties

Property Description

AtEndOfLine Returns true if the file pointer is positioned immediately before the end-of-line

marker in a TextStream file, and false if not

AtEndOfStream Returns true if the file pointer is at the end of a TextStream file, and false if not

Column Returns the column number of the current character position in an input stream

Line Returns the current line number in a TextStream file

Example:

<%

dim fs,f,t,x

set fs=Server.CreateObject("Scripting.FileSystemObject")

http://www.w3schools.com/asp/prop_atendofline.asp
http://www.w3schools.com/asp/prop_atendofstream.asp
http://www.w3schools.com/asp/prop_column.asp
http://www.w3schools.com/asp/prop_line.asp

set f=fs.CreateTextFile("c:\test.txt")

f.write("Hello World!")

f.close

set t=fs.OpenTextFile("c:\test.txt",1,false)

do while t.AtEndOfLine<>true

 x=t.Read(1)

loop

t.close

Response.Write("The last character is: " & x)

%>

Output:

The last character of the first line in the text file is: !

Methods

1.Close

The Close method closes an open TextStream file.

2. Read

The Read method reads a specified number of characters from a TextStream file and returns the result as a

string.

Syntax

TextStreamObject.Read(numchar)

Parameter Description

Numchar Required. The number of characters to read from the file

Example

<%

dim fs,f,t,x

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.CreateTextFile("c:\test.txt")

f.write("Hello World!")

f.close

set t=fs.OpenTextFile("c:\test.txt",1,false)

x=t.Read(5)

t.close

Response.Write("The first five characters are: " & x)

%>

Output:

The first five characters are: Hello

3.ReadAll

Reads an entire TextStream file and returns the result

4.ReadLine

The ReadLine method reads one line from a TextStream file and returns the result as a string.

Syntax

TextStreamObject.ReadLine

Example

<%

dim fs,f,t,x

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.CreateTextFile("c:\test.txt")

f.writeline("Line 1")

f.writeline("Line 2")

f.writeline("Line 3")

f.close

set t=fs.OpenTextFile("c:\test.txt",1,false)

x=t.ReadLine

t.close

Response.Write("The first line in the file ")

Response.Write("contains this text: " & x)

%>

Output:

The first line in the file contains this text: Line 1

5.Write

The Write method writes a specified text to a TextStream file.

Note: This method write text to the TextStream file with no spaces or line breaks between each string.

Syntax

TextStreamObject.Write(text)

Parameter Description

Text Required. The text to write to the file

Example

<%

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.CreateTextFile("c:\test.txt",true)

f.write("Hello World!")

f.write("How are you today?")

f.close

set f=nothing

set fs=nothing

%>

The file test.txt will look like this after executing the code above:

Hello World!How are you today?

6.WriteLine

The WriteLine method writes a specified text and a new-line character to a TextStream file.

Syntax

TextStreamObject.WriteLine(text)

Parameter Description

text Optional. The text to write to the file. If you do not specify this parameter, a new-

line character will be written to the file

Example

<%

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.CreateTextFile("c:\test.txt",true)

f.WriteLine("Hello World!")

f.WriteLine("How are you today?")

f.WriteLine("Goodbye!")

f.close

set f=nothing

set fs=nothing

%>

The file test.txt will look like this after executing the code above:

Hello World!

How are you today?

Goodbye!

The File Object

The File object is used to return information about a specified file.

To work with the properties and methods of the File object, you will have to create an instance of the File

object through the FileSystemObject object. First; create a FileSystemObject object and then instantiate

the File object through the GetFile method of the FileSystemObject object or through the Files property

of the Folder object.

The following code uses the GetFile method of the FileSystemObject object to instantiate the File object

and the DateCreated property to return the date when the specified file was created:

Example

<%

Dim fs,f

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.GetFile("c:\test.txt")

Response.Write("File created: " & f.DateCreated)

set f=nothing

set fs=nothing

%>

The File object's properties and methods are described below:

Properties

Property Description

Attributes Sets or returns the attributes of a specified file

DateCreated Returns the date and time when a specified file was created

DateLastAccessed Returns the date and time when a specified file was last accessed

DateLastModified Returns the date and time when a specified file was last modified

http://www.w3schools.com/asp/prop_attributes_file.asp
http://www.w3schools.com/asp/prop_datecreated_file.asp
http://www.w3schools.com/asp/prop_datelastaccessed_file.asp
http://www.w3schools.com/asp/prop_datelastmodified_file.asp

Drive Returns the drive letter of the drive where a specified file or folder resides

Name Sets or returns the name of a specified file

ParentFolder Returns the folder object for the parent of the specified file

Path Returns the path for a specified file

ShortName Returns the short name of a specified file (the 8.3 naming convention)

ShortPath Returns the short path of a specified file (the 8.3 naming convention)

Size Returns the size, in bytes, of a specified file

Type Returns the type of a specified file

Methods

Method Description

Copy Copies a specified file from one location to another

Delete Deletes a specified file

Move Moves a specified file from one location to another

OpenAsTextStream Opens a specified file and returns a TextStream object to access the file

Debugging ASP and Error Handling

Regardless of your level of experience, you will encounter programmatic errors, or bugs, that will prevent

your server-side scripts from working correctly. For this reason, debugging, the process of finding and

correcting scripting errors, is crucial for developing successful and robust ASP applications, especially as

the complexity of your application grows. Various tools like Visual Studio can be used to debug ASP

Applications.

The Microsoft Script Debugger

The Microsoft Script Debugger is a powerful debugging tool that can help you quickly locate bugs and

interactively test your server-side scripts. You can do the following things using the features of Microsoft

Script Debugger:

 Run your server-side scripts one line at a time.

http://www.w3schools.com/asp/prop_drive_file.asp
http://www.w3schools.com/asp/prop_name_file.asp
http://www.w3schools.com/asp/prop_parentfolder_file.asp
http://www.w3schools.com/asp/prop_path_file.asp
http://www.w3schools.com/asp/prop_shortname_file.asp
http://www.w3schools.com/asp/prop_shortpath_file.asp
http://www.w3schools.com/asp/prop_size_file.asp
http://www.w3schools.com/asp/prop_type_file.asp
http://www.w3schools.com/asp/met_copy_file.asp
http://www.w3schools.com/asp/met_delete_file.asp
http://www.w3schools.com/asp/met_move_file.asp
http://www.w3schools.com/asp/met_openastextstream.asp

 Open a command window to monitor the value of variables, properties, or array elements, during

the execution of your server-side scripts.

 Set pauses to suspend execution of your server-side scripts (using either the debugger or a script

command) at a particular line of script.

 Trace procedures while running your server-side script.

Enabling Debugging

Before you can begin debugging your server-side scripts, you must first configure your Web server to

support ASP debugging.

After enabling Web server debugging, you can use either of the following methods to debug your scripts:

 Open Script Debugger and use it to run and debug your ASP server-side scripts.

 Use Internet Explorer to request an .asp file. If the file contains a bug or an intentional statement to

halt execution, Script Debugger will automatically start, display your script, and indicate the

source of the error.

Scripting Errors

While debugging your server-side scripts you might encounter several types of errors. Some of these

errors can cause your scripts to execute incorrectly, halt the execution of your program, or return incorrect

results.

Syntax Errors

A syntax error is a commonly encountered error that results from incorrect scripting syntax. For example,

a misspelled command or an incorrect number of arguments passed to a function generates an error.

Syntax errors can prevent your script from running.

Runtime Errors

Run-time errors occur after your script commences execution and result from scripting instructions that

attempt to perform impossible actions. For example, the following script contains a function that divides a

variable by zero (an illegal mathematical operation) and generates a run-time error:

<SCRIPT Language= "VBScript" RUNAT=SERVER>

 Result = Findanswer(15)

 Document.Write ("The answer is " &Result)

 Function Findanswer(x)

 'This statement generates a run-time error.

 Findanswer = x/0

 End Function

</SCRIPT>

Bugs that result in run-time errors must be corrected for your script to execute without interruption.

Logical Errors

A logical error can be the most difficult bug to detect. With logical errors, which are caused by typing

mistakes or flaws in programmatic logic, your script runs successfully, but yields incorrect results. For

example, a server-side script intended to sort a list of values may return an inaccurate ordering if the

script contains a > (greater than) sign for comparing values, when it should have used a < (less than) sign.

Just-In-Time(JIT) Debugging

When a run-time error interrupts execution of your server-side script, the Microsoft Script Debugger

automatically starts, displays the .asp file with a statement pointer pointing to the line that caused the

error, and generates an error message. With this type of debugging, called? Just-In-Time (JIT) debugging,

your computer suspends further execution of the program. You must correct the errors with an editing

program and save your changes before you can resume running the script.

Breakpoint Debugging

When an error occurs and you cannot easily locate the source of the error, it is sometimes useful to preset

a breakpoint. A breakpoint suspends execution at a specific line in your script. You can set one or many

different breakpoints in Microsoft Script Debugger before a suspect line of script and then use the

debugger to inspect the values of variables or properties set in the script. After you correct the error, you

can clear your breakpoints so that your script can run uninterrupted.

To set a breakpoint, open your script with Script Debugger, select a line of script where you want to

interrupt execution, and from the Debug menu choose Toggle Breakpoint. Then use your Web browser

to request the script again. After executing the lines of script up to the breakpoint, your computer starts

the Script Debugger, which displays the script with a statement pointer pointing to the line where you set

the breakpoint.

The Break at Next Statement

In certain cases, you may want to enable the Script Debugger Break at Next Statement if the next

statement that runs is not in the .asp file that you are working with. For example, if you set Break at Next

Statement in an .asp file residing in an application called Sales, the debugger will start when you run a

script in any file in the Sales application, or in any application for which debugging has been enabled. For

this reason, when you set Break at Next Statement, you need to be aware that whatever script statement

runs next will start the debugger.

VBScript Stop Statement Debugging

You can also add breakpoints to your server-side scripts written in VBScript by inserting

a Stop statement at a location before a questionable section of server-side script. For example, the

following server-side script contains aStop statement that suspends execution before the script calls a

custom function:

VBScript

<%

 intDay = Day(Now())

 lngAccount = Request.Form("AccountNumber")

 dtmExpires = Request.Form("ExpirationDate")

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

 strCustomerID = "RETAIL" & intDay & lngAccount & dtmExpires

 'Set breakpoint here.

 Stop

 'Call registration component.

 RegisterUser(strCustomerID)

%>

When you request this script, the debugger starts and automatically displays the .asp file with the

statement pointer indicating the location of the Stop statement. At this point you could choose to inspect

the values assigned to variables before passing those variables to the component.

The ASPError Object

The ASPError object was implemented in ASP 3.0 and is available in IIS5 and later.

The ASPError object is used to display detailed information of any error that occurs in scripts in an ASP

page.

Note: The ASPError object is created when Server.GetLastError is called, so the error information can

only be accessed by using the Server.GetLastError method.

The ASPError object's properties are described below (all properties are read-only):

Properties

Property Description

ASPCode Returns an error code generated by IIS

ASPDescription Returns a detailed description of the error (if the error is ASP-related)

Category Returns the source of the error (was the error generated by ASP? By a scripting

language? By an object?)

Column Returns the column position within the file that generated the error

Description Returns a short description of the error

File Returns the name of the ASP file that generated the error

Line Returns the line number where the error was detected

Number Returns the standard COM error code for the error

http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp

Source Returns the actual source code of the line where the error occurred

Error Handling

Handling errors is achieved by using the On Error Resume Next statement. It simply tells the ASP

interpreter to continue the execution of the ASP Script if there is an error instead of throwing an exception

and stopping the execution.

To trap and handle the errors, we need to use the Err Object and its properties

<% if Err.Number <> 0 Then

Handle_Error(Err.Description)

Err.Clear

End If

%>

<% Sub Handle_Error(errordesc)

„Write error to a log file

%>

On Error GoTo 0 Statement is used to disable any error handling

Error handling allows you to display friendly error messages for the end users and the same time it helps

you debug the asp application.

http://www.w3schools.com/asp/prop_asperrorobject.asp

Browser Capabilities Component

The ASP Browser Capabilities component creates a BrowserType object that determines the type,
capabilities and version number of a visitor's browser.

When a browser connects to a server, a User Agent header is also sent to the server. This header contains
information about the browser.

The BrowserType object compares the information in the header with information in a file on the server
called "Browscap.ini".

If there is a match between the browser type and version number in the header and the information in the
"Browsercap.ini" file, the BrowserType object can be used to list the properties of the matching browser.
If there is no match for the browser type and version number in the Browscap.ini file, it will set every
property to "UNKNOWN".

Syntax

<%
Set MyBrow=Server.CreateObject("MSWC.BrowserType")
%>

ASP Browser Capabilities Example

The example below creates a BrowserType object in an ASP file, and displays some of the capabilities of
your browser:

Example

<html>
<body>
<%
Set MyBrow=Server.CreateObject("MSWC.BrowserType")
%>

<table border="0" width="100%">
<tr>
<th>Client OS</th><th><%=MyBrow.platform%></th>
</tr><tr>
<td >Web Browser</td><td ><%=MyBrow.browser%></td>
</tr><tr>
<td>Browser version</td><td><%=MyBrow.version%></td>
</tr><tr>
<td>Frame support?</td><td><%=MyBrow.frames%></td>
</tr><tr>
<td>Table support?</td><td><%=MyBrow.tables%></td>
</tr><tr>
<td>Sound support?</td><td><%=MyBrow.backgroundsounds%></td>
</tr><tr>

<td>Cookies support?</td><td><%=MyBrow.cookies%></td>
</tr><tr>
<td>VBScript support?</td><td><%=MyBrow.vbscript%></td>
</tr><tr>
<td>JavaScript support?</td><td><%=MyBrow.javascript%></td>
</tr>
</table>

</body>
</html>

Output:

Client OS WinNT
Web Browser IE
Browser version 5.0
Frame support? True
Table support? True
Sound support? True
Cookies support? True
VBScript support? True
JavaScript support? True

The Browscap.ini File

The "Browsercap.ini" file is used to declare properties and to set default values for browsers.

This section is not a tutorial on how to maintain "Browsercap.ini" files, it only shows you the basics; so
you get an idea what a "Browsercap.ini" file is all about.

The "Browsercap.ini" file can contain the following:

[;comments]
[HTTPUserAgentHeader]
[parent=browserDefinition]
[property1=value1]
[propertyN=valueN]
[Default Browser Capability Settings]
[defaultProperty1=defaultValue1]
[defaultPropertyN=defaultValueN]

Parameter Description

comments Optional. Any line that starts with a semicolon are ignored by the BrowserType
object

HTTPUserAgentHeader Optional. Specifies the HTTP User Agent header to associate with the browser-
property value statements specified in propertyN. Wildcard characters are allowed

browserDefinition Optional. Specifies the HTTP User Agent header-string of a browser to use as the

parent browser. The current browser's definition will inherit all of the property
values declared in the parent browser's definition

propertyN Optional. Specifies the browser properties. The following table lists some
possible properties:

• Backgroundsounds - Support background sounds?
• Cdf - Support Channel Definition Format for Webcasting?

• Tables - Support tables?

• Cookies - Support cookies?

• Frames - Support frames?

• Javaapplets - Support Java applets?

• Javascript - Supports JScript?

• Vbscript - Supports VBScript?

• Browser - Specifies the name of the browser

• Beta - Is the browser beta software?

• Platform - Specifies the platform that the browser runs on

• Version - Specifies the version number of the browser

valueN Optional. Specifies the value of propertyN. Can be a string, an integer (prefix
with #), or a Boolean value

defaultPropertyN Optional. Specifies the name of the browser property to which to assign a default
value if none of the defined HTTPUserAgentHeader values match the HTTP User
Agent header sent by the browser

defaultValueN Optional. Specifies the value of defaultPropertyN. Can be a string, an integer
(prefix with #), or a Boolean value

A "Browsercap.ini" file might look something like this:

;IE 5.0
[IE 5.0]
browser=IE
Version=5.0
majorver=#5
minorver=#0
frames=TRUE
tables=TRUE
cookies=TRUE
backgroundsounds=TRUE
vbscript=TRUE
javascript=TRUE
javaapplets=TRUE
ActiveXControls=TRUE

beta=False

;DEFAULT BROWSER
[*]
browser=Default
frames=FALSE
tables=TRUE
cookies=FALSE
backgroundsounds=FALSE
vbscript=FALSE
javascript=FALSE

Email Handling Using ASP

CDOSYS(CDO) is a built-in component in ASP. This component is used to send e-mails with ASP.

CDO (Collaboration Data Objects) is a Microsoft technology that is designed to simplify the creation of
messaging applications.CDOSYS is a built-in component in ASP.

Examples using CDOSYS

Sending a text e-mail:

<%
Set myMail=CreateObject("CDO.Message")
myMail.Subject="Sending email with CDO"
myMail.From="mymail@mydomain.com"
myMail.To="someone@somedomain.com"
myMail.TextBody="This is a message."
myMail.Send
set myMail=nothing
%>

Sending a text e-mail with Bcc and CC fields:

<%
Set myMail=CreateObject("CDO.Message")
myMail.Subject="Sending email with CDO"
myMail.From="mymail@mydomain.com"
myMail.To="someone@somedomain.com"
myMail.Bcc="someoneelse@somedomain.com"
myMail.Cc="someoneelse2@somedomain.com"
myMail.TextBody="This is a message."
myMail.Send
set myMail=nothing
%>

Sending an HTML e-mail:

<%
Set myMail=CreateObject("CDO.Message")
myMail.Subject="Sending email with CDO"
myMail.From="mymail@mydomain.com"
myMail.To="someone@somedomain.com"
myMail.HTMLBody = "<h1>This is a message.</h1>"
myMail.Send
set myMail=nothing
%>

Sending an HTML e-mail that sends a webpage from a website:

<%
Set myMail=CreateObject("CDO.Message")
myMail.Subject="Sending email with CDO"
myMail.From="mymail@mydomain.com"
myMail.To="someone@somedomain.com"
myMail.CreateMHTMLBody "http://www.w3schools.com/asp/"
myMail.Send
set myMail=nothing
%>

Sending an HTML e-mail that sends a webpage from a file on your computer:

<%
Set myMail=CreateObject("CDO.Message")
myMail.Subject="Sending email with CDO"
myMail.From="mymail@mydomain.com"
myMail.To="someone@somedomain.com"
myMail.CreateMHTMLBody "file://c:/mydocuments/test.htm"
myMail.Send
set myMail=nothing
%>

Sending a text e-mail with an Attachment:

<%
Set myMail=CreateObject("CDO.Message")
myMail.Subject="Sending email with CDO"
myMail.From="mymail@mydomain.com"
myMail.To="someone@somedomain.com"
myMail.TextBody="This is a message."
myMail.AddAttachment "c:\mydocuments\test.txt"
myMail.Send
set myMail=nothing
%>

Sending a text e-mail using a remote server:

<%
Set myMail=CreateObject("CDO.Message")
myMail.Subject="Sending email with CDO"
myMail.From="mymail@mydomain.com"
myMail.To="someone@somedomain.com"
myMail.TextBody="This is a message."
myMail.Configuration.Fields.Item("http://schemas.microsoft.com/cdo/configuration/sendusing")=2
'Name or IP of remote SMTP server
myMail.Configuration.Fields.Item("http://schemas.microsoft.com/cdo/configuration/smtpserver")="smtp.
server.com"
'Server port
myMail.Configuration.Fields.Item("http://schemas.microsoft.com/cdo/configuration/smtpserverport")=25
myMail.Configuration.Fields.Update
myMail.Send
set myMail=nothing
%>

Unit 5: Accessing Databases with ASP and ADO

Active Database Object(ADO)

ADO represents a collection of objects that, via ASP, you can easily manipulate to gain incredible control over
the information stored in your data source (be it an Access database, an Excel spreadsheet, and so on).

ADO is a Microsoft technology
• ADO stands for ActiveX Data Objects
• ADO is a Microsoft Active-X component
• ADO is automatically installed with Microsoft IIS
• ADO is a programming interface to access data in a database

Within ADO are three major objects.

Connection Object

The ADO Connection Object is used to create an open connection to a data source. Through this connection, you
can access and manipulate a database.

If you want to access a database multiple times, you should establish a connection using the Connection object.
You can also make a connection to a database by passing a connection string via a Command or Recordset
object. However, this type of connection is only good for one specific, single query.

set objConnection=Server.CreateObject("ADODB.connection")

Properties

Property Description

ConnectionString Sets or returns the details used to create a connection to a data source

ConnectionTimeout Sets or returns the number of seconds to wait for a connection to open

Provider Sets or returns the provider name

State Returns a value describing if the connection is open or closed

Version Returns the ADO version number

Methods

Method Description

BeginTrans Begins a new transaction

Cancel Cancels an execution

Close Closes a connection

CommitTrans Saves any changes and ends the current transaction

Execute Executes a query, statement, procedure or provider specific text

Open Opens a connection

RollbackTrans Cancels any transaction

http://www.w3schools.com/ado/met_conn_begintrans.asp
http://www.w3schools.com/ado/met_conn_open.asp
http://www.w3schools.com/ado/met_conn_execute.asp
http://www.w3schools.com/ado/met_conn_begintrans.asp
http://www.w3schools.com/ado/met_conn_close.asp
http://www.w3schools.com/ado/met_conn_cancel.asp
http://www.w3schools.com/ado/met_conn_begintrans.asp
http://www.w3schools.com/ado/prop_conn_version.asp
http://www.w3schools.com/ado/prop_conn_state.asp
http://www.w3schools.com/ado/prop_conn_provider.asp
http://www.w3schools.com/ado/prop_conn_connectiontimeout.asp
http://www.w3schools.com/ado/prop_conn_connectionstring.asp

Command Object

The ADO Command object is used to execute a single query against a database. The query can perform actions
like creating, adding, retrieving, deleting or updating records.

If the query is used to retrieve data, the data will be returned as a RecordSet object. This means that the retrieved
data can be manipulated by properties, collections, methods, and events of the Recordset object.

The major feature of the Command object is the ability to use stored queries and procedures with parameters.

set objCommand=Server.CreateObject("ADODB.command")

Properties

Property Description

ActiveConnection Sets or returns a definition for a connection if the connection is closed, or
the current Connection object if the connection is open

CommandText Sets or returns a provider command

CommandType Sets or returns the type of a Command object

Name Sets or returns the name of a Command object

State Returns a value that describes if the Command object is open, closed,
connecting, executing or retrieving data

Methods

Method Description

Cancel Cancels an execution of a method

CreateParameter Creates a new Parameter object

Execute Executes the query, SQL statement or procedure in the CommandText
property

Collections

Collection Description

Parameters Contains all the Parameter objects of a Command Object

Recordset Object

The ADO Recordset object is used to hold a set of records from a database table. A Recordset object consist of
records and columns (fields).

In ADO, this object is the most important and the one used most often to manipulate data from a database.

set objRecordset=Server.CreateObject("ADODB.recordset")

When you first open a Recordset, the current record pointer will point to the first record and the BOF and EOF
properties are False. If there are no records, the BOF and EOF property are True.

http://www.w3schools.com/ado/met_comm_execute.asp
http://www.w3schools.com/ado/met_comm_createparameter.asp
http://www.w3schools.com/ado/met_comm_cancel.asp
http://www.w3schools.com/ado/prop_comm_state.asp
http://www.w3schools.com/ado/prop_comm_name.asp
http://www.w3schools.com/ado/prop_comm_commandtype.asp
http://www.w3schools.com/ado/prop_comm_commandtext.asp
http://www.w3schools.com/ado/prop_comm_activeconn.asp

Properties

Property Description

ActiveCommand Returns the Command object associated with the Recordset

ActiveConnection Sets or returns a definition for a connection if the connection is
closed, or the current Connection object if the connection is open

BOF Returns true if the current record position is before the first record,
otherwise false

DataSource Specifies an object containing data to be represented as a Recordset
object

EOF Returns true if the current record position is after the last record,
otherwise false

Filter Sets or returns a filter for the data in a Recordset object

Index Sets or returns the name of the current index for a Recordset object

LockType Sets or returns a value that specifies the type of locking when editing
a record in a Recordset

MaxRecords Sets or returns the maximum number of records to return to a
Recordset object from a query

RecordCount Returns the number of records in a Recordset object

Sort Sets or returns the field names in the Recordset to sort on

Source Sets a string value or a Command object reference, or returns a String
value that indicates the data source of the Recordset object

State Returns a value that describes if the Recordset object is open, closed,
connecting, executing or retrieving data

Methods

Method Description

AddNew Creates a new record

Cancel Cancels an execution

CancelUpdate Cancels changes made to a record of a Recordset object

Clone Creates a duplicate of an existing Recordset

Close Closes a Recordset

Delete Deletes a record or a group of records

Find Searches for a record in a Recordset that satisfies a specified criteria

GetRows Copies multiple records from a Recordset object into a two-
dimensional array

GetString Returns a Recordset as a string

Move Moves the record pointer in a Recordset object

MoveFirst Moves the record pointer to the first record

MoveLast Moves the record pointer to the last record

MoveNext Moves the record pointer to the next record

http://www.w3schools.com/ado/met_rs_movefirst.asp
http://www.w3schools.com/ado/met_rs_movefirst.asp
http://www.w3schools.com/ado/met_rs_movefirst.asp
http://www.w3schools.com/ado/met_rs_move.asp
http://www.w3schools.com/ado/met_rs_getstring.asp
http://www.w3schools.com/ado/met_rs_getrows.asp
http://www.w3schools.com/ado/met_rs_find.asp
http://www.w3schools.com/ado/met_rs_delete.asp
http://www.w3schools.com/ado/met_rs_close.asp
http://www.w3schools.com/ado/met_rs_clone.asp
http://www.w3schools.com/ado/met_rs_cancelupdate.asp
http://www.w3schools.com/ado/met_rs_cancel.asp
http://www.w3schools.com/ado/met_rs_addnew.asp
http://www.w3schools.com/ado/prop_rs_state.asp
http://www.w3schools.com/ado/prop_rs_source.asp
http://www.w3schools.com/ado/prop_rs_sort.asp
http://www.w3schools.com/ado/prop_rs_recordcount.asp
http://www.w3schools.com/ado/prop_rs_maxrecords.asp
http://www.w3schools.com/ado/prop_rs_locktype.asp
http://www.w3schools.com/ado/prop_rs_index.asp
http://www.w3schools.com/ado/prop_rs_filter.asp
http://www.w3schools.com/ado/prop_rs_bofeof.asp
http://www.w3schools.com/ado/prop_rs_datasource.asp
http://www.w3schools.com/ado/prop_rs_bofeof.asp
http://www.w3schools.com/ado/prop_rs_active.asp
http://www.w3schools.com/ado/prop_rs_active.asp

MovePrevious Moves the record pointer to the previous record

Open Opens a database element that gives you access to records in a table,
the results of a query, or to a saved Recordset

Save Saves a Recordset object to a file or a Stream object

The common way to access a database from inside an ASP page is to:

1. Create an ADO connection to a database
2. Open the database connection
3. Create an ADO recordset
4. Open the recordset
5. Extract the data you need from the recordset
6. Close the recordset
7. Close the connection

<%
'declare the variable that will hold new connection object
Dim Connection
'create an ADO connection object
Set Connection=Server.CreateObject("ADODB.Connection")

'declare the variable that will hold the connection string
Dim ConnectionString
'define connection string, specify database driver and location of the database
ConnectionString="PROVIDER=Microsoft.Jet.OLEDB.4.0;Data
Source=c:\inetpub\wwwroot\db\examples.mdb"

' Or Connection.Open "DSN=dsn_name"
'open the connection to the database
Connection.Open ConnectionString
%>

Now we have an active connection to our database. Let's retrieve all the records from the 'Cars' table. For that we
have to create an instance of the recordset object and feed it an SQL statement.

<%
'declare the variable that will hold our new object
Dim Recordset
'create an ADO recordset object
Set Recordset=Server.CreateObject("ADODB.Recordset")

'declare the variable that will hold the SQL statement
Dim SQL
SQL="SELECT * FROM CARS"

'Open the recordset object executing the SQL statement and return records
Recordset.Open SQL, Connection
%>

We have returned a recordset based on our SQL statement so let's now print out them in the browser.

<%
'first of all determine whether there are any records

http://www.w3schools.com/ado/met_rs_save.asp
http://www.w3schools.com/ado/met_rs_open.asp
http://www.w3schools.com/ado/met_rs_movefirst.asp

If Recordset.EOF Then
Response.Write("No records returned.")
Else
'if there are records then loop through the fields
Do While NOT Recordset.Eof
Response.write Recordset("Name")
Response.write Recordset("Year")
Response.write Recordset("Price")
Response.write "
"
Recordset.MoveNext
Loop
End If
%>

Finally, need to close the objects and free up resources on the server.

<%
Recordset.Close
Set Recordset=Nothing
Connection.Close
Set Connection=Nothing
%>

Let’s look at a sample script to get an idea how to connect to MS SQL Server database without DSN:

<%
'declare the variables
Dim Connection
Dim ConnString
Dim Recordset
Dim SQL

'define the connection string, specify database driver
ConnString="DRIVER={SQL Server};SERVER=localhost;UID=user1;PWD=password1;DATABASE=mydb;"

'declare the SQL statement that will query the database
SQL = "SELECT * FROM Students"

'create an instance of the ADO connection and recordset objects
Set Connection = Server.CreateObject("ADODB.Connection")
Set Recordset = Server.CreateObject("ADODB.Recordset")

'Open the connection to the database
Connection.Open ConnString

'Open the recordset object executing the SQL statement and return records
Recordset.Open SQL,Connection

'first of all determine whether there are any records
If Recordset.EOF Then
Response.Write("No records returned.")
Else
'if there are records then loop through the fields
Do While NOT Recordset.Eof

Response.write Recordset("name")
Response.write Recordset("address")
Response.write Recordset("phone")
Response.write "
"
Recordset.MoveNext
Loop
End If
'close the connection and recordset objects to free up resources
Recordset.Close
Set Recordset=nothing
Connection.Close
Set Connection=nothing
%>

Let’s look at a sample script to get an idea how to connect to MySQL database without DSN:

<%
'declare the variables
Dim Connection
Dim ConnectionString
Dim Recordset
Dim SQL

'declare the SQL statement that will query the database
SQL = "SELECT * FROM TABLE_NAME"

'define the connection string, specify database driver
ConnString = "DRIVER={MySQL ODBC 3.51 Driver}; SERVER=localhost; DATABASE=mydb;
UID=harry;PASSWORD=mypassword;"

'create an instance of the ADO connection and recordset objects
Set Connection = Server.CreateObject("ADODB.Connection")
Set Recordset = Server.CreateObject("ADODB.Recordset")

'Open the connection to the database
Connection.Open ConnString

'Open the recordset object executing the SQL statement and return records
Recordset.Open SQL,Connection

'first of all determine whether there are any records
If Recordset.EOF Then
Response.Write("No records returned.")
Else
'if there are records then loop through the fields
Do While NOT Recordset.Eof
Response.write Recordset("FIRST_FIELD_NAME")
Response.write Recordset("SECOND_FIELD_NAME")
Response.write Recordset("THIRD_FIELD_NAME")
Response.write "
"
Recordset.MoveNext
Loop
End If

'close the connection and recordset objects freeing up resources
Recordset.Close
Set Recordset=nothing
Connection.Close
Set Connection=nothing
%>

Insert

sql="INSERT INTO Students (name,address,phone) VALUES (“sam”,”kathmandu”,”9841242356”)
Connection.Execute(sql)

sql = “Update Students set name='john' where id=10”

Connection.Execute(sql)

Delete

sql="DELETE FROM Students where id=5"

Filter
The Filter property sets or returns a variant that contains a filter for the data in a Recordset object. The filter
allows you to select records that fit a specific criteria.

When the Filter property is set, the cursor moves to the first record in the filtered Recordset. And, when the Filter
property is cleared, the cursor moves to the first record in the unfiltered Recordset.

Examples of a criteria string:

• rs.Filter="name='Smith'"
• rs.Filter="name='Smith' AND Birthdate >= #4/10/70#"
• rs.Filter="Lastname='Jonson' OR Lastname='Johnson'"
• rs.Filter= "Lastname LIKE Jon*"
• rs.Filter = adFilterNone 'removes the filter'

Stored Procedures

A Stored Procedure is a prepared sql code that is saved into the database so that it can be reused over and over
again. It is also possible to pass parameters to the stored procedure. A stored procedure can be a group of SQL
statements compiled into a single execution plan.

Examples:

Stored Procedure for the Query : “Select * from Students”

Create PROCEDURE GetStudents

As BEGIN

 Select * from Students

End

GO

Stored procedure for insert sql statement

Create PROCEDURE InsertIntoStudents

@name VARCHAR(15) = NULL,

@address VARCHAR(20)=NULL,

@phone VARCHAR(10) = NULL,

@new_student_id INT OUTPUT

As

BEGIN

Insert into Students(name,address,phone)values(@name,@address,@phone)

Select @new_student_id = SCOPE_IDENTITY()

END

GO

Stored Procedure for the query to find a student whose name is “Harry”

Create PROCEDURE FindStudent

@name VARCHAR(15)

AS

BEGIN

Select * from students where name = @name

END

GO

Stored Procedures and Parameterized Query in ASP

Set con = Server.CreateObject(“ADODB.Connection”)

Set cmd = Server.CreateObject(“ADODB.Command”)

Set rs = Server.CreateObject(“ADODB.RecordSet”)

Constring = “Driver={Sql server};server=localhost;database=school;”

cmd.ActiveConnection = con

cmd.CommandText = “FindStudent”

cmd.CommandType = adCmdStoredProc

cmd.Parameters.Append cmd.CreateParameter(“@name”,advarchar,adparamInput,20,”Hari”)

rs = cmd.Execute

rs.open cmd,con

rs.close

con.close

set rs= nothing

set con = nothing

set cmd = nothing

Another Example

The Stored Procedure

CREATE PROCEDURE qryNumberOnCourse
@CourseID nvarchar(10), /* Input parameter */
@Number int OUTPUT /* Output parameter */
 AS
BEGIN
SELECT @Number=count(tblStudents.StudentID)
 FROM tblStudents INNER JOIN
 tblEnrolment ON
 tblStudents.StudentID = tblEnrolment.StudentID
WHERE tblEnrolment.CourseID = @CourseID
END
GO

The purpose of this stored procedure is to return the number of students who are enrolled on a particular course
code. So the input parameter is the course code and the output parameter is the number of students.

The ASP Code

Dim cmd, rs, connect, intNumber

Set con = Server.CreateObject(“ADODB.Connection”)

Set cmd = Server.CreateObject ("ADODB.Command")
Constring = “Driver={Sql server};server=localhost;database=school;”

cmd.ActiveConnection = con
cmd.CommandText = "qryNumberOnCourse"
cmd.CommandType = adCmdStoredProc
cmd.Parameters.Append cmd.CreateParameter("@CourseID",adVarChar,adParamInput ,10,"C001")
cmd.Parameters.Append cmd.CreateParameter("@Number",adInteger,adParamOutput)
Set rs = cmd.Execute
intNumber = comm.Parameters("@Number")
set cmd = nothing
set con = nothing
%>

Set cmd = Server.CreateObject ("ADODB.Command")

This starts with creating a command object which provides us with the ability to execute our query.

Set con = Server.CreateObject(“ADODB.Connection”)

Constring = “Driver={Sql server};server=localhost;database=school;”

The connection string requires you to enter in your server name.

cmd.ActiveConnection = con

The active connection defines the connection to our database.

cmd.CommandText = "qryNumberOnCourse"

CommandText defines which command we are about to execute, which is our query.

cmd.CommandType = adCmdStoredProc

CommandType identifies the type of command being executed, which in this case is a stored procedure.

cmd.Parameters.Append cmd.CreateParameter("@CourseID",adVarChar,adParamInput ,10,"C001")

We must create a parameter object with the values we are using. In this example we are hard coding the value to
be entered into the query which is C001.

cmd.Parameters.Append cmd.CreateParameter("@Number",adInteger,adParamOutput)

The output parameter is going to be passed to the variable @Number.

Set rs = cmd.Execute
intNumber = cmd.Parameters ("@Number")

Now we execute our parameter query and the result is placed into intNumber

set cmd = nothing
Response.Write (intNumber)

Finally, close and de-reference the objects and then display the variable intNumber.

Controlling Transactions In ASP

These 3 methods is used with the Connection object to save or cancel changes made to the data source.

BeginTrans

The BeginTrans method starts a new transaction.

CommitTrans

The CommitTrans method saves all changes made since the last BeginTrans method call, and ends the current
transaction.

Since transactions can be nested, all lower-level transactions must be resolved before you can resolve higher-
level transactions.

RollbackTrans

The RollbackTrans method cancels all changes made since the last BeginTrans method call, and ends the
transaction.

ASP Application
As the Internet grew into a major player on the global economic front, so did the number of
investors who were interested in its development. So, it may be wonder, how does the Internet
continue to play a major role in communications, media and news? The key words are: Web
Application Projects.
Web applications are business strategies and policies implemented on the Web through the use of
User, Business and Data services. These tools are where the future lies.
Who Needs Web Applications and Why?

There are many entities that require applications for the Web-one example would be Business-to-
Business interaction. Many companies in the world today demand to do business with each other
over secure and private networks. This process is becoming increasingly popular with a lot of
overseas companies who outsource projects to each other. From the simple process of
transferring funds into a bank account, to deploying a large scale Web services network that
updates pricing information globally, the adoption of a Web applications infrastructure is vital for
many businesses.
The Web Application Model

The Web application model, like many software development models, is constructed upon 3
tiers: User Services, Business Services and Data Services. This model breaks an application into
a network of consumers and suppliers of services.
The User Service tier creates a visual gateway for the consumer to interact with the application.
This can range from basic HTML and DHTML to complex COM components and Java applets.
The user services then grab business logic and procedures from the Business Services. This tier
can range from Web scripting in ASP/PHP/JSP to server side programming such as TCL,
CORBA and PERL, that allows the user to perform complex actions through a Web interface.
The final tier is the Data Service layer. Data services store, retrieve and update information at a
high level. Databases, file systems, and writeable media are all examples of Data storage and
retrieval devices. For Web applications, however, databases are most practical. Databases allow
developers to store, retrieve, add to, and update categorical information in a systematic and
organized fashion.
Choosing the Right Project

Choosing the right types of projects to work on is an extremely important part of the Web
application development plan.
Assessing to the resources, technical skills, and publishing capabilities should be first goal.
Taking the 3 tiers into consideration, devise a list of all available resources that can be
categorically assigned to each tier.
The next consideration should be the cost. Do we have a budget with which to complete this
project? How much will it cost us to design, develop and deliver a complete project with a fair
amount of success? These are questions that should be answered before signing any deals or
contracts.
Let’s look at an example. A company called ABC needs to develop a Web application that will
display sales information created by different sales agents. The data is updated daily through a
completely automated process from all 3 service tiers. The client tells developer that this entire
project must be done in ASP/SQL server and that developer should host the application as well.
After assessing all resources, developer and his/her team come to a conclusion that the company
is unable to do data backups on a daily basis. After further discussion, s/he realizes that this is a

very important part of the setup for his/her client, and s/he should not risk taking a chance with
the project. It’s very likely that developer will be more prepared next time around, when a similar
project lands on desk, so decline the job and recommend someone else who has the capabilities
to do it right now.
The Phases in a Web Application Project

The Web application development process has 4 phases:
1. Envisioning the nature and direction of the project
2. Devising the plan
3. Development
4. Testing, support and stability

Let’s look at each of these in more detail.
1. Envisioning the nature and direction of the project
In this phase, the management and developers assigned to the project come together and
establish the goals that the solution must achieve. This includes recognizing the limitations that
are placed on the project, scheduling, and versioning of the application. By the end of this phase,
there should be clear documentation on what the application will achieve.
2. Devising the plan
In this phase, developer and developer team must determine the "how’s" of the application.
What scripting language is most appropriate, which features must be included, and how long will
it take? These are some of the questions that must be answered through this planning phase. The
main tangents at this point are the project plan and functional specification. The project plan
determines a timeframe of events and tasks, while the functional specification outlines in detail
how the application will function and flow.
3. Development
Once the project plan and functional specification are ready, a baseline is set for the development
work to begin. The programmer/s or Web developer/s begin coding, testing and publishing data.
This phase establishes the data variables, entities and coding procedures that will be used
throughout the remainder of the project. A milestone document is prepared by the development
team, which is then handed to management for review.
4. Testing, support and stability
The stability phase of the application project mainly focuses on testing and the removal of bugs,
discrepancies and network issues that may otherwise cause the application to fail. It is here that
policies and procedures are established for a successful support system.
Knowing Options and Using them Wisely

Understanding of the architecture and procedures behind Web application development is like
what technical options is needed to consider for the development process itself.
Windows Web Servers
Microsoft has built a loyal customer base on one important factor – their easy-to-use software.
Windows NT/2000/XP Web servers are very fast and easy to administer. The fact that the
operating system is a Windows shell means that administrators and authors can easily allow the
Web server to interact with other software and hardware applications to transmit and receive data
over the Internet. Popular server side scripting languages used with Windows servers are
ASP/ASP. net, Java Server Pages, and PHP.
UNIX/Linux Web Servers

UNIX has long been known for its reliability. It is a powerful and robust Web server and
operating system. Unix is the server of choice for many large-scale Websites that need content
management systems or receive an extremely high volume of traffic. Popular server side
scripting languages for UNIX are Java Server Pages, PERL, PHP, and CORBA
Every scripting language has its pros and cons. As I’m not writing a book here, I’ll use the ASP
model as my language of illustration. When working with Windows servers, there are several
important parameters that the developer needs to throw into the equation, including security,
scalability, speed and application design. So below I’m going to help you formulate a successful
plan to accomplish all kinds of Web projects.
Planning for a Successful Web Development Project

In order to drastically minimize the risk of project failure, application development projects in
the following sequence may be good approach.
1. Identify business logic and entities
Start by gathering information on everything. If we are going to be working with databases,
begin by enumerating how many entities will be used in the business logic. For example, if
program implements sales data, a sales ticket would be an entity.
Once all entities have been identified, establish a clear guideline for their relationships. This can
be done via presentations, flowcharts or even reports.
2. Create a functional specification and project plan
This part is the most important part of the project. Functional specifications (or functional specs)
are a map, or blueprint for how particular Web application looks and works. The spec details
what the finished product will do, user interaction, and its look and feel.
An advantage of writing a functional spec is that it streamlines the development process. It takes
discrepancies and guesswork out of the programming process, because the level of detail that
goes into the plan makes it possible to minimize the misunderstanding that’s usually associated
with project mishaps.
Once the functional spec is finished, a project plan must be devised. A project plan is a timeline
of tasks and events that will take place during the project. The project or program manager is
normally the person who creates a project plan, and their primary focus is to detail task notes
while being able to accommodate scheduling and resource information.
3. Bring the application model into play
As discussed earlier, the application model consists of 3 tiers – The User, Business and Data
service tiers, each of which serves a substantial purpose.
Practically speaking, it’s always best to start with the data tier, because entities and their
relationships are already identified. The data tier can be an SQL server database, a text file, or
even the powerful and robust Oracle. Create tables, relationships, jobs, and procedures
depending on what platform chosen. If the data is a warehouse (i.e. the data already exists and
does not depend on real time interaction), then make sure that new and additional data can be
added securely and in a scalable fashion.
The Business services tier is the heart of the application. It involves the implementation of
business logic into the scripting or programming language.
At this stage, make environment for testing and debugging has already been setup. Always test
on at least 2 instances in application, after all, what may work perfectly, may not do so well on
other platforms or machines. ASP, XML, PHP, JSP and CGI are some examples of server side

scripting languages used at the business service level. Whichever language choosen, make sure
that it’s capable of handling all the business logic presented in the functional specification.
The last is the user tier, which is absolutely vital for the interactive and strategic elements in the
application. It provides the user with a visual gateway to the business service by placing images,
icons, graphics and layout elements in strategic areas of interest, most commonly, based on
management research.
4. Develop a support scheme
Being able to support and stabilize application is very important. Define a procedure call for
cases of failure, mishaps or even downtime.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

1

UNIT-7 ADVANCED ASP

.Net Framework

.NET is a software development and application execution environment that allows us to create, compile, test,

deploy, and execute software that may be coded in a variety of different programming languages that adhere to a

single set of Common Language Runtime files.

From a high-level view, the .NET Framework can be described as a little virtual operating system that runs on

top of the operating systems.

The .NET Framework is an integral Windows component that supports building and running the next generation

of applications. The .NET Framework is designed to fulfil the following objectives:

 To provide a consistent object-oriented programming environment whether object code is stored and

executed locally, executed locally but Internet-distributed, or executed remotely.

 To provide a code-execution environment that minimizes software deployment and versioning conflicts.

 To provide a code-execution environment that promotes safe execution of code, including code created

by an unknown or semi-trusted third party.

 To provide a code-execution environment that eliminates the performance problems of scripted or

interpreted environments.

 To make the developer experience consistent across widely varying types of applications, such as

Windows-based applications and Web-based applications.

 Figure 7.1 : .Net Architecture

.Net Architecture is explained from bottom to top in the following discussion.

1. At the bottom of the Architecture is Common Language Runtime. Dot NET Framework common

language runtime resides on top of the operating system services. The common language runtime loads

and executes code that targets the runtime. The runtime gives you, for example, the ability for cross-

language integration.

2. .NET Framework provides a rich set of class libraries. These include base classes, like networking and

input/output classes, a data class library for data access, and classes for use by programming tools, such

as debugging services. All of them are brought together by the Services Framework, which sits on top of

the common language runtime.

3. ADO.NET is Microsoft ActiveX Data Object (ADO) model for the .NET Framework. ADO.NET is not

simply the migration of the popular ADO model to the managed environment but a completely new

paradigm for data access and manipulation.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

2

ADO.NET is intended specifically for developing web applications. This is evident from its two major

design principles:

1. Disconnected Datasets In ADO.NET, almost all data manipulation is done outside the context of

an open database connection.

2. Effortless Data Exchange with XMLDatasets can converse in the universal data format of the

Web, namely XML.

4. The 4th layer of the framework consists of the Windows application model and, in parallel, the Web

application model.

The Web application model-in the slide presented as ASP.NET-includes Web Forms and Web

Services.ASP.NET comes with built-in Web Forms controls, which are responsible for generating the

user interface. They mirror typical HTML widgets like text boxes or buttons. If these controls do not fit

your needs, you are free to create your own user controls.

Web Services brings you a model to bind different applications over the Internet. This model is based on

existing infrastructure and applications and is therefore standard-based, simple, and adaptable.

Web Services are software solutions delivered via Internet to any device. Today, that means Web

browsers on computers, for the most part, but the device-agnostic design of .NET will eliminate this

limitation.

5. One of the obvious themes of .NET is unification and interoperability between various programming

languages. In order to achieve this; certain rules must be laid and all the languages must follow these

rules. In other words we cannot have languages running around creating their own extensions and their

own fancy new data types. CLS is the collection of the rules and constraints that every language (that

seeks to achieve .NET compatibility) must follow.

6. The CLR and the .NET Frameworks in general, however, are designed in such a way that code written in

one language can not only seamlessly be used by another language. Hence ASP.NET can be

programmed in any of the .NET compatible language whether it is VB.NET, C#, Managed C++ or

JScript.NET/

The main two components of .NET Framework are: the common language runtime and the class library.

Common Language Runtime(CLR)

The common language runtime is the foundation of the .NET Framework. It can be considered as an agent that

manages code at execution time, providing core services such as compilation, memory management, thread

management, while also enforcing strict type safety and other forms of code accuracy that promote security and

robustness. In fact, the concept of code management is a fundamental principle of the runtime. Code that targets

the runtime is known as managed code, while code that does not target the runtime is known as unmanaged

code.

The runtime enforces code robustness by implementing a strict type-and-code-verification infrastructure called

the common type system (CTS). The common type system defines how types are declared, used, and managed in

the runtime, and is also an important part of the runtime's support for cross-language integration. The CTS

ensures that all managed code is self-describing. The various Microsoft and third-party language compilers

generate managed code that conforms to the CTS. The common type system performs the following functions:

 Establishes a framework that helps enable cross-language integration, type safety, and high performance

code execution.

 Provides an object-oriented model that supports the complete implementation of many programming

languages.

 Defines rules that languages must follow, which helps ensure that objects written in different languages

can interact with each other.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

3

When compilers emit code to run on the CLR, they do not emit machine language code. Rather, an intermediate

language code is used called Microsoft Intermediate Language (MSIL). MSIL is like an object-oriented version

of assembly language and is platform independent. It has a rich set of instructions that enable efficient

representation of the code. When a code starts to execute, a process knowing as Just in Time Compilation

(JIT) converts the MSIL code into the native processor instructions of the platform, which is then executed.

Just In Time compilers in many ways are different from traditional compilers as they compile the

IL(intermediate Language) to native code only when desired; eg., when a function is called the Intermediate

Language of the function‘s body is converted to native code just in time. So, part of code that is not used by the

particular run is never converted to native code. If some IL code is converted to native code, then the next time

it‘s needed the CLR reuses the same (already compiled) copy without re-compiling. So, if a program runs for

some time (assuming that all or most of the functions get called), then it won‘t have any just in time performance

penalty.

.Net FrameworkClass Library

The .NET Framework class library is a comprehensive, object-oriented collection of reusable types that can be

used to develop applications ranging from traditional command-line or graphical user interface (GUI)

applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML

Web services. The class library is object oriented, providing types from which your own managed code can

derive functionality. This not only makes the .NET Framework types easy to use, but also reduces the time

associated with learning new features of the .NET Framework. In addition, third-party components can integrate

seamlessly with classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you can use to develop

your own collection classes. Your collection classes will blend seamlessly with the classes in the .NET

Framework.

The .NET Framework types enable you to accomplish a range of common programming tasks, including tasks

such as string management, data collection, database connectivity, and file access. In addition to these common

tasks, the class library includes types that support a variety of specialized development scenarios. For example,

the Windows Forms classes are a comprehensive set of reusable types that vastly simplify Windows GUI

development. If you write an ASP.NET Web Form application, you can use the Web Forms classes.

.Net Languages

.Net framework supports many programming languages. Some of them are Visual Basic(VB), C#, C++, F# and

others.

C# Language

C# is an elegant and type-safe object-oriented language that enables developers to build a wide range of secure

and robust applications that run on the .NET Framework. You can use C# to create traditional Windows client

applications, Web applications, client-server applications, database applications and much more. C# syntax is

highly expressive, yet with less than 90 keywords, it is also simple and easy to learn.

It is a Case-Sensitive object-oriented language which supports the concepts of encapsulation, inheritance and

polymorphism. All variables and methods, including the Main method, the application's entry point, are

Code in any

.Net Language
MSIL Code

Executable Native

Code

Language

Compiler

Compile time

Just In Time

Compiler

Run time

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

4

encapsulated within class definitions. A class may inherit directly from one parent class, but it may implement

any number of interfaces.

C# language is developed by Microsoft. The name "C sharp" was inspired by musical notation where a sharp

indicates that the written note should be made a semitone higher in pitch.

Sample C# Program

//HelloWorld Program in c#

using System;

namespace HelloWorld

{

 class Hello

 {

 static void Main()

 {

 Console.WriteLine("Hello World!");

 // Keep the console window open in debug mode.

 Console.WriteLine("Press any key to exit.");

 Console.ReadKey();

 }

 }

}

using System;

namespace NamespaceReadString

{

 public class ReadString {

 public static void Main() {

 string str;

 Console.WriteLine("Enter some characters.");

 str = Console.ReadLine();

 Console.WriteLine("You entered: " + str);

 Console.ReadKey();

 }

 }

}

Namespace in c#

Namespaces are C# program elements designed to help you organize your programs. A Namespace is simply a

logical collection of related classes in C#. We bundle our related classes in some named collection calling it a

namespace. As C# does not allow to classes with the same name to be used in a program, the sole purpose of

using namespaces is to prevent name conflicts. For example, if you created a class named Console, you would

need to put it in your own namespace, say MyNamespace, to ensure that there wasn't any confusion about when

the System.Console class should be used or when your class should be used. To avoid this, these classes are

made part of their respective namespace. So the fully qualified name of these classes will be

MyNamespace.Console and System.Console, hence resolving any ambiguity for the compiler. The namespace

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

5

may contain classes, events, exceptions, delegates and even other namespaces called ‗Internal namespace‘. For

Example.

namespace N1 // N1

{

 class C1 // N1.C1

 {

 class C2 // N1.C1.C2

 {

 }

 }

 namespace N2 // N1.N2

 {

 class C2 // N1.N2.C2

 {

 }

 }

}

Namespaces don't correspond to file or directory names. If naming directories and files to correspond to

namespaces helps you organize your code, then you may do so, but it is not required.

The using Keyword

The using keyword allows us to use the classes in the following namespace. For example:

using System;

By doing this, we can now access all the classes defined in the System namespace like we are able to access the Console

class in our Main method. using allows us to access the classes in the referenced namespace only and not in its

internal/child namespace. Hence we might need to write

using System.Collections;

in order to access the classes defined in Collection namespace which is a sub/internal namespace of System namespace.

The Main method

A C# application must contain a Main method, in which control starts and ends. The Main method is where you

create objects and execute other methods.The Main method is a static method that resides inside a class or a

struct. The main method is the entry point of our program. The main method is designated as static as it will be

called by the Common Language Runtime (CLR) without making any object.

In the previous "Hello World!" example, it resides in a class named Hello. You can declare the Main method in

one of the following ways:

1>It can return void

static void Main()

{

 //...

}

2>It can also return an integer.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

6

static int Main()

{

 //...

 return 0;

}

3> With either of the return types, it can take arguments.

static void Main(string[] args)

{

 //...

}

or

static int Main(string[] args)

{

 //...

 return 0;

}

Variables

During the execution of program, data is temporarily stored in memory. A variable is the name given to a

memory location holding particular type of data. Each variable is associated with a data type and value.

<data_type> <variable>;

Eg: int i;

string myName;

Constants

Constants once defined, the value cannot be changed by program. All the constants are replaced by their values at the

compile time.

Eg. const double PI 3.1416

Operators in C#

C# provides a large set of operators, which are symbols that specify which operations to perform in an expression.

Arithmetic operators: +,-,*,/,%,++,--

Assignment operators: =,+=,…

Relational operators: ==,!=,<,>,<=,>=

Logical operators: &, |, ^, !, ||

Example:

static void Main(string[] args)

{

 int num1 = int.parse(args[0]);

 int num2 = int.parse(args[1]);

 int sum = num1+num2;

 Console.WriteLine(―Sum of {0} and {1} is {2}.‖,num1,num2,sum);

 Console.WriteLine(―Sum of ‖+ num1+ ―and‖ + num2 + ―is‖ + sum);

}

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

7

Blocks

The C#, Java, and C languages all rely heavily on curly braces—parentheses with a little more attitude: {}.Curly

braces group multiple code statements together. Typically, the reason you‘ll want to group code statements

together is because you want them to be repeated in a loop, executed conditionally, or grouped into a function.

{

// Code statements go here.

}

Loops

Looping statements repeat a specified block of code until a given condition is met.

For loop

for (int i = 0; i<=9; i++)

{

 System.Console.WriteLine(i);

}

foreach Loops

static void Main()

{

 string[] arr= new string[] {"Jan", "Feb", "Mar"};

 foreach (string s in arr)

 {

 System.Console.WriteLine(s);

 }

}

while and do...while Loops

while (condition)

{

 // statements

}

do

{

 // statements

}

while(condition); // Don't forget the trailing ; in do...while loops

Conditional Logic

If else

if (myNumber > 10)

{

 // Do something.

}

else if (myString == "hello")

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

8

{

 // Do something.

}

else

{

 // Do something.

}

switch

C# also provides a switch statement that you can use to evaluate a single variable or expression for multiple

possible values. The only limitation is that the variable you‘re evaluating must be an integer-based data type, a

bool, a char, a string, or a value from an enumeration.

In the following code, each case examines the myNumber variable and tests whether it‘s equal to a specific

integer:

switch (myNumber)

{

 case 1:

 // Do something.

 break;

 case 2:

 // Do something.

 break;

 default:

 // Do something.

 break;

}

Arrays and String

Array is the collection of similar data type. Each individual value in the array is accessed using one or more

index numbers. It‘s often convenient to picture arrays as lists of data (if the array has one dimension) or grids of

data (if the array has two dimensions). Typically, arrays are laid out contiguously in memory. All arrays start at a

fixed lower bound of 0. When you create an array in C#, you specify the number of elements. Because counting

starts at 0, the highest index is actually one fewer than the number of elements. (In other words, if you have three

elements, the highest index is 2.)

Declaration

Single Dimension Array

<data_type>[] <identifier> = new <data_type> [<size>]

int[] numbers = new int[5];

or

int[] numbers;

numbers = new int[5];

string[] towns = new string[5];

int[] nums = {1,2,3,4,5};

string[] firstNames = {―hari‖,―shyam‖, ―michael‖};

Multidimension Array

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

9

<data_type>[,] <identifier> = new <data_type> [<size>,<size>]

string[,] names = new string[2,4];

string[,] names = {{―hari‖,‖khadka‖}, {―ram‖, ―pandey‖}}

value of names[0,0] is ―hari‖, names[0,1] is ―khadka‖, names[1,1] is ―pandey‖

int[,] heightWidth = new int[5,2];

int[,] twoNums = {{1,2},{3,4},{5,6}};

value of twoNums[0,1] is 2.

Declaring arrays does not actually create the arrays. In C#, arrays are objects and must be instantiated.

foreach

foreach statement provides a simple, clean way to iterate through the elements of an array.

foreach(<type_of_element> <identifier> in <array>)

{

 <statement or set of statements>

}

foreach(int i in numbers)

{

 Console.WriteLine(i);

}

In foreach, variable used to hold the individual elements of array in each iteration is read only. The elements in

array cannot be changed through it. This means that foreach will only allow to iterate through the array or

collection and not to change the contents of it. foreach can be used to iterate through arrays or collections. By

collection, we mean any class, struct or interface that implements the IEnumerable interface.

String is also the collection of characters. So you can iterate over a string using foreach.

String firstName = ―Michael‖;

Foreach(char ch in firstName)

{

 Console.WriteLine(ch);

}

Class and Objects

A class is a construct that enables us to create your own custom types by grouping together variables of other

types, methods and events. Together, these elements are called class members. A class is simply an abstract

model used to define a new data types. A class may contain any combination of encapsulated data (fields or

member variables), operations that can be performed on data (methods) and accessors to data(properties).

For example, there is a class String in the System namespace of .Net framework Class Library. This class contains an

array of characters (data) and provide different operations (methods) that can be applied to its data like ToLowerCase(),

Trim(), Substring() etc. It also has some propertied like Length.

An object is the concrete realization of instance built on the model specified by the class. An object is created in

the memory using the keyword ‗new‘ and is referenced by an identifier called a ―reference‖.

For example: MyClass myClassObject=new MyClass();

In this example, an object of MyClass is referenced by an identifier myClassObject .

Fields are the data contained in the class. Fields may be implicit data types, objects of some other class,

enumerations, structs or delegates.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

10

Methods are the operations performed on the data. A method may take some input values through its parameters

and may return a value of particular data type.

A class can be static or non-static.

Static Class and Static Members

A static class is a class which cannot be instantiated. Static classes and class members are used to create data and

functions that can be accessed without creating an instance of the class. Static class members can be used to

separate data and behavior that is independent of any object identity i.e. the data and functions do not change

regardless of what happens to the object.

The main features of a static class are:

 They only contain static members.

 They cannot be instantiated.

 They are sealed.

 They cannot contain instance constructors but can have a static constructor

Keyword static is used to define a static class and static class members.

Example

static class CompanyInfo

{

 public static string GetCompanyName() { return "CompanyName"; }

 public static string GetCompanyAddress() { return "CompanyAddress"; }

 //...

}

Access Modifiers

Access modifiers are keywords used to specify the declared accessibility of a member or a type. C# has

introduced the four access modifiers: public, protected, internal, and private.

The following five accessibility levels can be specified using the access modifiers:

public: Access is not restricted.

protected: Access is limited to the containing class or types derived from the containing class.

Internal: Access is limited to the current project(Assembly).

protected internal: Access is limited to the current project(Assembly) or types derived from the containing

class.

private: Access is limited to the containing type.

Example:

using System;

namespace StudentNamespace

{

 public class student

 {

 //fields

 private int age,markMaths,markSci,markEng,obt;

 private string name;

 private double percentage;

 //methods

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

11

 public Void CalulateTotal()

 {

 obt=markMaths+markSci+marking;

 }

 public Void CalculatePercentage()

 {

 percentage=(double) obt/200*100;

 }

 public double GetPecentage

{

 return percentage;

}

//Main Methods

public Staic void Main()

{

 Student std=new Student();

 std.name=‖Ram‖.

 std.age=21;

 std.markMath=80;

 std.markSci=80;

 std,marking=80;

 std.CalculateTotal();

 std.CalculatePercentage();

 double per=std.GetPercentage();

}

 }

}

Properties

Properties are members that provide a flexible mechanism to read, write, or compute the values of private fields.

Properties can be used as though they are public data members, but they are actually special methods called

accessors. This enables data to be accessed easily while still providing the safety and flexibility of methods.

Since all the fields of class are made private, to assign values to them through their reference ‗Properties‘ is

used. C# is the first language to provide the support of defining properties in the languages core. Properties hold

specific information relevant to that class of object. Properties can be thought as characteristics of the objects

that they represent. In traditional languages like java and C++, for accessing the private fields of class, public

methods called getters (to retrieve the value) and setters (to assign the value) were defined like if we have a

private field name:

private string name;

then the getters and setters would be like

//getter to name field

public string GetName()

{

 return name;

}

//setter to name field

public void SetName(string theName)

{

 name=theName;

}

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

12

These procedures gives a lot of control over how fields of classes should be accessed and dealt in a program.

But, the problem is that two methods have to be defined and have to prefix the name of fields with Get or Set.

C# provides the built in support for these getters and setters in the form of properties. Properties are context

sensitive constructs used to read, write or compute private fields of class land to achieve control over how the

fields can be accessed. The general syntax for properties is

<access_modifier> <data_type> <name_of_property>

{

 get

 {

 //some optional statements

 return <some_private_fields>;

 }

 set

 {

 //some optional statements

 <some_private_fields>=value;

 }

}

Example:

class TimePeriod

{

 private double seconds;

 public double Hours

 {

 get { return seconds / 3600; }

 set { seconds = value * 3600; }

 }

}

class Program

{

 static void Main()

 {

 TimePeriod t = new TimePeriod();

 // Assigning the Hours property causes the 'set' accessor to be called.

 t.Hours = 24;

 // Evaluating the Hours property causes the 'get' accessor to be called.

 System.Console.WriteLine("Time in hours: " + t.Hours);

 }

}

Auto-Implemented Properties

Auto-implemented properties make property-declaration more concise when no additional logic is required in

the property accessors. When you declare a property as shown in the following example, the compiler creates a

private, anonymous backing field that can only be accessed through the property's get and set accessors.

class Customer

{

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

13

 // Auto-Impl Properties for trivial get and set

 public double TotalPurchases { get; set; }

 public string Name { get; set; }

 // Constructor

 public Customer(double purchases, string name)

 {

 TotalPurchases = purchases;

 Name = name;

 }

 // Methods

 public string GetContactInfo() {return "ContactInfo";}

 public string GetTransactionHistory() {return "History";}

}

class Program

{

 static void Main()

 {

 // Intialize a new object.

 Customer cust1 = new Customer (4987.63, "Northwind");

 //Modify a property

 cust1.TotalPurchases += 499.99;

 }

}

Constructors

Constructors are class methods that are executed when an object of a class or struct is created. They have the

same name as the class or struct, and usually initialize the data members of the new object. A class or struct may

have multiple constructors that take different arguments. Constructors enable the programmer to set default

values, limit instantiation, and write code that is flexible and easy to read.

A constructor has the following properties:
- It has the same name as its containing class.

- It has no return type.

- It is automatically called when a new instance or object of a class is created, hence why it‘s called a constructor.

- the constructor contains initialization code for each object, like assigning default values to the fields.

If you do not provide a constructor for your object, C# will create one by default that instantiates the object and

sets member variables to the default values.

In the following example, a class named Taxi is defined by using a simple constructor. This class is then

instantiated with the new operator. The Taxi constructor is invoked by the new operator immediately after

memory is allocated for the new object.

public class Taxi

{

 public bool isInitialized;

 public Taxi()

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

14

 {

 isInitialized = true;

 }

}

class TestTaxi

{

 static void Main()

 {

 Taxi t = new Taxi();

 Console.WriteLine(t.isInitialized);

 }

}

A constructor that takes no parameters is called a default constructor. Default constructors are invoked whenever

an object is instantiated by using the new operator and no arguments are provided to new.

Overloading of Constructors and Methods

It is possible to have more than one method with the same name and return type but with different number and types of

arguments (parameters). This is called method overloading. For example, in the following class MathUtil, we have

defined two methods with the name plus. Both of them have same return type but the first one has two parameters

whereas the second one has 3 parameters. When plus() is called, the compiler will decide, on the basis of the types and

number of parameters being passed, which one of these two to actually call, for example, plus(2,3) calls the first one and

plus(2,3,4) calls the second one.

Class MathUtil

{

 public static int plus(int n1, int n2)

 {

 return(n1+n2);

 }

 public static int plus(int n1, int n2, int n3)

 {

 return (n1 + n2 +n3);

 }

 Static void Main()

 {

 plus(2,3);

 plus(2,3,4);

 }

}

Methods are overloaded depending on the parameter list and not on the return type. The WriteLine() method of Console

class in the System namespace has 19 different overloaded forms.

Similarly, constructors can be overload. For example

public class Employee

{

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

15

 public int salary;

 public Employee(int annualSalary)

 {

 salary = annualSalary;

 }

 public Employee(int weeklySalary, int numberOfWeeks)

 {

 salary = weeklySalary * numberOfWeeks;

 }

}

If we create an object like: Employee emp1=new Employee(1000);

the first constructor will be called initializing the salary to 1000. If we create an object like

Employee emp2=new Employee(1000,5);

the second constructor will be called which takes two arguments to calculate the salary.

Overloading methods and constructors gives program a lot of flexibility and reduces a lot of complexity that would

otherwise be produced if we had to use different name for these methods.

Passing Parameters

In C# variables are of two types: reference types and value types.

 A reference type is a type which has as its value a reference to the appropriate data rather than the data itself.

Array is a reference type. Similarly Class types, interface types, delegate types are all reference types.

A value type is a type which contains the actual data. Variables of a value type directly contain the data. Simple

types such as float, int, char are all value types.

In C#, parameters can be passed either by value or by reference. Passing parameters by reference allows function

members (methods, properties, constructors) to change the value of the parameters and have that change persist.

To pass a parameter by reference, use the ref or out keyword.

1>Passing Value-type parameters

Value-type parameters can be passed by value or by reference.

a> Passing Value Types by Value

Passing a value-types variable by value to a method means passing a copy of the variable to the method. Any

changes to the parameter that take place inside the method have no affect on the original data stored in the

variable. For example

using System;

class PassingValByVal

{

 static void SquareIt(int x)

 // The parameter x is passed by value.

 // Changes to x will not affect the original value of myInt.

 {

 x *= x;

 Console.WriteLine("The value inside the method: {0}", x);

 //output : The value inside the method : 25

 }

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

16

 public static void Main()

 {

 int myInt = 5;

 Console.WriteLine("The value before calling the method: {0}",

 myInt);

 //output : The value before calling the method: 5

 SquareIt(myInt); // Passing myInt by value.

 Console.WriteLine("The value after calling the method: {0}",

 myInt);

 //output : The value after calling the method: 5

 }

}

The variable myInt, being a value type, contains its data (the value 5). When SquareIt is invoked, the contents of

myInt are copied into the parameter x, which is squared inside the method. In Main, however, the value of myInt

is the same, before and after calling the SquareIt method. In fact, the change that takes place inside the method

only affects the local variable x.

b> Passing Value Types by Reference

If you want the called method to change the value of the parameter, you have to pass it by reference, using the

ref or out keyword. Using ref requires the variable must be initialized before passing it to the method by

reference whereas it‘s not necessary to initialize the variable before passing it to the method if we are using out.

out is generally used when a method has to return multiple values.

Example – Using ref

using System;

class PassingValByRef

{

 static void SquareIt(ref int x)

 // The parameter x is passed by reference.

 // Changes to x will affect the original value of myInt.

 {

 x *= x;

 Console.WriteLine("The value inside the method: {0}", x);

 //output: The value inside the method: 25

 }

 public static void Main()

 {

 int myInt = 5;

 Console.WriteLine("The value before calling the method: {0}",

 myInt);

 //output: The value before calling the method: 5

 SquareIt(ref myInt); // Passing myInt by reference.

 Console.WriteLine("The value after calling the method: {0}",

 myInt);

 //Output: The value after calling the method: 25

 }

}

In this example, it is not the value of myInt that is passed; rather, a reference to myInt is passed. The parameter x

is not an int; it is a reference to an int (in this case, a reference to myInt). Therefore, when x is squared inside the

method, what actually gets squared is what x refers to: myInt.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

17

The keyword out can be used similarly.

class OutExample

{

 static void Method(out int i)

 {

 i = 44;

 }

 static void Main()

 {

 int value;

 Method(out value);

 // value is now 44

 }

}

Swapping value types

A common example of changing the values of the passed parameters is the Swap method, where you pass two

variables, x and y, and have the method swap their contents. You must pass the parameters to the Swap method

by reference; otherwise, you will be dealing with a local copy of the parameters inside the method. The

following is an example of the Swap method that uses reference parameters:

static void SwapByRef(ref int x, ref int y)

{

 int temp = x;

 x = y;

 y = temp;

}

When you call this method, use the ref keyword in the call, like this:

SwapByRef (ref i, ref j);

2>Passing Reference-Type Parameters

A variable of a reference type does not contain its data directly; it contains a reference to its data. When you pass

a reference-type parameter by value, it is possible to change the data pointed to by the reference, such as the

value of a class member. However, you cannot change the value of the reference itself; that is, you cannot use

the same reference to allocate memory for a new class and have it persist outside the block. To do that, pass the

parameter using the ref (or out) keyword.

a> Passing Reference Types by Value

The following example demonstrates passing a reference-type parameter, myArray, by value, to a method,

Change. Because the parameter is a reference to myArray, it is possible to change the values of the array

elements. However, the attempt to reassign the parameter to a different memory location only works inside the

method and does not affect the original variable, myArray.

// Passing an array to a method without the ref keyword.

using System;

class PassingRefByVal

{

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

18

 static void Change(int[] arr)

 {

 arr[0]=888; // This change affects the original element.

 arr = new int[5] {-3, -1, -2, -3, -4}; // This change is local.

 Console.WriteLine("Inside the method, the first element is: {0}", arr[0]);

 //Output: Inside the method, the first element is: -3

 }

 public static void Main()

 {

 int[] myArray = {1,4,5};

 Console.WriteLine("Inside Main, before calling the method, the first element is: {0}", myArray [0]);

 //Output: Inside Main, before calling the method, the first element is: 1

 Change(myArray);

 Console.WriteLine("Inside Main, after calling the method, the first element is: {0}", myArray [0]);

 //Output: Inside Main, after calling the method, the first element is: 888

 }

}

In the preceding example, the array, myArray, which is a reference type, is passed to the method without the ref

parameter. In such a case, a copy of the reference, which points to myArray, is passed to the method. The output

shows that it is possible for the method to change the contents of an array element (from 1 to 888). However,

allocating a new portion of memory by using the new operator inside the Change method makes the variable arr

reference a new array. Thus, any changes after that will not affect the original array, myArray, which is created

inside Main. In fact, two arrays are created in this example, one inside Main and one inside the Change method.

b>Passing Reference Types by Reference

This example is the same as previous, except for using the ref keyword in the method call. Any changes that

take place in the method will affect the original variables in the calling program.

using System;

class PassingRefByRef

{

 static void Change(ref int[] arr)

 {

 // Both of the following changes will affect the original variables:

 arr[0]=888;

 arr = new int[5] {-3, -1, -2, -3, -4};

 Console.WriteLine("Inside the method, the first element is: {0}", arr[0]);

//output : Inside the method, the first element is: -3

 }

 public static void Main()

 {

 int[] myArray = {1,4,5};

 Console.WriteLine("Inside Main, before calling the method, the first element is: {0}", myArray [0]);

//Output : Inside Main, before calling the method, the first element is: 1

 Change(ref myArray);

 Console.WriteLine("Inside Main, after calling the method, the first element is: {0}", myArray [0]);

//Output: Inside Main, after calling the method, the first element is: -3

 }

}

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

19

All of the changes that take place inside the method affect the original array in Main. In fact, the original array is

reallocated using the new operator. Thus, after calling the Change method, any reference to myArray points to

the five-element array, which is created in the Change method.

Inheritance
Inheritance enables you to create new classes that reuse, extend and modify the behavior that is defined in other

class. The class whose members are inherited is called base or parent or super class and the class that inherits

those members is called the derived or child or sub class.

When you define a class to derive from another class, the derived class implicitly gains all the members of the

base class, except for its constructors. The derived class can thereby reuse the code in the base class without

having to re-implementing it. You can add more members in the derived class.

 A derived class has only one direct base class

 Inheritance is transitive

class C class B class A

class C class A

 Conceptually, a derived class is a specialization of the base class.

 System.Object is the ultimate base class for all classes in c#.

Inheritance can be done using ‗:‘ operator.

public class Animal

{

}

public class Mammal : Animal

Base Class

Derived
Class

Derived
Class

Derived
Class

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

20

{

}

public class Reptile : Animal

{

}

In the example above, class Mammal is effectively both Mammal and Animal. When you access a Mammal

object, you can use the cast operation to convert it to an Animal object. The Mammal object is not changed by

the cast, but your view of the Mammal object becomes restricted to Animal's data and behaviors. After casting

a Mammal to an Animal, that Animal can be cast back to a Mammal. Not all instances of Animal can be cast

to Mammal —just those that are actually instances of Mammal. If you access class Mammal as a Mammal

type, you get both the class Animal and class Mammal data and behaviors. The ability for an object to represent

more than one type is called polymorphism.

Consider a class Student with the fields registrationNumber, name and dateOfBirth, along with the corresponding

properties. The class has a method GetAge() which returns the age of student in years.
public class Student

{

 //fields

 private string name;

 private int registrationNumber;

 private DateTime dateOfBirth;

 private int age;

 //methods

 public int RegistrationNumber

 {

 get { return registrationNumber; }

 set { registrationNumber = value; }

 }

 public string Name

 {

 get{return name;}

 set{name=value}

 }

 public DateTime DOB

 {

 get { return dateOfBirth; }

 set { dateOfBirth = value; }

 }

 //constructors

 public Student()

 {

 System.Console.WriteLine("New student created without parameters");

 }

 public Student(int rNo, string nm, DateTime dob)

 {

 this.RegistrationNumber = rNo;

 this.Name = name;

 this.DOB = dob;

 }

 public int getAge()

 {

 int age = (DateTime.Now.Year - dateOfBirth.Year);

 return age;

 }

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

21

Now, Let us declare another class named SchoolStudent that inherits the Student class but with additional members like

marks of different subjects and methods for calculating total marks and percentage.

 public class SchoolStudent: Student

 {

 private int totalMarks;

 private int obtMarks;

 //Constructors

 public SchoolStudent()

 {

 System.Console.WriteLine("New School Student create without parameters");

 }

 public SchoolStudent(int rNo, string name, DateTime dob, int totalMarks, int obtMarks, int CRN): base(rNo, name, dob)

 {

 this.totalMarks=totalMarks;

 this.obtMarks=obtMarks;

 this.classRollNumber=CRN;

 }

 public int ObtainedMarks

 {

 get{return obtMarks;}

 set{obtMarks=value;}

 }

 public int TotalMarks

 {

 get{return totalMarks;}

 set{totalMarks=value;}

 }

 public double GetPercentage()

 {

 percentage=(double)obtMarks/totalMarks*100;

 return percentage;

 }

}

The SchoolStudent class inherits the Student class by using the colon operator. The SchoolStudent class inherits all the

members of the Student class. In additions, it also declares its own members: two private fields with their corresponding

properties, two constructors and one instance method.

Constructor calls in inheritance

When we instantiate the sub-class (SchoolStudent), the compiler first instantiates the base class

(Student) by calling one of its constructor and then calling the constructor of the sub-class. We can

explicitly call the constructor of the base class using the keyword base. base should be used with the

constructor heading (or signature or declaration) after a colon (:).

public class SubClass : BaseClass

{

 SubClass(int id): base()

 {

 // statements

 }

}

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

22

In code above, the parameterized constructor of the sub-class (SubClass) is explicitly calling the parameterless

constructor of the base class. We can also calls the parameterized of the base-class through the base keyboard like:

public class SubClass :BaseClass

{

 SubClass(int id) :base (id) //explicit constructor call

{

 //statements

}

}

Now, the constructor of SubClass(int) will explicitly call the constructor of the base-class (BaseClass) that takes an int

argument. In our SchoolStudent Class,

public SchoolStudent(int regNum, string name, DateTime dob, int totalMarks, int obtMarks): base (roll,name,dob)

{

 this.totalMarks = totalMarks;

 this.obtMarks = obtMarks;

}

The constructor above calls the parameterized constructor of its base-class(Student) , delegating the initialization of the

inherited fields to the base-class‘s parameterized constructor.

public Student(int registrationNumber, string name, DateTime dateOfBirth

{

 this. registrationNumber = registrationNumber;

 this.Name=name

 this.dob = dob;

}

Sealed Class

Sealed classes are used to prevent a class from being used as a base class. It is primarily useful to

prevent unintended derivations.

sealed class TestClass

{

 public TestClass()

 {

 }

}

class NewClass: TestClass //fails

{

}

Sealed Method

A class member, method, field, property, or event, on a derived class that is overriding a virtual member of the

base class can declare that member as sealed. This negates the virtual aspect of the member for any further

derived class. This is accomplished by putting the sealed keyword before the override keyword in the class

member declaration. For example:

Public class C { public virtual void DoWork(){}; }

http://msdn.microsoft.com/en-us/library/ebca9ah3.aspx

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

23

public class D : C { public sealed override void DoWork() { } }

Abstract Class

When we want to define a base class but do not want to instantiate it, then we define abstract class

using the keyword abstract. Other classes can be derived from abstract classes. An abstract class can

contain one or more method signatures that themselves are declared as abstract. These signatures

specify the parameters and return value but have no implementation (method body). An abstract

method does not have to contain abstract members, but if a class contains an abstract member, the class

itself must be declared as abstract. Derived classes of the abstract class must implement all abstract

methods. Abstract classes are useful when creating components because they allow you specify an invariant

level of functionality in some methods, but leave the implementation of other methods until a specific

implementation of that class is needed. They also version well, because if additional functionality is needed in

derived classes, it can be added to the base class without breaking code.

public abstract Class A

{

 public abstract void DoWork(int i);

}

When an abstract class inherits a virtual method from a base class, the abstract class can override the

virtual method with an abstract method.

public abstract Class D

{

 public virtual void DoWork(int i)

 {

 // original implementation

 }

}

public abstract class E:D

{

 public abstract override void DoWork(int i);

}

public class F:E

{

 public override void DoWork(int i)

 {

 //New implementation

 }

}

In the following example, the class MyDerivedC is derived from an abstract class MyBaseC. The abstract class

contains an abstract method, MyMethod(), and two abstract properties, GetX() and GetY().

// abstract_keyword.cs

// Abstract Classes

using System;

abstract class MyBaseC // Abstract class

{

 protected int x = 100;

 protected int y = 150;

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

24

 public abstract void MyMethod(); // Abstract method

 public abstract int GetX // Abstract property

 {

 get;

 }

 public abstract int GetY // Abstract property

 {

 get;

 }

}

class MyDerivedC: MyBaseC

{

 public override void MyMethod()

 {

 x++;

 y++;

 }

 public override int GetX // overriding property

 {

 get

 {

 return x+10;

 }

 }

 public override int GetY // overriding property

 {

 get

 {

 return y+10;

 }

 }

 public static void Main()

 {

 MyDerivedC mC = new MyDerivedC();

 mC.MyMethod();

 Console.WriteLine("x = {0}, y = {1}", mC.GetX, mC.GetY);

 }

}

Polymorphism
Polymorphism is the ability to create a variable, a function, or an object that has more than one form. The word

derives from the Greek word which has meaning "having multiple forms". It is the third pillar of object

oriented programming after encapsulation after inheritance. Polymorphism is the ability for classes to

provide different implementations of methods that are called by the same name. The primary usage of

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

25

polymorphism in object-oriented programming is the ability of objects belonging to different types to respond

to method, field, or property calls of the same name, each one according to an appropriate type-specific

behavior. The programmer (and the program) does not have to know the exact type of the object in advance, and

so the exact behavior is determined at run-time (this is called late binding or dynamic binding).

Through inheritance, a class can be used as more than one type; it can be used as its own type, any base types, or

any interface type if it implements interfaces. This is called polymorphism. In C#, every type is polymorphic.

Types can be used as their own type or as a Object instance, because any type automatically treats Object as a

base type.

Polymorphism has two distinct aspects:

1>At run time, objects of a derived class may be treated as objects of a base class in places such as method

parameters and collections or arrays. When this occurs, the object's declared type is no longer identical to its run-

time type.

2>Base classes may define and implement virtual methods, and derived classes can override them, which means

they provide their own definition and implementation. At run-time, when client code calls the method, the CLR

looks up the run-time type of the object, and invokes that override of the virtual method. Thus in your source

code you can call a method on a base class, and cause a derived class's version of the method to be executed.

When a derived class inherits from a base class, it gains all the methods, fields, properties and events of the base

class. To change the data and behavior of a base class, you have two choices: you can replace the base member

with a new derived member, or you can override a virtual base member.

Replacing a member of a base class with a new derived member requires the new keyword. If a base class

defines a method, field, or property, the new keyword is used to create a new definition of that method, field, or

property on a derived class. The new keyword is placed before the return type of a class member that is being

replaced. To override the virtual base member, the override keyword is used.

public class ClassA

{

 public void myMethod()

 {

 System.Console.WriteLine("Parent class method");

 }

}

public class ClassB : ClassA

{

 public void myMethod()

 {

 System.Console.WriteLine("Child Class Method");

 }

}

public class MyClass

{

 static void Main()

 {

 ClassB b = new ClassB();

 b.myMethod(); //output: child class method

 ClassA b1 = new ClassB();

 b1.myMethod(); //output: parent class method

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Field_(computer_science)
http://en.wikipedia.org/wiki/Property_(computer_science)
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Late_binding
http://en.wikipedia.org/wiki/Dynamic_dispatch
http://msdn.microsoft.com/en-us/library/0b0thckt(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/87d83y5b(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/system.object(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/9fkccyh4.aspx
http://msdn.microsoft.com/en-us/library/ebca9ah3.aspx
http://msdn.microsoft.com/en-us/library/51y09td4(v=vs.80).aspx

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

26

 }

}

Overriding the methods - Virtual and Override Keywords

public class classA

{

 public virtual void Method()

 {

 System.Console.WriteLine("ClassA Method");

 }

}

public class classB : classA

{

 public override void Method()

 {

 System.Console.WriteLine("ClassB Method");

 }

}

public class MyClass

{

 static void Main()

 {

 classA a = new classB();

 a.Method(); //output: classB Method

 }

}

As we have overridden the method of classA in classB and since the method is marked virtual in

classA, the compiler will no longer see the apparent (or reference) type to call the static early or

compile time object binding rather it will apply dynamic, late or runtime object binding and will see the

object type at the runtime to decide which method it should call. This procedure is called

polymorphism, where we have different implementations of a method with the same name and

signature in the base-class and sub-classes.

When such a method is called using a base-type-reference, the compiler uses the actual object type

reference by the base type reference to decide which of the method to call.

By marking virtual, we allow a method to be overridden and be used polymorphically. In the same

way, we make the method in the sub-class as override when it is overriding the virtual method in the

base class.

Hiding base class members with new members

The new keyword:

If you want to define a member in the base class with same name but do not want to override the base

class method, you can use the new keyword. The new modifier instructs the compiler to use your

implementation instead of the base class implementation. Any code that is not referencing your class

but the base class will use the base class implementation.

public class BaseClass

{

 public int num = 0;

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

27

 public void DoWork()

 {

 num++;

 }

 public int WorkProperty

 {

 get { return 0; }

 }

 public class DerivedClass : BaseClass

 {

 public new int num = 20;

 public new void DoWork()

 {

 }

 public new int WorkProperty

 {

 get { return 0; }

 }

 }

 static void Main()

 {

 DerivedClass B = new DerivedClass();

 B.DoWork(); //calls the new method

 BaseClass A = (BaseClass)B;

 A.DoWork(); //calls the old method

 }

}

Override and new keyword usage
C# enables methods in derived classes to have the same name as methods in base classes—as long as you are

very specific about how the new method should be treated. The following example demonstrates the use of

the new and override keywords.

First we declare three classes: a base class called Car, and two classes that derive from it.

ConvertibleCar and Minivan. The base class contains a single method,DescribeCar, which sends a description of

the car to the console. The derived class methods also include a method called DescribeCar, which displays their

unique properties. These methods also call the base class DescribeCar method to demonstrate how they have

inherited the properties of the Car class.

In order to highlight the difference, the ConvertibleCar class is defined with the new keyword, while

the Minivan class is defined with override.

// Define the base class

class Car

{

 public virtual void DescribeCar()

 {

 System.Console.WriteLine("Four wheels and an engine.");

 }

}

// Define the derived classes

http://msdn.microsoft.com/en-us/library/51y09td4(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ebca9ah3(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/hfw7t1ce(v=vs.80).aspx

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

28

class ConvertibleCar : Car

{

 public new virtual void DescribeCar()

 {

 base.DescribeCar();

 System.Console.WriteLine("A roof that opens up.");

 }

}

class Minivan : Car

{

 public override void DescribeCar()

 {

 base.DescribeCar();

 System.Console.WriteLine("Carries seven people.");

 }

}

We can now write some code that declares instances of these classes, and calls their methods so that the objects

can describe themselves:

public static void TestCars1()

{

 Car car1 = new Car();

 car1.DescribeCar();

 System.Console.WriteLine("----------");

 ConvertibleCar car2 = new ConvertibleCar();

 car2.DescribeCar();

 System.Console.WriteLine("----------");

 Minivan car3 = new Minivan();

 car3.DescribeCar();

 System.Console.WriteLine("----------");

}

As you might expect, the output looks like this:

Four wheels and an engine.

Four wheels and an engine.

A roof that opens up.

Four wheels and an engine.

Carries seven people.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

29

However, in this next section of code, we declare an array of objects derived from the Car base class. This array

can store Car, ConvertibleCar, and Minivanobjects. The array is declared like this:

public static void TestCars2()

{

 Car[] cars = new Car[3];

 cars[0] = new Car();

 cars[1] = new ConvertibleCar();

 cars[2] = new Minivan();

}

We can then use a foreach loop to visit each Car object contained in the array, and call the DescribeCar method,

like this:

foreach (Car vehicle in cars)

{

 System.Console.WriteLine("Car object: " + vehicle.GetType());

 vehicle.DescribeCar();

 System.Console.WriteLine("----------");

}

The output from this loop is as follows:

Car object: YourApplication.Car

Four wheels and an engine.

Car object: YourApplication.ConvertibleCar

Four wheels and an engine.

Car object: YourApplication.Minivan

Four wheels and an engine.

Carries seven people.

Notice how the ConvertibleCar description is not what you might expect. As the new keyword was used to

define this method, the derived class method is not called—the base class method is called instead.

The Minivan object correctly calls the overridden method, producing the results we expected.

If you want to enforce a rule that all classes derived from Car must implement the DescribeCar method, you

should create a new base class that defines the method DescribeCar as abstract. An abstract method does not

contain any code, only the method signature. Any classes derived from this base class must provide an

implementation of DescribeCar.

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

30

override extends the base class method, whereas new keyword hides the base class method.

Interfaces
Interfaces are a special kind of type in c# used to define the specifications that should be followed by

its sub-types. An interface can be defined using the interface keyword.
An interface has the following properties:

1. An interface is like an abstract class which can not be instantiated.

2. Any class implementing the interface must implement all of its members.

3. Interface can contain signatures for methods, properties, events.

4. Interface contain no implementation of methods

5. Classes can implement more than one interface

6. An interface itself can inherit from multiple interfaces.

7. Interface can not contain constants, fields, instance constructors, destructors or types

8. All members are public and abstract by default

Interfaces provide a way to achieve runtime polymorphism.

interface ISampleInterface

{

 void SampleMethod();

}

class TestClass : ISampleInterface

{

 public void SampleMethod()

 {

 System.Console.WriteLine("Interface method implementation");

 }

 static void Main()

 {

 ISampleInterface obj = new TestClass();

 obj.SampleMethod();

 }

}

The following example demonstrates interface implementation. In this example, the interface IPoint contains the

property declaration, which is responsible for setting and getting the values of the fields. The class Point contains

the property implementation.
using System;

interface IPoint

{

 //property signatures

 int x

 { get; set; }

 int y

 { get; set; }

}

class Point : IPoint

{

 //fields

 private int _x;

 private int _y;

 //constructor

 public Point(int x, int y)

 {

 _x = x;

 _y = y;

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

31

 }

 //property implementation

 public int x

 {

 get { return _x; }

 set { _x = value; }

 }

 public int y

 {

 get { return _y; }

 set { _y = value; }

 }

}

class MainClass

{

 static void PrintPoint(IPoint P)

 {

 Console.WriteLine("X= {0}, y={1}", P.x, P.y);

 }

 static void Main()

 {

 Point P = new Point(2, 3);

 PrintPoint(P);

 }

}

Partial Class
It is possible to split the definition of a class or an interface over two or more source files. Each source

file contains a section of the class definition, and all parts are combined when the application is

compiled.
Benefits

1. More than one developer can simultaneously work on the same class

2. When working with automatically generated source code, code can be added to the class without

having to re-create the source file. Visual studio uses this approach when it creates windows forms

etc. You can create code that uses these classes without having to modify the file created by visual

studio.

To split a class definition, use the partial keyword modifier

public partial class Employee

{

 public void DoWork()

 {

 }

}

public partial class Employee

{

 public void MyWork()

 {

 }

}

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

32

The partial keyword indicates that other parts of the class; interface can be defined in the namespace.

All the parts must use the partial keyword. All the parts must be available at compile time to form the

fixed type. All the parts must have same accessibility i.e. private

 if any part is declared abstract, then the whole type is considered abstract

 if any part is declared sealed, then the whole type is considered sealed

 if any part declares a base type, then the whole type inherits that class

 any class, struct or interface member declared in a partial definition are available to all other parts.

The final type is the combination of all the parts at compile time.

Example:
public partial class Coordinates

{

 private int x;

 private int y;

 public Coordinates(int x, int y)

 {

 this.x = x;

 this.y = y;

 }

}

public partial class Coordinates

{

 public void PrintCoordinates()

 {

 System.Console.WriteLine("Coordinates: {0},{1}", x, y);

 }

}

class TestCoordinates

{

 static void Main()

 {

 Coordinates mycords = new Coordinates(10, 15);

 mycords.PrintCoordinates();

 }

}

Interface example:
partial interface ITest

{

 void Interface_Test();

}

partial interface ITest

{

 void Interface_Test2();

}

Partial Method

file1.cs.

partial void onNameChanged();

file2.cs
partial void onNameChanged();

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

33

A partial class may contain a partial method. One part of the class contains the signature of the method.

An optional implementation may be defined in the same part or another part. If the implementation is

not supplied, then the method and all calls are removed at compile time.

A partial method declaration consists of two parts: the definition, and the implementation. They may be

in separate parts of the partial class, or in the same part.

Partial method should have

 partial keyword

 return type void

 implicitly private, cannot be virtual

Collections

Collections are the enumerable data structures that can be accessed using indexes or keys. Closely

related data can be handled more efficiently when grouped together into a collection. Instead of writing

separate code to handle each individual object. We can use the same code to process all the elements of

a collection.

To manage a collection, the array class and the System.Collections classes are used to add, remove and

modify either individual elements of the collection or a range of elements.

The collection classes provide support for stacks, queues, lists and hash tables. Most collection classes

implement the same interfaces, and these interfaces may be inherited to create new collection classes

that fit more specialized data storage needs.

Example:

ArrayList list=new ArrayList()

list.Add(10);

list.Add("John");

list.Add('R');

Any reference or value type that is added to an ArrayList is implicitly upcast to Object. If the items are value

types, they must be boxed when added to the list, and unboxed when they are retrieved. Both the casting and the

boxing and unboxing operations degrade performance; the effect of boxing and unboxing can be quite significant

in scenarios where you must iterate over large collections.

Properties:

 collections are defined as part of the System.Collections or System.Collections.Generic namespace

 most collection derive from the interfaces ICollection, IComparer, IEnumerable, IList, IDictionary

and IDictionaryEnumerator and their generic equivalents.

System.Collection classes

 Queue FIFO

 Stack LIFO

 Linked list Sequential access

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

34

Stack mystack = new Stack();

mystack.push("Hello");

mystack.push(1);

foreach(object obj in mystack)

{

System.Console.WriteLine({0}, obj);

}

………
public class SampleQueue

{

 public static void Main()

 {

 Queue myQ = new Queue();

 myQ.Enqueue("Hello");

 myQ.Enqueue("world");

 myQ.Enqueue("!");

 myQ.Dequeue();

 System.Console.WriteLine(myQ.count);

 printValues(myQ);

 }

 public static void printValues(IEnumerable list)

 {

 foreach object obj in list)

 {

 System.Console.WriteLine(obj);

 }

 }

Stack
Stack myStack = new Stack();

myStack.Push("Hello");

myStack.Push("World");

myStack.Push("!");

System.Console.WriteLine(mystack.count);

Sorted List

Maintain the elements sorted based on the key.

SortedList mySL = new SortedList();

mySL.Add("Third", "!");

mySL.Add("Second", "World");

mySL.Add("First", "Hello");

System.Console.WriteLine(mySL.Count);

System.Console.WriteLine(mySL.Capacity);

PrintKeysAndValues(mySL);

public static void PrintKeysAndValues(SortedList myList)

{

System.Console.WriteLine("\t-key-\t-value")

 for(int i=0;i<myList.Count; i++)

 {

 System.Console.WriteLine("\t{0} : \t{1}", myList.GetKey(i), myList.GetByIndex(i);

 System.Console.WriteLine();

 }

 }

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

35

Generics
Generic classes and methods combine re-usability, type safety and efficiency to their counterpart

collections. Generics are most commonly used with collections and the method that operate on them.

.NET Framework 2.0 class library provide a new namespace System.Collections.Generic which

contains several new generic based collection classes. Generics are checked at compile time.

List is a generic form of a ArrayList.

List<string> names = new List<string>();

names.Add(―John‖);

names.Add(―Danny‖);

static void Main(string[] args)

foreach (string name in names)

{

System.Console.WriteLine(name);

}

names.Insert(2, "Rafael");

names.Remove("Hari");

Generics

Queue

Queue<string> numbers = new Queue<string>();

numbers.Enqueue("One");

numbers.Enqueue("two");

numbers.Enqueue("three");

foreach(String number in numbers)

{

 Console.WriteLine(number);

}

numbers.Dequeue();

Queue<string> queueCopy = new Queue<string>(numbers.ToArray);

foreach(string number in queueCopy)

{

 Console.WriteLine(number);

}

string[] array1 = new string [numbers.count*2];

numbers.CopyTo(array2, numbers.count);

Queue<string> queueCopy2 = new Queue<string>(array)

foreach(string number indexer queueCopy2)

{

 Console.WriteLine(numbers);

}

queueCopy.Contains("Four"); //true

queueCopy.Clear();

Console.WriteLine(queueCopy.count); //0

Generic Sorted List

SortedList<string, string> OpenWith = new SortedList<string, string>();

OpenWith.Add("txt", "notepad.exe");

OpenWith.Add("bmp", "paint.exe");

OpenWith.Add("dib", "paint.exe");

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

36

OpenWith.Add("rtf", "wordpad.exe");

OpenWith.Add("txt", "notepad.exe"); //error

Console.Writeline("For Key = \"rtf\",value={0}",OpenWith["rtf"];

OpenWith["rtf"] = "winword.exe";

OpenWith["doc"] = "winword.exe"; //adds new element

foreach[keyValuePair<string, string> kvp indexer OpenWith)

{

 Console.WriteLine("Key = {0}, Value = {1}",kvp.Key, kvp.Value);

}

IList<string> iListValues = OpenWith.Values;

Custom Collection class
using System.Collections

public class Tokens: IEnumerable

{

 private string[] elements;

 Tokens(string source, char[] delimeters);

 {

 elements = source.Split(delimeters);

 }

 public IEnumerator GetEnumerator()

 {

 return new TokenEnumerator(this);

 }

}

//Inner class implements IEnumerator Interface

private class TokenEnumerator: IEnumerator

{

 private int position= -1;

 private Tokens t;

 private TokenEnumerator(Tokens t)

 {

 this.t=t;

 }

}

//Declare the MoveNext method required by IEnumerator

public bool MoveNext()

{

 if(position < t.elements.Length=1)

 {

 position ++; return true;

 }

 else

 {

 return false;

 }

}

public void Reset()

{

 position = -1;

}

// Declare the current property required by IEnumerator

public object Current

{

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

37

 get{return t.element[position];}

}

static void Main()

{

 Token f = new Tokens("This is a sample sentence ", new char[]{'_',',','_'});

 foreach(string item in f)

 {

 System.Console.WriteLine(item);

 }

}

Jagged Array
A jagged array is an array whose elements are arrays. The elements of a jagged array can be of

different dimensions and sizes. A jagged array is also called an array of arrays. Multidimensional array

are of fixed length whereas Jagged array are of variable length. So, performance is good.
int [][] jaggedArray = new int[3][];

jaggedArray[0] = new int[5];

jaggedArray[1] = new int[4];

jaggedArray[2] = new int[2];

Each of the elements is the single dimension array of integers.

jaggedArray[0] = new int[]{1,2,3,4};

jaggedArray[1] = new int[]{0,2,4,3};

jaggedArray[2] = new int[]{11,12};

int [][] jaggedArray = new int[][];

{

 new int[]{1,3,5,7,9},

 new int[]{0,2,4,6},

 new int[]{11,12}

};

jaggedArray[0][1] =50;

jaggedArray[2][1] =20;

int [][] jaggedArray = new int[3][];

{

 new int[,]{{1,3},{5,7}},

 new int[,]{{0,2},{4,6},{8,10}},

 new int[,]{{11,12},{99,88},{0,9}}

}

jaggedArray4[0][1,0];

Example:

int[][] arr = new int[2][];

arr[0] = new int[5]{1,3,5,7,9};

arr[0] = new int[4]{2,4,6,8};

for(int i=0; i<arr.Length; i++)

{

 System.Console.WriteLine("Elements ({0}): ", i);

 for (int j=0; j< arr[i].Length; j++)

 {

 System.Console.WriteLine("{0}{1}", arr[i][j], j==(arr[if].Length-1)?"":"");

 }

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

38

 System.Console.WriteLine();

}

Delegates
A delegate is a type that references a method. Delegates are similar to object reference, but are used to

reference methods instead of objects. The type of a delegate is the type or signature of the method.

Delegates are similar to the function pointers in C++ but are type safe. Delegates allow methods to pass

as parameters.

using System;

delegate void SampleDelegate(string message);

class MainClass

{

 static void SampleDelegateMethod(string message)

 {

 Console.WriteLine(message);

 }

 static void Main()

 {

 //instantiation with named method:

 SampleDelegate d1 = SampleDelegateMethod;

 // note that this is just reference, method not executed.

 //Compiler executes the method if it has ()

 //Instantiate with anonymous method:

 SampleDelegate d2 = delegate(string message)

 {

 Console.WriteLine(message);

 };

 d1("Hello");

 d2("World");

 }

}

A delegate can be instantiated by associating it either with a named or anonymous method. For use

with named method, the delegate must be instantiated with a method that has acceptable signature. For

use with anonymous method, the delegate and the code to be associated with it are declared together.

using System;

delegate int intDelegate(int x, int y);

static void Main()

{

 myDelegate delMethod = null;

 Console.WriteLine("Enter Choice (+,-,/)");

 char choice = (char)Console.Read();

 switch(choice)

 {

 case '+';

An object of particular type An Object Reference
Points to

A method of particular type A Delegate
Points to

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

39

 delMethod = new intDelegate(add);

 break;

 case '-';

 delMethod = new intDelegate(sub);

 break;

 case '/';

 delMethod = new intDelegate(div);

 break;

 default:

 Console.WriteLine("Bad Input");

 break;

 }

 int result = delMethod(10,5);

 Console.WriteLine("The Result of the Operation is: "+result);

 Static int add(int x, int y)

 {

 return x+y;

 }

 Static int sub(int x, int y)

 {

 return x-y;

 }

 Static int div(int x, int y)

 {

 return x/y;

 }

}

Event and Event Handling
An event is a mechanism for a class to provide notifications to clients of that class when some

interesting thing happens to an object. The most familiar use for events is in graphical user interface:

typically, the classes that represent control is in the interface have events that are notified when the user

does something to the control (for example: click a button).

Events provide a useful way for objects to signal state change that may be useful to clients of the

object.

An event is basically a message which is said to be fired or triggered when the respective action occurs.

A class that sends (or raises) the event is called the publisher (sender) and the class that receives (or

handle) the event are called subscribers (consumer) and the method which is used to handle a particular

event is called event handler.

 Publisher determines when an event is raised; the subscriber determines what action is taken in

response to the event.

 An event can have multiple subscribers. A subscriber can handle multiple events from multiple

subscribers.

 Events that have no subscribers are never raised.

Multicast Delegate

It is a delegate which holds the reference of more than one method. Multicast delegates must contain

only methods that return void.

delegate void Delegate_Multicast(int x, int y);

class DelegateTestClass

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

40

{

 static void Method1(int a, int b)

 {

 System.Console.WriteLine("method1");

 }

 static void Method2(int a, int b)

 {

 System.Console.WriteLine("method2");

 }

 public static void Main()

 {

 Delegate_Multicast func = new Delegate_Multicast(Method1);

 func + = new Delegate_Multicast(Method2);

 func(1,2); //method11 and method2 are called

 func - = new Delegate_Multicast(Method1);

 func(2,3); //only method2 is called

 }

}

Event Handling

Events are implemented as multicast delegates. Events are defined using the event keyword.

Steps for event implementation and handling are:-

1. Declare an event:

To declare an event inside a class, first a delegate type of the event must be declared, if none is already

declared.

public delegate void ChangedEventHandler(object sender, Eventargs e);

The delegate type defines the set of arguments that are passed to the method that handles the event.

Next, declare the event itself.

public event ChangedEventHandler Changed;

Publisher

Declare a Delegate

Declare an Event based on the

Delegate
Fire the Event

Subscriber

Event Handler

Subscriber

Subscribed Event

Notify subscribed

events

Fires the

event

handler

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

41

An event is declared like a field of delegate type, except that the keyword precedes the event

declaration, following the modifiers. Events usually are declared public, but any accessibility modifiers

are allowed.

2. Invoking an event:

Once a class has declared an event, it can treat that event just like a field of the indicated delegate type.

The field will either be null, if no client has hooked up a delegate to the event, or else it refers to a

delegate that should be called when the event is invoked. This invoking an event is generally done by

first checking for null and then calling the event.

If(Changed != null)

Changed(this,e);

Invoking an event can only be done from within the class that declares the event.

3. Hooking up to an event:

From outside the class that declared it an event looks like a field, but access to that field is very

restricted. The only things that can be done are:

 compose a new delegate onto that field

 remove a delegate from a (possible composite)field

This is done with the += and - = operators. To begin receive event notifications; client code first creates

a delegate of the event type that refers to the method that should be invoked from the event. Then it

composes that onto any other delegates that the event might be connected to using +=.

List.Changed += new ChangedEventHandler(ListChanged);

When the client code is done receiving event notifications, it removes its delegate from the event by

using operator - =

Example:

using System;

namespace MyCollections

{

 using System.Collections;

 public delegate void ChangedEventHandler(object sender, EventArgs e);

 public class ListWithChangedEvent ArrayList

 {

 public event ChangedEventHandler Changed;

 void OnChanged(EventArgs e)

 {

 if(Changed != null)

 Changed(this,e);

 }

 public override int Add(object Value)

 {

 int i = base.Add(Value);

 OnChanged(EventArgs.Empty);

 return i;

 }

 public override void Clear()

 {

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

42

 base.clear()

 OnChanged(EventArgs.Empty);

 }

 }

}

namespace TestEvents

{

 using MyCollections;

 class EventListner

 {

 private ListWithChangedEvent List;

 public EventListner(ListWithChangedEvent list)

 List=list;

 //Add "ListChanged" to the changed event on "List"

 list.Changed += new ChangedEventHandler(listChanged);

 private void listChanged(object sender, EventArgs e)

 {

 Console.WriteLine("This is called when the event fires.");

 }

 public void Detach()

 {

 List.Changed -= new ChangedEventHandler(listChanged);

 list = null;

 }

 }

 class Test

 {

 public static void Main()

 {

 ListWithChangedEvent list = new ListWithChangedEvent();

 EventListner listener = new EventListner(list);

 list.Add("item i");

 list.Clear();

 listener.Detach();

 }

 }

}

Indexers
Indexers are a syntactic convenience that enable you to create a class, struct, or interface that client applications

can access just as an array. Indexers are most frequently implemented in types whose primary purpose is to

encapsulate an internal collection or array. For example, suppose you have a class named TempRecord that

represents the temperature in Farenheit as recorded at 10 different times during a 24 hour period. The class

contains an array named "temps" of type float to represent the temperatures, and a DateTime that represents the

date the temperatures were recorded. By implementing an indexer in this class, clients can access the

temperatures in a TempRecord instance as float temp = tr[4] instead of as float temp = tr.temps[4]. The indexer

notation not only simplifies the syntax for client applications; it also makes the class and its purpose more

intuitive for other developers to understand.

To declare an indexer on a class or struct, use the this keyword, as in this example:

public int this[int index] // Indexer declaration

{

 // get and set accessors

}

http://msdn.microsoft.com/en-us/library/0b0thckt.aspx
http://msdn.microsoft.com/en-us/library/ah19swz4.aspx
http://msdn.microsoft.com/en-us/library/87d83y5b.aspx
http://msdn.microsoft.com/en-us/library/system.datetime.aspx
http://msdn.microsoft.com/en-us/library/dk1507sz.aspx

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

43

The following example shows how to declare a private array field, temps, and an indexer. The indexer enables

direct access to the instance tempRecord[i]. The alternative to using the indexer is to declare the array as

a public member and access its members, tempRecord.temps[i], directly.

Notice that when an indexer's access is evaluated, for example, in a Console.Write statement, the get accessor is

invoked. Therefore, if no get accessor exists, a compile-time error occurs.

class TempRecord

{

 // Array of temperature values

 private float[] temps = new float[10] { 56.2F, 56.7F, 56.5F, 56.9F, 58.8F,

 61.3F, 65.9F, 62.1F, 59.2F, 57.5F };

 // To enable client code to validate input

 // when accessing your indexer.

 public int Length

 {

 get { return temps.Length; }

 }

 // Indexer declaration.

 // If index is out of range, the temps array will throw the exception.

 public float this[int index]

 {

 get

 {

 return temps[index];

 }

 set

 {

 temps[index] = value;

 }

 }

}

class MainClass

{

 static void Main()

 {

 TempRecord tempRecord = new TempRecord();

 // Use the indexer's set accessor

 tempRecord[3] = 58.3F;

 tempRecord[5] = 60.1F;

 // Use the indexer's get accessor

 for (int i = 0; i < 10; i++)

 {

 System.Console.WriteLine("Element #{0} = {1}", i, tempRecord[i]);

 }

 // Keep the console window open in debug mode.

 System.Console.WriteLine("Press any key to exit.");

 System.Console.ReadKey();

 }

http://msdn.microsoft.com/en-us/library/yzh058ae.aspx
http://msdn.microsoft.com/en-us/library/ms228503.aspx

CSC-360 Net Centric Computing Prepared by: Nav Raj Vinady, Patan Mulitple Campus, Lalitpur

44

}

/* Output:

 Element #0 = 56.2

 Element #1 = 56.7

 Element #2 = 56.5

 Element #3 = 58.3

 Element #4 = 58.8

 Element #5 = 60.1

 Element #6 = 65.9

 Element #7 = 62.1

 Element #8 = 59.2

 Element #9 = 57.5

 */

	Unit1
	Unit2
	Unit3
	Unit4
	Unit5
	Connection Object
	Command Object
	Recordset Object
	The Stored Procedure
	The ASP Code

	Unit6
	Unit7

