

CSC 153

MICROPROCESSOR

Second Semester
BSc.CSIT

Presented by:

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 1

1. Introduction

1.1 History of microprocessor

One of the greatest inventions that have changed man‟s life is the computer. History reveals

that the evolution of computer started with the development of calculator. Firstly there were

mechanical computers which have now evolved to electronic ones. The mechanical

computers which cannot be put aside are „difference engine‟ and „analytical engine‟. Both of

them were developed by Charles Babbage, the father of the computer.

The „difference engine‟ was a mechanical device that could add and subtract, but could only

run a single algorithm. Its output system was incompatible to write on medium such as

punched cards and early optical disks. The „analytical engine‟ was a improvement on

„difference engine‟ and provided features such as: the store (memory), the mill (computation

unit), input section (punched card reader) and output section (punched and printed output).

The store consisted of 1000 words of 50 decimal digits used to hold variables and results. The

mill could accept operands from the store, add, subtract, multiply or divide them, and return a

result to the store. The great advantage of the analytical engine was that it was general

purpose. It read instructions from punched cards and carried them, out. By punching a

different program on the input cards, it was possible to have the analytical engine perform

different computations.

The evolution of the vacuum tubes led the development of computers into a new era. The

world‟s first general purpose electronic digital computer was ENIAC (Electronic Numerical

Integrator and calculator). It was designed and constructed under the supervision of John

Mauchly and John Presper Eckert at the University of Pennsylvania. The ENIAC built by

using vacuum tubes was enormous in size and consumed very high power. However it was

faster than mechanical computers.

The ENIAC was a decimal machine, in which the numbers were in decimal number system

and the arithmetic was also performed in the same number system. Its memory consisted of

20 „accumulators‟ each capable of holding a 10 digit decimal numbers. Each digit was

represented by the „ON‟ state of the vacuum tubes. The main drawback of the ENIAC was

that it had to be programmed manually by setting switches and plugging and unplug cables.

1.2 Calculator and Stored Program Computer

A calculator is a data processing device that carries out logic and arithmetic operations, but

has limited programming capability for the user. The calculator accepts data from a small

keyboard, one digit at a time, performs the required arithmetic and logical calculation and

show the result on visual display via LCD or LED. The calculator‟s programs are stored in

ROM (Read only Memory) while the data from users are stored in RAM (Random access

Memory).

1.3 Von Neumann and Harvard architecture

As we know the task of entering and altering the programs for the ENIAC was extremely

tedious. The programming process could be facilitated if the program could be represented in

a form suitable for storing in memory alongside the data. Then a computer could get its

instructions by reading them from the memory and a program could be set or altered by

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 2

setting the values of a portion of memory. This approach is known as „stored program

concept‟ and was first adopted by John von Neumann. Hence, this architecture is also called

Von-Newman’s architecture. The general structure of this architecture is shown below.

Figure: Von Neumann architecture

As shown in figure 1.1, the main memory is used to store both data and instructions. The

ALU is capable of performing arithmetic and logical operations on binary data. The program

control unit interprets the instructions in memory and causes them to be executed. The I/O

unit gets operated from the control unit.

The Von-Neumann‟s Architecture is the fundamental basis for the architecture of today‟s

digital computers. Thus it is important to have an idea of the internal structures of the central

processing unit (CPU), program control unit of Von-Neumann‟s machine.

The memory of the Neumann‟s machine consists of 1000 storage locations, called words of

40 binary digits (bits). Both data and instructions are stored in it. The control unit operates the

computer by fetching instructions from memory and executing them one at a time. The

storage locations of the control unit and ALU are called registers. The various registers of this

model are:

 MBR (Memory Buffer Register): consists of a word to be stored in memory or is used

to receive a word from memory.

 MAR (Memory Address Register): contains the address in memory of the word to be

written from or read into the MBR.

 IR (Instruction Register): contains the 8-bit op code instruction being executed.

 IBR (Instruction Buffer Register): used to temporarily hold the instruction from a

word in memory.

 PC (Program Counter): contains the address of the next instruction to be fetched from

memory.

 The Accumulator (AC) and the Multiplier Quotient (MQ) are employed to

temporarily hold the operands and results of ALU operations.

In Von-Neumann‟s architecture, the same memory is used for storing instructions and data.

Similarly, a single bus called data bus or address bus is used for reading data and instructions

from or writing data and instructions to the memory. Later, it was revealed that this feature of

Von-Neumann‟s architecture limited the processing speed of the computer. So in order to

improve the processing speed of the computer, Harvard architecture was evolved.

Main

Memory

PCU

ALU

I/O

equipment

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 3

The Harvard architecture consists of separate memory location for the programs and data.

Each memory space has its own address and data buses. As a result of this both instruction

and data can be fetched from memory concurrently. Thus a significant processing speed

improvement is observed over Von-Neumann type architecture. The Harvard architecture is

shown below:

Fig: Block diagram of a Harvard architecture based microprocessor

From the figure, we see there are two data and two addresses buses, for the program and data

memory spaces separately. The program memory data bus and data memory data bus are

multiplexed to form single data bus where as program memory address bus and data memory

address bus are multiplexed to form a single address bus. Hence there are two blocks of RAM

chips, one for program memory and other for data memory space. The data memory address

arithmetic unit generates data memory addresses. The data memory address bus carries the

memory address of the data where as the program memory address bus carries the memory

address of the instruction. There is a central arithmetic logic unit (ALU), which consists of

the ALU, the multiplier, accumulator, and scaling chief register. The program counter is used

to address program memory. The PC contents are updated following each instruction decode

operation. The control unit controls the sequence of operations to be executed. The data and

control bus are bi directional where as address bus is unidirectional.

1.4 Simple stored program computer architecture

See Von Neumann architecture

1.5 Microprocessor Architecture (8 bit)

The 8085A is an 8 bit general purpose microprocessor capable of addressing 64K of memory.

The main components of the 8085 include the ALU, timing and control unit, Instruction

register and decoder, Register array. These are linked by an internal data bus.

The ALU

The arithmetic/logic unit performs the computing functions; it includes the accumulator the

temporary register, the arithmetic and logic circuits, and five flags. The temporary register is

used to hold the data during an arithmetic/logic operation. The result of the operation is

stored in the accumulator and flags are set or reset according to the result of operation. Flags

generally reflect data conditions in the accumulator.

Program Memory Control Bus

Program Memory Address Bus

Control

Bus

Data

Bus

Address

Bus

MUx

MUx

Control

Unit

Central

Arithmetic

unit

Program

Counter

related

hardware

Data

Memory

address

arithmeti

c unit

Program

memory

Data

memory

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 4

Fig: Functional Block Diagram of 8085A

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 5

Timing and Control Unit

This unit synchronizes all the microprocessor operations with the clock and generates the

control signals necessary for communication between the microprocessor and peripherals.

Instruction Register and Decoder

The instruction register and the decoder are part of the ALU. When an instruction is fetched

from memory, it is loaded in the instruction register. The decoder decodes the instruction and

establishes the sequences of events to follow (what operation is to be performed).

Accumulator

The accumulator (Register A) is an 8 bit register that is part of the arithmetic/logic unit

(ALU). This register is accessible to user and holds one of the operands and the result itself.

8085 is accumulator based microprocessor because the operation of 8085 depends on the

accumulator. Almost all the arithmetic and logic functions are performed on the data are in

the accumulator

Registers B, C, D, E

These four 8 bit registers are accessible to the programmer. These can be used individually as

8 bit individual registers or in pairs as BC and DE as 16 bit registers.

Register H & L

Register H & L can be used as 8 bit registers or as pairs. However, these can also be used for

indirect addressing.

Program Counter (PC) and Stack Pointer (SP)

These are 16 bit registers used to hold addresses. The size of these registers is 16 bits because

the memory addresses are 16 bits.

The computer program consists of the sequence of coded instructions. These are stored in

memory. The microprocessor uses the PC register to sequence the execution of the

instructions. The function of the program counter is to point to the memory address from

which the next byte is to be fetched. PC is incremented by one when the machine code is

fetched.

A stack is an area of memory set aside for the purpose of storing data. The location of the

memory is defined by the 16 bit register called SP. When a data is stored its value is

decreased by 1 while it is increased by 1 when the data is retrieved.

Flags

It consists of a register with five flip flops, each holding a specific status of the output of the

operation of ALU. The register is known as Flag Register and each flip flop is called flag.

The states of the flags indicate the result of arithmetic and logic operation, which in turn is

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 6

used for decision making processes. There are no decision instructions for AC flag. The

different flags are:

 S – Sign Flag: Is set if the MSB of the result of last operation is 1. (Also called

negative, since 1 in the MSB position of two‟s complement number)

 Z – Zero Flag: Is set if the ALU operation results in 0, and flag is reset if the result is

not 0. Operation of the flag is affected by accumulator as well as that of other

registers.

 AC – Auxiliary Carry Flag: If the arithmetic operation generates a carry from lower

nibble to upper nibble then this flag is set. It is useful while performing BCD

arithmetic.

 P – Parity Flag: Is set if the result has an even numbers of 1s while reset if the number

of 1 is odd.

 CY – Carry Flag: Is set if the arithmetic operation results in a carry and is reset if

otherwise.

The bit positions reserved for these flags in the flag register are as follows:

D7 D6 D5 D4 D3 D2 D1 D0

S Z AC P CY

1.6 Applications

The applications of microprocessors are not bound. They can be used virtually anywhere and

in any field. However, the applications are sorted as follows:

 Test Instruments

 Communications

 Computer

 Industries

Test Instruments

Microprocessors are widely used in devices such as signal generators, oscilloscopes,

counters, digital multi-meters, x-ray analyzers, blood group analyzers, baby incubator,

frequency synthesizers, data acquisition systems, spectrum analyzers etc. For example fluke

6010A synthesized signal generator uses 4004 microprocessor.

Communications

Communication today requires tens of thousands of circuits to be managed. Data should be

received, checked for errors and further analysis should also be performed. The speed at

which the microprocessor can take decisions and compute errors is truly substantial.

Computer

The microprocessor is a central processing unit (CPU) of the microcomputers. It can perform

arithmetic and logic functions as well as control function. The control unit of microprocessor

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 7

sends signals to input, output units, memory, ALU and arrange the sequence of their

controlling operation.

Industries

The microprocessor is widely used in data monitoring systems, smart cameras for quality

control, automatic weighing, batching systems, assembly machine control, torque

certification systems, machine tool controller etc.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 8

2. Microprocessor Instructions (8 bit Microprocessor)

2.1 Resister transfer language (RTL)

During the execution of an instruction different actions are exercised. The preliminary action:

op-code fetch is same for all the instructions however the latter action depends on the size of

the instruction. A microprocessor can handle only a fixed number of instructions in case of

8085 it can handle a maximum of 2
8
 i.e. 256 instructions. The different instructions and their

equivalent op-codes are available in the 8085 instruction sheet.

Depending on the byte size the instruction set is classified into the following three groups.

 One byte Instructions: A 1byte instruction includes the op-code and the operand in the

same byte. The operand will be default for that instruction. These instructions require

one memory locations. E.g.: MOV C,A , ADD B, CMA etc.

 Op-code Operand

 MOV C, A

 ADD B

 CMA

 Two byte Instructions: In a 2byte instruction, the first byte specifies the operation

code and the second byte specifies the operand. Thus, two memory locations are

required. E.g.: MVI A,32H , ADI F2H etc.

 Op-code Operand

 MVI A 32H

 ADI F2H

 Three byte Instruction: In three byte instruction first byte will be op-code where as

second and third byte will be the operands. Operands may be data or address

depending upon the instruction. E.g.: LXI B, 4455H , LDA 2050H, JMP 2085H etc.

 Op-code Operand

 LXI B 4455H

 LDA 4050H

 JMP 2085H

Now, depending upon the instruction they are executed accordingly. These operations are

expressed using a language. Such type of language, which is basically used to express the

transfer of data among the registers, is called Register Transfer Language (RTL). If a data is

transferred from register A to register B the in RTL

 register A ← register B

During the execution of an instruction we have fetch cycle and execute cycle. The operations

performed during fetch cycle are:

 The PC contains the address of the next instruction to be executed. As first operation

of fetch cycle, the contents of program counter will be transferred to the memory

address register (MAR). The memory address register then uses the address bus to

transmit its contents that specifies the address of the memory location from where the

instruction code is to be fetched. Let t1 be period of this operation.

 MAR ← PC

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 9

 Now as soon as the control unit issues the memory read signal, the contents of the

addressed memory location specified by MAR will be transferred to the memory

buffer register (MBR). Let t2 be the period of this operation.

 MBR ← Memory

 Now the contents of MBR will be transferred to the instruction register and the

program counter (PC) gets incremented to fetch another instruction and the fetching

cycle is thus complete. Here two operations take place within a single time unit t3. Let

t3 be the time required by the CPU for this operation.

 IR ← (MBR)

 PC ← PC+1

The control unit of the computer maintains the timing sequence of the all of the above

operations that constitute the fetch cycle. The operations are sequenced on the basis of the

single time period called the period of the clock. The RTL for fetch cycle is:

 t1: MAR ← PC

 t2: MBR ← Memory

 t3: IR ← (MBR)

 PC ← PC +1

All three time units are of equal duration. A time unit is defined by a regularly spaced clock

pulses. The operations performed within this single unit of time are called micro-operations.

Since each micro-operation specifies the transfer of data into or out of a register, such type of

language is called Register Transfer Language.

After the fetch of the instruction is complete, the execution cycle starts. Different instructions

are executed in different fashions. Let us consider execution of a simple instruction MOV

A,B. The first step needed is to obtain the data from the location B. For this the address field

of instruction register indicating the address of memory location will be transferred to address

bus through the Memory Address Register (MAR).

When the control unit issues a memory read signal, the contents of location B will be output

to the MBR. Now the address of memory location A is loaded in MAR. Finally, after the

memory write signal from the control unit is issued the data is copied to memory location A.

Using RTL language and defining above operations in the form of micro operation the

execute cycle is represented in following time units.

 t1: MAR ← (IR (Address of B))

 t2: MBR ← (B)

 t3: MAR ← (IR (Address of A))

 t4: A ← MBR

2.2 Instruction and Machine cycle

Consider a simple instruction: MOV A, B which states that data from register B is to copied

to register A. The instructions are all stored in the memory. The computer spends certain

period of time on Fetching, Decoding and Executing this instruction.

Instruction Cycle: It is defined as the time required to complete execution of an instruction.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 10

Machine cycle: It is defined as the time required to complete one operation of accessing

memory, I/O, or acknowledging an external request.

T-state: It is defined as one subdivision of the operation performed in one clock period.

Fig 2.1 Instruction cycle

2.3 Addressing Modes

Instructions are commands to the microprocessor to perform a certain task. The instructions

consist of Op-code and data called operand. The way operands are chosen during program

execution is dependent on the addressing mode. Addressing mode specifies the rule for

interpreting and modifying the address of the instruction before the operand is actually

referenced. The 8085 instruction set has six different addressing modes.

 Direct Addressing

 Register Indirect Addressing

 Register Direct Addressing

 Implied Addressing

 Immediate Addressing

Direct Addressing:

This addressing mode is called direct because the effective address of the operand is specified

directly in the instruction. Instructions using this mode may contain 2 or 3 bytes, with first

byte as the Op-code followed by 1 or 2 bytes of address of data. Loading and storing in

memory use 2 bytes of address while IN and OUT have one byte address. For example:

 LDA 2035H

 IN FCH

Register Indirect Addressing:

Here the address part of the instruction specifies the memory location whose content‟s is the

address of the operand. So in this type of addressing mode, it is the address of the address

rather than the address itself is part of the instruction. In 8085, wherever the instruction uses

HL pointer the address is called indirect addressing. For example:

 MOV A, M

Register Direct Addressing:

Register direct addressing mode means that a register is the source of an operand for an

instruction. It is similar to direct addressing. For example:

 MOV A, B

Instruction Cycle

Execute Cycle Fetch Cycle

T1 T2 T3 T4 T5 T6 T states

Machine cycles

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 11

 ADD B

Implied or Inherent Addressing:

The instructions of this mode do not have operands. For example:

 EI (Enable Interrupt),

 STC (set the carry flag),

 NOP (No operation)

Immediate Addressing:

This is the simplest for of addressing. When it executes the instruction will operate on

immediate hexadecimal number. The operand is present in instruction in this mode. This

mode is used to define and use constants of set initial values of variables. The operand may

be 8 bit data or 16 bit data. For example:

 MVI B, 05H

 LXI B, 7A21H

2.4 RTL description of data transfer, arithmetic, logical, branch, miscellaneous

instructions

An „instruction‟ is a binary pattern designed to perform a specific function. The list of entire

instructions is called the instruction set. The instruction set determines what function the

microprocessor can perform. The 8085 instruction set can be classified into the following five

categories:

 Data transfer group

 Arithmetic group

 Logical group

 Branching group

 Miscellaneous group

Data transfer group instructions:

The data transfer group is the longest group of instructions in 8085 and consists of 88

different op-codes. This group of instructions copy data from a source location to the

destination location, without modifying the contents of the source. The transfer of data may

be between the registers or between register and memory or between an I/O device and

accumulator. None of these instructions modify the flags.

 Load register (immediate instruction): loads the designated register with the operand.

Some of the instructions are:

 MVI A, data MVI B, data MVI C, data MVI D, data

 MVI E, data MVI H, data MVI L, data

Instruction MVI A, data

RTL (execute cycle) t1: MAR ← PC

 t2: MBR ← (MAR) , PC++

 t3: register A ← MBR

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 12

 Load memory (immediate): loads the memory location whose address is contained in

registers H and L with the operand

Instruction MVI M, data

RTL t1: MAR ← PC

 t2: MBR ← (MAR), PC++

 t3: MAR ← registers H&L

 t4: (MAR) ← MBR

 Load register pairs (Immediate): loads the register pair with 2 bytes of data. The

register pairs are B>B&C, D>D&E, H>H&L. The instructions are:

 LXI B, data LXI D, data LXI H, data

Instruction LXI B, data

RTL t1: MAR ← PC

 t2: MBR ← (MAR), PC++

 t3: register C ← MBR

 t4: MAR ← PC

 t5: MBR ← (MAR), PC++

 t6: register B ← MBR

 Load Accumulator (direct): loads the accumulator with the contents of memory

location specified by the 2 byte address. The instruction is LDA 2050H.

Instructions LDA, address

RTL t1: MAR ← PC

 t2: MBR ← (MAR++ MAR)

 t3: MAR ← MBR

 t4: MBR ← (MAR)

 t5: register A ← MBR

 Load Accumulator (indirect): load the accumulator with the contents of memory

location whose address is contained in the designated register pair (only register pair

B & D are used). The instructions are LDAX B & LDAX D.

Instruction LDAX B

RTL t1: MBR ← register B & register C

 t2: MAR ← MBR

 t3: MBR ← (MAR)

 t4: register A ← MBR

 Move register: this instruction loads the first specified register with the contents of the

second specified register. The instructions are MOV A, B , MOV C, D.

Instruction MOV A, B

RTL t1: MAR ← (Address of B)

 t2: MBR ← (B)

 t3: MAR ← (Address of A)

 t4: A ← MBR

 Move to memory from designated registers: load the memory location whose address

is contained in register H-L with the contents of the register. The instructions are

MOV M,A , MOV M,D.

Instruction MOV M, reg

RTL t1: MBR ← register H & register L

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 13

 t2: MAR ← MBR

 t3: MBR ← reg

 t4: (MAR) ← MBR

 Move to designated registers from memory: loads the designated register with the

contents of the memory location whose address is specified by the contents of register

H&L. The instructions are MOV A,M , MOV D,M.

 Store Accumulator contents (indirect address): loads the memory location whose

address is contained in the designated register pair (only register pair B & D are used)

with the contents of the accumulator. The instructions are STAX B, STAX D.

 Store Accumulator Contents (direct): loads the memory location whose address is

specified by the operand. The instruction is STA operand.

 Exchange contents of H&L with D&E: This instruction is used to exchange the

contents of register H with the contents of register D and the contents of register E

with the contents of register L. The instruction is XCHG.

 Load H & L directly: This instruction loads the registers H&L with the contents of the

memory location whose address is the operand of the instruction. (Register L contains

the value at the address and Register H contains the value at the address+1)

 Store H&L directly: This instruction is similar to load instruction and stores the

contents of H & L at the designated memory address.

Arithmetic group instructions:

There are different instructions for arithmetic operations in 8085. The arithmetic operations

performed by 8085 are addition, subtraction, increment and decrement. All the addition and

subtraction operations are performed with accumulator. However, increment and decrement

can be performed in any register and affect the flags except carry flag.

For addition and subtraction the following features exist:

 The instructions assume implicitly that the accumulator is one of the operands.

 The flags get modified according to the data conditions of the result.

 The result is placed in the accumulator.

 The execution of the instruction does not affect the operand register.

The different instructions are:

 ADD register: Add the contents of a register with the accumulator

 ADI data: Add immediate 8 bit data with the accumulator

 ADC register: Add the contents of a register with the accumulator and the carry

 ADI data: Add immediate 8 bit data with the accumulator and the carry

 SUB register: Subtract the contents of register from accumulator

 SBB register: Subtract the contents of register and borrow from accumulator

 SUI data: Subtract the immediate data from the accumulator

 SBI data: Subtract the immediate data and borrow from accumulator

 INR register: Increment the contents of register by 1

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 14

 DCR register: Decreases the contents of register by 1

Logical group instructions:

A microprocessor is programmable logic device. All the operations of the microprocessor is

carried out via the hardwired logic circuits. The logical functions that 8085 microprocessor

can perform are AND, OR, Ex-OR and NOT. The different instructions are:

 ANA register: Logical AND the contents of register with accumulator

 ANI data: Logical AND the immediate data with accumulator

 ORA register: Logical OR the contents of register with accumulator

 ORI data: Logical OR the immediate data with accumulator

 XRA register: Logical exclusive OR the contents of register with accumulator

 XRI data: Logical exclusive OR the data with accumulator

 CMA: Complements the contents of accumulator

The following features hold true for all logic instructions:

 The accumulator is one of the operands

 Except the instruction CMA, all instruction reset carry flag

 They modify the Z, P, A, S flags according to the data conditions of result

 They place the result in accumulator

 The contents of operand registers are not affected.

Branching group instructions:

The branch instructions allow the microprocessor to change the sequence of a program, either

on certain conditions or unconditionally. The microprocessor is a sequential machine i.e. the

instructions are executed from memory location sequentially. Branch instructions cause the

microprocessor to execute from another memory locations. The branch instructions can be

categorized as:

 Jump Instruction

 Call and Return Instruction

 Restart Instruction

Jump Instruction:

The jump instructions specify the memory location explicitly. These are 3 byte instructions

where the first byte is op-code and other bytes represent the 16 bit address. The jump may be

conditional or unconditional.

An unconditional jump enables the programmer to set up continuous loops without depending

on any type of conditions. The instruction is JMP data. The jump location can also be

specified using a label if the exact memory location which a program sequence should be

directed, is not known. However, it should be considered that a single label cannot be used

for different memory locations.

A conditional jump instruction allows the microprocessor to make decision based on certain

conditions indicated by the flags. After a arithmetic or logical operation, flags are set or reset

to reflect the data conditions. These instructions check flag conditions and make decision to

change the sequence of program. The flags tested for conditional jump are zero, carry, sign

and parity. The different instructions are:

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 15

 JC: Jump on carry

 JNC: Jump on if no carry

 JZ: Jump on zero

 JNZ: Jump on no zero

 JP: Jump on plus

 JM: Jump on minus

 JPE: Jump on even parity

 JPO: Jump on odd parity

Call and return Instructions:

Call and return instructions are used for using subroutine. A subroutine is a group of

instruction that performs a subtask of repeated occurrence. The subroutine is written as a

separate unit, apart from the main program and the control from program is transferred to

subroutine when the call instruction is encountered. After the completion of the subroutine

the control is returned back to the main program.

The call instruction and return instructions can also be set conditionally or unconditionally.

The different call and return instructions are:

 CALL: Unconditional call instruction

 RET: Unconditional return instruction

 CC, CNC, CZ, CNZ, CM, CP, CPE, CPO: Conditional Call

 RC, RNC, RZ, RNZ, RM, RP, RPE, RPO: Conditional Return

Restart Instruction:

The 8085 instruction set includes eight RST (Restart instructions). These are 1 byte call

instructions and transfer the program execution to a specific location as listed in table below:

Restart Instructions Hex. Code Call Location in Hex

RST0 C7 0000H

RST1 CF 0008H

RST2 D7 0010H

RST3 DF 0018H

RST4 E7 0020H

RST5 EF 0028H

RST6 F7 0030H

RST7 FF 0038H

Actually these restart instructions are inserted through additional hardware and for this

purpose the INTA signal of 8085A is used. These instructions are part of interrupt process.

Miscellaneous group instruction:

All other instructions in the instruction set fall on this group. These instructions include stack

operation instructions, input/ output operations and interrupt operations of 8085

microprocessor. The different instructions are.

PUSH, POP, DI, EI, HLT, etc….

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 16

2.5 Fetch and execution cycle, fetch execution overlap

The processor does the actual work by executing instructions specified in the program. In its

simplest form instruction processing consists of two steps: The processor reads instructions

from memory one at a time and executes each instruction. Program execution consists of

repetitive fetch and instruction execution.

The processing time required for a single instruction is called an instruction cycle. The

instruction cycle is composed of: fetch cycle and execute cycle. During fetch the instruction

is read from its memory location into the processor. The time required for this memory read

operation is called fetch cycle. After the instruction is fetched it ought to be executed. The

time required for execution is the execution cycle.

The fetch and execute stages of instruction execution are quite independent. The fetch cycle

involves accessing the main memory for instruction. But during execution the memory need

not be referenced. So, during this duration the next instruction can be fetched. This is called

instruction prefetch. This prefetching data before it is asked for in the anticipation that it will

be used is called pipelining. The process of pipelining enhances the speed of processor

greatly. However, 8085 doesn‟t support pipelining. Thus there is no overlap between fetch

cycle and execution cycle.

2.6 Timing diagram for register move, indirect read, indirect write and out instructions

The 8085 microprocessor is designed to execute 74 different instruction types. Each

instruction has two parts: operation code, known as op-code, and operand. To execute an

instruction, the 8085 needs to perform various operations such as Memory Read/Write and

I/O Read/ Write. The total operations of a microprocessor can be classified into the following

operations.

 Op-code Fetch

 Memory Read and Write

 I/O Read and Write

 Request Acknowledge

Op-code Fetch Cycle:

The first operation in any instruction is Op-code Fetch. The microprocessor needs to get the

machine code from the memory register where it is stored before the microprocessor can

begin to execute any instruction.

Let us consider the timing for execution of the instruction MVI A,32H. The op-code of MVI

is 3EH. Since the op-code fetch cycle is analogous for all the instructions all op-code fetch

cycle consists of four machine cycles.

The following figure shows the timing of how a data is transferred from memory to MPU; it

has five different groups of signals in relation to system clock. The address bus and data bus

are shown as two parallel lines. Other control signals are shown using single lines

representing logic levels. The crossover of the lines indicates a new byte is placed on the bus.

The dashed straight line indicates the high impedance state.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 17

Fig: Timing Diagram of Op-code Fetch Cycle

The following steps occur during Op-code Fetch Cycle

1. The Program counter (PC) places the 16 bit memory address on the address bus. At

T1 high order address is placed at A8-A15 and lower order address is placed at AD0-

AD7 and the ALE signal goes high, IO/M goes low, and both s0 and s1 goes high;

which identifies the op-code fetch cycle.

2. The control unit sends the control signal RD to enable the memory chip and remains

active till two clock periods.

3. Now the op-code from memory location is placed on the multiplexed data bus. In this

case 3E is placed on AD7 – AD0. The transition of RD indicates the end of this step.

4. The op-code byte is now placed on instruction decoder and the execute cycle is

carried out

Memory Read cycle:

The Op-code fetch cycle is a memory read cycle. Thus, other memory read cycles are similar

to the op-code fetch cycle. Let us take the same example as above. The instruction cycle of

MVI 32H is shown below:

The total cycle consist of 7 T states and 2 machine cycles: op-code fetch and memory read.

At the end of op-code fetch the PC is incremented thus the address is now 2001h and

instruction decoder has 3Eh. Now the operand is to be read from the memory to register A.

The second machine cycle is the memory read and consists of 3 T states. The signal content

of this cycle are similar to the first three T states of op-code fetch except the status signal, In

this case s0=0 and s1=1.

The byte read in T3 of memory read cycle will be copied into the accumulator in the same

cycle.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 18

Fig: Op-code fetch and memory read cycle

I/O Write Cycle:

Let us consider the instruction OUT 01h stored at memory location 2050h. The op-code of

this instruction is D3h and the complete cycle requires 10 T states. The write cycle executes

as shown below:

Fig: Timing diagram of I/O write cycle

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 19

The instruction is executed under three machine cycles: op-code fetch, memory read and I/O

write. The op-code fetch and memory read cycles exactly match the previous ones except for

the contents of the buses. At the end of memory read cycle the PC points at 2051h.

Now instruction decoder contains D3h and on the next machine cycle the port address 01h is

placed on higher and lower port address. Unlike previous cases now IO/M signal goes high to

indicate a I/O operation. At T2 the accumulator contents are placed on the data bus, followed

by the control signal WR. The signal IOW is obtained by anding the IO/M and WR signals to

enable the output device

I/O Read Cycle:

The I/O read cycle is exactly same as I/O write cycle. The only difference is on the third

machine cycle where the signal IOR is generated and the content of the port is read to the

accumulator instead of otherwise. The IOR signal is generated by anding the IO/M and RD

signals to enable the input device.

Fig: Timing diagram of I/O read cycle

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 20

3. Assembly Language Programming (16 bit Microprocessor)

Introduction to 16 bit Microprocessor Architecture

The 8086 is a 16-bit microprocessor. The term 16 bit implies that its arithmetic logic unit, its

internal registers, and most of its instructions are intended to work with 16 bit binary data.

The 8086 has a 16 bit data bus, so it can read data from or write data to memory and ports

either 16 bits or 8 bits at a time. The 8086 has a 20 bit address bus, so it can address any one

of 2
20

, or 1,048,576 memory locations.

8086 CPU is divided into 2 independent functional parts to speed up the processing namely

BIU (Bus interface unit) & EU (execution unit).

BIU: It handles all transfers of data and addresses on the buses for the execution unit.

 Sends out addresses

 Fetches instructions from memory

 Read / write data from/to ports and memory i.e handles all transfers of data and

addresses on the busses

EU

 Tells BIU where to fetch instructions or data from

 Decodes instructions

 Executes instructions

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 21

Execution Unit

Instruction Decoder & ALU:

Decoder in the EU translates instructions fetched from the memory into a series of actions

which the EU carries out.16-bit ALU in the EU performs actions such as AND, OR, XOR,

increment, decrement etc.

FLAG Register:

It is a 16-bit register. 9-bit are used as different flags, remaining bits unused

U U U U OF DF IF TF SF ZF U AF U PF U CF

Out of 9-flags, 6 are conditional flags and three are control flags

Conditional flags:

These are set or reset by the EU on the basis of the results of some arithmetic or logic

operation. 8086 instructions check these flags to determine which of two alternative actions

should be done in executing the instructions.

 OF (Overflow flag): is set if there is an arithmetic overflow, i.e. the size of the result

exceeds the capacity of the destination location.

 SF (Sign flag): is set if the MSB of the result is 1

 ZF (Zero flag): if the result is zero

 AF (Aux carry flag): is set is there is carry from lower nibble to upper nibble or from

lower byte to upper byte

 PF (Parity flag): is set if the result has even parity

 CF (Carry flag): is set if there is carry from addition or borrow from subtraction

Control flags:

They are set using certain instructions. They are used to control certain operations of the

processor.

 TF (Trap flag): for single stepping through the program

 IF (Interrupt flag): to allow or prohibit the interruption of a program

 DF (Direction flag): Used with string instructions

General purpose Registers:

 8 GPRs AH, AL (Accumulator), BH, BL, CH, CL, DH,DL are used to store 8 bit data.

 AL register is also called the accumulator

 Used individually for the temporary storage of data

 GPRs can be used together (as register pair) to store 16-bit data words. Acceptable

register pairs are:

AH-AL pair AX register BH-BL pair BX register

CH-CL pair CX register DH-DL pair DX register

Pointer and Index registers: SP (Stack Pointer), BP (Base pointer), SI (Source Index), DI

(Destination index)

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 22

The two pointer registers, SP and BP are used to access data in the stack segment. The SP is

used as offset from current Stack Segment during execution of instruction that involve stack.

SP is automatically updated. BP contains offset address and is utilized in based addressing

mode.

Index Registers:

EU also contains a 16 bit source index (SI) register and 16 bit destination index (DI) register.

These three registers can be used for temporary storage of data similarly as the general

purpose registers. However they are specially to hold the 16-bit offset of the data word.

Bus Interface Unit

The QUEUE:

When EU is decoding or executing an instruction, bus will be free at that time. BIU

prefetches up to 6-instructions bytes to be executed and places them in QUEUE. This

improves the overall speed because in each time of execution of new instruction, instead of

sending address of next instruction to be executed to the system memory and waiting fro the

memory to send back the instruction byte, EU just picks up the fetched instruction byte from

the QUEUE.

The BIU stores these pre-fetched bytes in a first-in-first-out (FIFO) register set called a

queue. Fetching the next instruction while the current instruction executes is called

pipelining.

Segment Registers:

The BIU contains a dedicated address, which is used to produce the 20 bit address. The bus

control logic of the BIU generates all the bus control signals, such as the READ and WRITE

signals, for memory and I/O. The BIU also has four 16 bit segments registers namely:

 Code segment: holds the upper 16-bits of the starting addresses of the segment from

which BIU is currently fetching instruction code bytes.

 Stack segment: store addresses and data while subprogram executes

 Extra segment: store upper 16-bit s of starting addresses of two memory segments that

are used for data.

 Data segment: store upper 16-bit s of starting addresses of two memory segments that

are used for data.

Code Segment Register (CS) and Instruction Pointer (IP)

All program instructions located in memory are pointed using 16 bits of segment register Cs

and 16 bits offset contained in the 16 bit instruction pointer (IP). The BIU computes the 20

bit physical address internally using the logical address that is the contents of CS and IP. 16

bit contents of CS will be shifted 4 bits to the left and then adding the 16 bit contents of IP.

Thus all instructions of the program are relative contents of IP. Simply stated, CS contains

the base or start of the current code segment, and IP contains the distance or offset from this

address to the next instruction byte to be fetched.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 23

Graphically,

Fig: Diagram showing addition of IP to CS to produce the physical address of code byte

Stack Segment Register (SS) and Stack Pointer (SP)

A stack is a section of memory to store addresses and data while a subprogram is in progress.

The stack segment register points to the current stack. The 20 bit physical stack address is

calculated from the SS and SP. The programmer can also use Base Pointer (BP) instead of SP

for addressing. In this case the 20 bit physical address is calculated using SS and BP.

Addressing Modes

 Immediate Addressing mode: Operand (one of the operand say source) is immediate

data in the instruction

Example

MOV CX,234AH

ADI 23H

 Register Addressing mode: Transfers a copy of byte or word from source register or

memory location to destination register or memory location.

Example

MOV CX, DX

transfers the content of DX to CX register pair

 Direct Addressing mode: One operand should be memory location i.e moves byte or

word between memory location and the register.

Example

MOV BX, [4371H]

Copies 16-bit word into a memory pointed by the displacement address 4371H

to the BX register. (In little endian format: lowest byre->lowest address)

 Register Indirect Addressing: Transfers a word or byte between register and memory

addressed by index or base register. Index or base register are BP, BX, DI, SI.

Example

MOV AX,[BX]

Copies the word-sized data from data segment offset address indexed by BX

into AX

PHYSICAL
ADDRESS

348A0H

38AB4H

IP = 4214H

MEMORY

CODE BYTE

START OF CODE SEGMENT
CS= 348AH

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 24

 Register Relative Addressing Mode: Transfers a byte or word between register and

memory location addressed by an index or base register plus displacement.

Example

MOV AX, [BX+4]

 Base-Plus-Index Addressing Mode: Transfers a word or byte between register and

memory location addressed by base register (BP or BX) plus index register (DI or SI).

Example

MOV [BX+DI], CL

Used for locating array data type.

3.1 Assembler instructions format: Op-codes, memonics and operands

Machine Language:

There is only one programming language that any computer can actually understand and

execute: its own native binary machine code. This is the lowest possible level of language in

which it is possible to write a computer program. However, binary code is not native to

humans and it is very easy for error to occur in the program. These bugs are not easy to

determine in a pool of binary digits. Also for CPU like 8086 it is tedious and virtually

impossible to memorize thousands of binary instructions codes.

Example

Program memory address Content (binary) Content (Hex)

00100H 0000 0100 04h

Assembly Language:

Programs in assembly language are represented by certain words representing the operation

of instruction. Thus programming gets easier. These words (usually two-to-four letter) is used

to represent each instruction are called Mnemonics. Assembly language statements are

generally written in a standard form that has four fields.

 Label field

 Instruction, Mnemonic or Op-code field

 Operation field

 Comment field

Let us consider a simple example to add two numbers

Label Mnemonic Operand Comment

Start: MVI A, 10h Move 10h into accumulator

 MVI B, 20h Move 20h into register B

 ADD B Add the contents of register B with accumulator

Thus, we see the ease with the assembly language rather than machine language.

However, it must be remembered that for execution these codes are converted to machine

codes. This is done by assembler. An assembler translates a program written in assembly

language into machine language program (object code). Assembly language program are

called „source codes‟. Machine language programs are known as object codes. A translator

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 25

converts source codes to object codes and then into executable formats. The process of

converting source code into object code is called compilation and assembler does it. The

process of converting object codes into executable formats is called linking and linker does it.

There are two ways of converting an assembly language program into machine language:

manual assembly and using assembler. In manual assembly, the programmer is the assembler

and he converts the entire mnemonic into its numerical machine language representation by

looking up a table of microprocessor‟s instruction set. This method is only convenient for

short programs.

An assembler reads each instruction of a program as ASCII characters and translates them to

respective binary op-codes. An advantage of an assembler is address computation. Most

programs used addresses within the program as data or as labels for jumps and calls.

Assembler automatically takes care of addresses. Manual calculation of addresses for these

instructions is a time consuming task.

3.2 Types of Assemblers

One Pass Assembler:

This assembler reads the assembly language program once and translates the assembly

language program to machine code. This assembler has the program of defining forward

references. This means that a branching instruction using an address that appears later in the

program must be defined by the programmer after the program is assembled.

Two Pass Assembler:

This assembler scans the assembly language program twice. In the first pass, the assembler

generates the table of the symbols. A symbol table consists of labels with addresses assigned

to them. In this way labels can be used for JUMP statements, and no address calculation has

to be done by the user. On the second pass, the assembler translates the assembly language

program into the machine code. The two pass assembler is thus easier to use.

3.3 Macro assemblers, linking assemblers and assembler directives

Macro assembler is an assembly language that allows macros to be defined and used.

The Microsoft Macro Assembler (MASM) is an x86 assembler that uses the Intel

syntax for MS-DOS and Microsoft Windows.

Assembler can be linked with two or more than two assembler called linking assemblers.

Assembly directives, also called pseudo opcodes, pseudo-operations or pseudo-ops, are

instructions that are executed by an assembler at assembly time, not by a CPU at run time.

They can make the assembly of the program dependent on parameters input by a

programmer, so that one program can be assembled different ways, perhaps for different

applications. They also can be used to manipulate presentation of a program to make it easier

to read and maintain.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 26

4. Bus Structure and Memory Devices

4.1 Bus Structure, synchronous and asynchronous data bus, address bus, bus timing

Bus Structure:

A microprocessor unit performs basically four operations: memory read, memory write, I/O

read, I/O write. These operations are part of communication between MPU & peripheral

devices.

A communication includes identifying peripheral or memory location, transfer of data &

control functions. These are carried out using address bus, data bus and control bus

respectively. All the buses together is called the system bus.

In case of 8085 MPU we have

 8 unidirectional address pins

 8 bi directional multiplexed address/ data pins

 11 control output pins

11 control input pins

Data bus:

The data bus provides a path for data flow between the system modules. It consists of a

number of separate lines, generally 8, 16, 32 or 64. The number of lines is referred to as

width of the data bus. A single line can only carry one bit at a time, the number of lines

determine how many bits can be transmitted at a time. The width also determines the overall

system performance.

An 8 bit data bus would require twice the time required by 16 bit data bus to transmit 16 bit

data

 8085 – 8 bit data bus

 8086 – 16 bit data bus

Asynchronous bus:

In an asynchronous data bus the timing is maintained in such a way that occurrence of one

event on the bus follows and depends on the occurrence of previous event. Let us consider a

simple memory read:

 The CPU places the memory read and address signals on the bus.

 After allowing for these two signals to stabilize, it issues Master synchronous signal

(MSYNC) to indicate the presence of valid address and control signals on the bus.

 The addressed memory module responds with the data and the slave synchronous

(SSYNC) signal.

Thus at a certain time it cannot be identified when there is data or an address on the bus.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 27

Fig: Asynchronous Bus

Synchronous Bus:

A synchronous bus has its events tied by a clock. The clock transmits a regular sequence of a

0‟s and 1‟s of equal duration. A single 1-0 transmission is called clock cycle or bus cycle. All

other devices work with the clock cycle. The events start at the beginning of the clock cycle.

A memory read in case of a synchronous bus progresses as:

 The CPU issues a start signal to indicate the presence of address and control

information on the bus.

 Then it issues the memory read signal and places the memory address on the address

bus.

 The addressed memory module recognizes the address and after a delay or one clock

cycle it places the data and acknowledgement signals on the buses.

In a synchronous bus, all the devices are tied to a fixed rate.

Fig: Synchronous Bus

Clock

SSYNC

Data Bus

Address

Read

MSYNC

Acknowledge Signal

Data Bus

Read

Start

Address

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 28

Address bus:

The address bus is used to designate the source and destination of data in data bus. In a

computer system, each peripheral or memory location is identified by a binary number called

an address.

The width of the address bus determines the maximum possible memory capacity of the

system. The address bus is also used to address I/O ports. Usually higher order bits are used

to select particular modules and lower order bit select a memory location or I/O port within a

module.

 8085 – 16 bit address bus

 Thus, maximum amount of memory locations it can address

 2
16

 = 65, 536 or 64 Kb

Control bus:

These are group of lines used to control the data and address bus. Since this bus is shared by

all the component of the microcomputer system; there must be come control mechanism to

distinguish between data and address. The timing signals indicate the validity of data and

address information; while command signal specify operations to be performed. Some of the

control signals are:

 Memory write

 Memory Read

 I/O write

 I/O read

 ALE

 Interrupt Request

 Interrupt Acknowledge

4.2 Static and Dynamic RAM, ROM

Memory is like the pages of a notebook with space for a fixed number of binary numbers on

each line. Memory is an essential component of microcomputer system; storing binary

instructions and data for the microprocessor. Memory locations are identified by an address.

The address bus of the microprocessor defines the maximum amount of memory a

microprocessor can address.

Microcomputer memory can be grouped as

 Processor Memory

 Primary or Main memory

 Secondary Memory

Processor Memory:

Processor memory is a group of register along with processor. They temporarily hold data

during computation since processor and registers are fabricated with same technology they

have same speed. Although the use of such registers increase speed of the processor; the cost

factor allows only few registers to be included.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 29

Now, a separate memory is kept alongside the processor to keep the most frequently needed

information. The performance could be improved if this new memory could be improved if

this new memory could be included within the processor. This newly added memory is

known as „cache memory‟.

Primary Memory:

This is the memory the microprocessor uses in executing & storing programs. Usually the

size of this memory is larger and slower than processor memory.

Primary Memory can be grouped as:

 Random Access Memory (RAM)

 Read Only Memory (ROM)

RAM

It is used primarily for information that is likely to be altered, such as writing programs or

receiving data. This memory is volatile. Two types of RAM are available.

Static RAM (SRAM)

This memory is made up of flip-flops, and it stores the bit as a voltage. Each memory cell

requires six transistors; they have low packing density but high speed and consume more

power.

Dynamic RAM (DRAM)

DRAM stores data in capacitors; so it can hold data for a few milliseconds. Hence DRAM

must be refreshed from time to time. In DRAM greater number of bits can be stored in small

chips but the interfacing circuit of DRAM is complicated because of refreshing. They are

cheaper than SRAM.

ROM (Read Only Memory)

The ROM is a non-volatile memory. This memory is used for programs and data that need

not be altered. As the name suggests, the information is read only, which means once a bit

pattern is stored it is permanent or at least semi permanent. The different types of ROM are:

4.3 PROM, UVEPROM, EEPROM, PROM programmer and erasure

Masked ROM:

They are permanent ROM recorded by masking. Generally manufacturers use this process to

produce ROM in large numbers.

PROM:

These are un-programmed ROM. The fuses on the ROM are not burned. A programmer can

program this ROM according to his needs. The process is known as „burning the PROM‟, and

the information stored is permanent.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 30

EPROM:

These ROM can be reprogrammed and erased. Two types of such EPROM are available.

UV-EPROM

The memory of such ROM can be erased by exposing the chip via a lid or window on the

chip to ultraviolet light. The erase time generally varies between 10 to 30 minutes. The

EPROM can be programmed by inserting the chip into a socket of the PROM programmer

and providing proper addresses. The programming time varies from 1 to 2 minutes.

EEPROM

These are similar to UVEPROMs, except that the memory is altered by electrical signals at

register level.

Secondary Memory

Secondary memory are storage devices. These devices have high data holding capacity. They

store programs that are not frequently used by the processor. They are slow and have larger

size. Some of the examples are: Hard disk, Floppy disk, Magnetic Tapes, CD, DVD etc.

4.4 Address decoding, memory interface (8, 16, 32, 64 bit)

A microcomputer has microprocessor, memory & I/O devices attached. A processor

communicates with all parts interconnected in the system through common address and data

bus. Hence only one device can transmit data through the bus at a time & others can only

receive data. Now, to ensure that the proper device gets addressed at proper time, the method

of address decoding is used

In this process memory blocks & I/O units are assigned a specific address. The address is

determined by the way the device is connected to processor. The signal used to drive the

device is called chip select. Since only one chip select is activated at a time only one block of

memory or I/O device is activated. The purpose of address decoding circuit is to ensure that

the Chip select signals to other devices are not activated. There are two methods for mapping

address of these devices. They are:

 I/O mapped I/O

 Memory mapped I/O

In I/O mapped I/O method the I/O devices are addressed with 8-bit address. It means that the

Chip Select signals for the devices are derived by using the 8 address lines. In 8085

microprocessor, the general procedure involves the use of lower 8 bit address lines for

deriving the Chip Select signal. Thus only 256 devices or addresses can be mapped. The

higher order address bits are don‟t care conditions. Instruction used for input and output are

IN and OUT.

In memory mapped memory I/O mode the I/O devices are addressed with 16 bit data. It

means that in this mode the Chip Select signals for the devices are derived using all 16

address lines from the processor. Thus a total of 64 KB can be addressed.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 31

Usually in microcomputers based on 8085 processor the memories like RAM, ROM,

EPROM etc uses memory mapping whereas the devices like 8255A, 8251A, input/output

latches etc use I/O mapping. Now depending on the addresses that are allocated to the device

the address decoding can be categorized as

1. Unique address decoding:

If all of the address lines available on that mapping mode are used for address decoding, then

that decoding is called unique address decoding. Thus, in memory mapped memory I/O all 16

lines are used and in I/O mapped I/O method all 8 lines are used for address decoding.

2. Non-Unique address decoding:

If all of the address lines available on that mode are not used address decoding, then that

decoding is called non-unique address decoding. Such practice of address decoding is simple

but rather conflicting as the device is activated for a wide range of addresses.

Memory Interface

Using the proper address and data bus, a control bus must also be used to control the

operation of the memory circuitry. The operations to be considered for memory interface are:

 Read data from memory (Access memory)

 Write data from memory (Access memory)

 Do no access memory

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 32

5 Input/Output Interfaces

5.1 Serial Communication

Serial Communication involves the transmission of data from one place to another using

serial device. In serial communication the data is transmitted bit by bit on a single line. This

minimizes the interconnecting wires, thereby also reducing the number of line drivers and

receivers. Thus, only single bit can be transmitted at a time reducing the data transfer rate as

the time required to transmit increases. However, since only one wire is used for data transfer

the amount of cross-talk (interference between different lines) decreases. This in turn allows

us to increase data rate which was the limiting factor in parallel communication.

5.1.1 Asynchronous interface: ASCII code, baud rate, start bit, stop bit, parity bit

ASCII code

The acronym ASCII stands for the American Standard Code for Information Interchange. It is

an 8-bit code commonly used with microprocessors (including those of computers) for

representing alphanumeric codes. Out of the 8 bits first 7 are used to represent the character

while the eighth bit is used to test for errors and is referred to as parity bit. The 7 bit code

provide with 128 (2
7
) combinations. The parity bit used can be that of even parity or odd

parity.

Baud rate

The term baud rate is used to indicate the rate at which serial data is being transferred. Bad

rate is defined as 1/(bit interval). The rate is usually expressed as Bd or bits/second.

Start bit & Stop bit

In serial communication the data are sent serially so to differentiate between proper data and

garbage data the data is enclosed in start bit and stop bit. The start bit indicates the beginning

of a data character and indicated by the line going low for 1 bit time. The stop bit is indicated

by line going continuously high after the data is over.

Parity bit

The parity bit follows the final data bit. Depending on the type of parity its value may be 0 or

1. This bit is used to check errors in received data.

5.1.2 Synchronous interface

Synchronous Interface is a widely used interface standard for industrial applications between

a master (e.g. controller) and a slave (e.g. sensor). Synchronous Serial Interface (SSI) is

based on RS422.

5.1.3 8255 Programmable Peripheral Interface (Block diagram and Modes only)

The 8255A is a widely used programmable parallel I/O device. It can be programmed to

transfer data under various conditions from simple I/O to interrupt I/O. It is a general purpose

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 33

I/O device that can be used with almost any microprocessor. The PPI can work in two modes

depending on the bit D7 on the control word. These are:

 BSR (Bit Set Reset) mode

 I/O (input/output) mode

24 I/O ports available in 8255 are divided into two groups (Group A and Group B). The 24

I/O ports form three 8-bit parallel ports (Port A, Port B and Port C). The eight bits of port C

can be used as individual bits or be grouped in two four bit ports. The functions of these ports

are defined by writing a control word in the control register. The different modes available in

8255 are shown below.

Block Diagram of 8255

Fig: Block diagram of 8255 PPI

The figure above shows the pin configuration and the block diagram of 8255 PPI. We see that

there are 24 I/O lines. Port A and Port B can be used as 8 bit input or output port. Port C is a

special supplementary port which can be used as an 8 bit I/O port, two 4 bit ports, as

individual lines, or to produce handshake signals for port A and B.

We also see that there are eight data lines which allow you to write data bytes to a port or the

control register and read bytes from the port or the status register under the control of the RD‟

and WR‟ lines. The address inputs, A0 and A1, allow you to selectively access one of the

three ports or the control register. The internal addresses for the device are: port A, 00; port

B, 01; port C, 10; control register, 11. Selecting the CS‟ input will enable 8255 for reading or

writing. It is connected to address decoder circuitry to select the device when addressed. The

RESET input of the 8255 is connected to the system reset line. When reset the device is

programmed as input.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 34

8255 Operational Modes and Initialization

The ports in 8255 can attain three modes of operation that can be selected by control words.

 Mode 0- Basic I/O (Group A, Group B)

 Mode 1- Strobe input/Strobe output (Group A, Group B)

 Mode 2- Two way bus (Port A only)

MODE 0

When we need a port for simple input or output without handshaking, we initialize the port in

mode 0. If both port A and port B are initialized in mode 0, then the two halves of port C can

be used together as an additional 8 bit port, or they can be used individually as two 4 bit

ports. When used as outputs, the port C lines can be individually set or reset by sending a

special control word to control register address (Bit set/reset mode). Also the two halves of

port C are independent so one half can be initialized as input and the other half initialized as

output.

 Output are latched

 Inputs are not latched

 Ports don‟t have handshake or interrupt capability

MODE 1

When we need to use strobed input or output then we can initialize port A and port B in mode

1. In this mode, some of the pins of port C function as handshake lines. Pins PC0, PC1, and

PC2 function as handshake lines for port B if it is initialized in mode 1. If port A is initialized

as a input handshake port, then pins PC3, PC4, and PC4 function as handshake signals. Pins

PC6 and PC7 are available for used as input or output lines. If port A is initialized as a

handshake output port, then port C pins PC3, PC6 and PC7 function as handshake signals,

Port C pins PC4 and PC5 are available for use as input or output lines.

 Input and output data are latched

 Interrupt logic is supported

MODE 2

Only port A can be initialized in mode 2. In mode 2, port A can be used for bidirectional

handshake data transfer. This means that data can be output or input on the same eight lines.

If port A is initialized in mode 2, then pins PC3 through PC7 are used as handshake lines for

port A.

Precaution for use in Mode 1 and 2

When used in Mode 1 and 2, bits which are not used as control or status in Port C can be

used as follows:

 If programmed as the input, they are accessed by normal Port C read.

 If programmed as the output, high order bits of Port C (PC7-PC4) are accessed using

the bit set/reset function. As to low order bits of Port C (PC3-PC0), in addition to

access by the bit set/reset function, 3 bits only can be accessed by normal writing.

Constructing 8255 Control Word

The following figure shows the formats for the two 8255 control words. The MSB of the

control word distinguishes between the two control words. The mode definition control word

format in the figure tells the device what modes you want the ports to operate in. We use the

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 35

bit set/reset control word format in the latter figure when we want to set or reset the output on

a pin of port C or when you want to enable the interrupt signals for handshake data transfers.

Both the control word are sent to the control register of 8255

(a)

(b)

Fig: 8255 control word formats. (a) Mode set control word

(b) Port C bit set/reset control word.

Example 1:

Construct a control word to configure Ports A and port CU as output ports and port B and port

CL as input ports.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 36

D7 D6 D5 D4 D3 D2 D1 D0 Control

Word

1 0 0 0 0 0 1 1 83H

I/O

function

Port A in mode

0

Port A

as

output

Port CU

as

output

Port B

in mode

0

Port B

as input

Port CL

as input

Example2:

Write Control word to set and reset bits PC7 and PC3.

 D7 D6 D5 D4 D3 D2 D1 D0 Control Word

To set bit PC7 0 0 0 0 1 1 1 1 0FH

To reset bit PC7 0 0 0 0 1 1 1 0 OEH

To set bit PC3 0 0 0 0 0 1 1 1 O7H

To reset bit PC3 0 0 0 0 0 1 1 0 06H

5.1.4 8251 Programmable Communication Interface (Block diagram and Modes only)

The 8251 is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for

serial data communication. As a peripheral device of a microcomputer system, the 8251

receives parallel data from the CPU and transmits serial data after conversion. This device

also receives serial data from the outside and transmits parallel data to the CPU after parallel

conversion.

Fig: Block Diagram of Intel 8251

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 37

The internal block diagram of 8251 is shown above and the different pin functions of 8251

are listed on table below:

Pin Name Pin Function

D7-D0 Data bus (8 bit)

C/D‟ Control or data is to be written or read

RD‟ Read data command

WR‟ Write data or control command

CS‟ Chip select

CLK Clock pulse (TTL0

REST Reset

TxC‟ Transmitter clock

TxD Transmitter data

RxC‟ Receiver clock

RxD Receiver data

RxRDY Receiver ready (has character for CPU)

TxRDY Transmitter ready (ready for char from CPU)

DSR‟ Data set ready

DTR‟ Data terminal ready

SYNDET/BD Sync detect/ break detect

RTS‟ Request to send data

CTS‟ Clear to send data

TxEMPTY Transmitter empty

Vcc +5 V supply

GND Ground

Fig: Pin Description of 8251

The eight parallel lines, D7-D0, connect to the system data bus so that data words and

control/status words can be transferred to and from the device. The chip select (CS‟) input is

connected to an address decoder so the device is enabled when addressed. The 8251 has two

internal addresses, a control address which is selected when C/D is high, and a data address

which is selected when C/D input is low. The RESET, RD‟, and WR‟ lines are connected to

the system signals with the same names. The clock input of the 8251 is usually connected to a

signal derived from the system clock to synchronize internal operations of the USART with

the processor timing.

The signal labeled TxD on the upper right corner of the 8251 block diagram is the actual

serial data output. The pin labeled RxD is the serial data input. The additional circuitry is

needed to convert the TTL logic levels from 8251A to current loop or RS232C signals and

opposite to receive the data. We will discuss it on section 5.4.

The shift registers in the USART require clocks to shift the serial data in and out. TxC is the

transmit shift register clock input, and RxC‟ is the receive shift register clock input. Usually

these two inputs are tied together so they are driven at same clock frequency. The frequency

chosen must be 1, 16, or 64 times the transmit and receive baud rate depending upon the

mode in which the 8251 is initialized. Using a clock frequency higher than the baud rate

allows the receive shift register to be clocked at the centre of a bit time rather than at a

transition. This reduces the chance of noise at a transition causing a read error.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 38

The 8251A is double buffered. This means that one character can be loaded into a holding

buffer while another character is being shifted out of the actual transmit shift register. The

TxRDY output from the 8251 will go high when the holding buffer is empty and another

character can be sent from CPU. The TxEMPTY pin on the 8251 will go high when both the

holding buffer and the transmit shift register are empty. The RxRDY pin of the 8251A will

go high when a character has been shifted into the receive buffer and is ready to be readout

by the CPU. Incidentally, if a character is not read out before another character is shifted in,

the first character will be over-written and lost.

The sync-detect/break-detect (SYNBDET/BD) pin has two uses. When the device is

operating in asynchronous mode, this pin will go high if the3 serial data input line, RxD,

stays low for more than two character times. This signal then indicates an intentional break in

data transmission, or a break in the signal line. When programmed for synchronous data

transmission this pin will go high, when the 8251 finds a specified Sync character(s) in the

incoming string of data bits.

Initialization

To initialize an 8251A you must send first a mode word and then a command word to the

control register address for the device. The following figure shows the formats for these

words and for the 8251A status word which is read from the same address.

In the mode word Baud rate factor is specified by the two least significant bits of the mode

word, is the ratio between the clock signal applied to the TxC‟-RxC‟ inputs and the desired

baud rate. For example, if you want to use TxC‟ of 19200 Hz and transmit data at 1200Bd,

the baud rate factor is 19200/1200 or 16x. If bits D0 and D1 are both made 0‟s, the 8251A is

programmed for synchronous data transfer. In this case the baud rate will be the same as the

applied TxC‟ and RxC‟. The other three combinations for these 2 bits represent asynchronous

transfer. A baud rate factor of 1 can be used for asynchronous transfer only if the transmitting

system and the receiving system both use the same TxC‟ and RxC‟. The character length is

specified by D2 and D3 in the mode word includes only the actual data bits not the start bit,

parity bit or stop bit(s). If parity (D4) is disabled then no parity bit is inserted in the

transmitted bit string. The bit D5 represents the type of parity used for error correction. The

last two bits signifies the number of stop bits used after the data is sent.

After the mode word is send, you must then send it a command word.

Bit D0=1 enables the transmitter section and TxRDY output. When enabled, the 8251A

TxRDY output will be asserted high if the CTS input has been asserted low, and the

transmitter holding buffer is ready for another character from CPU. When a character is

written to the 8251A data address, the TxRDY signal will go low and remain low until the

holding buffer is again ready for another character.

Bit D1=1 will cause the DTR output of 8251 to be asserted low. This signal is used to tell a

modem that a terminal or computer is operational.

Bit D2=1 enables the RxRDY output pin of 8251A. If enabled, the RxRDY pin will go high

when the 8251 has a character in its receiver buffer ready to be send. This signal can be

connected to an interrupt input so that characters can be read in on an interrupt basis. The

RxRDY output is reset when a character is read from the 8251A.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 39

Bit D3=1 causes the 8251 to output a character of all 0‟s which is called a break character. A

break character is sometimes used to indicate the end of a block of transmitted data.

Bit D4=1 causes 8251 to reset the parity, overrun and framing error flags in the 8251 status

register.

Bit D5=1 causes 8251 to assert its RTS output low. This signal is sent to a modem to ask

whether the modem and the receiving system are ready for a data character to be sent.

Bit D6=1 causes the 8251 to internally reset when the command word is sent. After the

software reset command is sent in this way, a new mode word must be sent

Bit D7=1 tells the 8251 to look for specified sync characters in a system of bits being shifted

in. If 8251 finds specified sync characters, it will assert its SYNDET/BD pin high.

5.2 Parallel Communication

In all preceding chapters, we have used port devices to input and output parallel data to and

from the microprocessor and other devices. Although serial communication is also popular

parallel data transfer takes place between any two devices like microprocessor and memory,

microprocessor and I/O devices and memory and I/O devices.

Methods of Parallel Communication

 Simple Input and Output:

When you need to get digital data from a simple switch such as a thermostat, into

a microprocessor, all you have to do is connect the switch to an input port line and

read the port. The thermostat data is always present and ready, so you can read it

at any time. Similarly, to output data to a simple device such as LED, all you have

to do is connect the input of the LED buffer on an output port in and output the

logic level required to turn on the light. The LED is always there and ready, so

you can send data to it at any time. The timing waveform below shows the data

transfer sequence.

 Simple Strobe I/O

In many applications, valid data is present on an external device only at a certain

time, so it must be read in at that time. An example of this is the ASCII-encoded

keyboard. When a key is pressed circuitry on the keyboard sends out the ASCII

code for the pressed key on eight parallel data lines, and then sends out a strobe

signal on another line to indicate that valid data is present on the eight data lines

as shown in the figure. You can connect this strobe line to an input port line and

poll it to determine when you can input valid data from the keyboard. Another

alternative is to connect the strobe line to an interrupt input on the processor and

have an interrupt service procedure read in the data when the processor receives

an interrupt. The scheme behind this arrangement is that the transfer is time

dependent. Thus you can only read data when a strobe pulse tells you that the data

is valid.

 Single handshake I/O

The figure shows an example for a handshake data transfer from a peripheral

device to a microprocessor. The peripheral outputs some parallel data and sends

an STB signal to the microprocessor. The microprocessor detects the asserted STB

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 40

signal on a polled or interrupt basis and reads in the byte of data. Then the

microprocessor sends an Acknowledge signal (ACK) to the peripheral to indicate

that the data has been read and that the peripheral can send the next byte of data.

Such transfer is strobed input from microprocessor‟s point of view.

Similarly, for an output the microprocessor outputs a character to the printer and

raises the STB signal to the printer to tell “Here is a character for you.” When the

printer is ready, it answers back with the ACK signal to tell “I got that one; send

me another”.

 Double Handshake Data Transfer

Such mode of data transfer is used where even more coordination is required

between the sending systems and the receiving system. Such mode of data transfer

can be much easily understood as a conversation between two people. In the

waveforms each signal edge has meaning. The sending device asserts its STB line

to ask, “Are you ready?” The receiving system raises its ACK line high to say,

“I‟m ready.” Then the peripheral device sends the byte of data and raises its STB‟

line high to say. “Here is some valid data for You.” After it has read in the data

the receiving system drops its ACK line low to say. “I have the data. Thank you.

and I await your request to send the next byte of data”.

5.3 Data transfer using wait interface

To understand wait interface, let us consider a simple keyboard consisting of 8 switches,

connected to a microprocessor through a parallel interface circuit. In this case, each switch is

of dip switches. The microprocessor should be able to detect that a key has been activated.

This can be done by observing that all bits are equal to 1 when none of the key is pressed.

The processor should repeatedly read the state of the input section until it finds that one of the

eight bits is equal to 0.

The microprocessor should ensure that when a key is activated, it is read only once. This can

be done in the software. When one of the keys is activated and the input byte is read, the

software program could e repeatedly check the input byte until it reaches to all 1s indicating

that the pressed key has been released

The other problem occurs from the nature of the operation of the mechanical switches.

Almost all mechanical contacts are subject to vibrations or bouncing, while the switch is

being opened or closed. The time required for a switch to settle o fully open or a fully closed

position is about 2ms. This may not seem much as it is 1/500
th

 of a second, however, a

microprocessor can execute several hundred of instruction in this time. Thus there must be a

mechanism to ignore the keyboard unit till the keyboard denounce is stopped. This is done by

checking the input until it is the same before accepting it as valid. This can be visualized in

the following flowchart.

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 41

Fig: flowchart of Switch Interface

5.4 RS-232 and IEEE 488-1978 general purpose interface standard

RS-232C Serial Data Standard

In 8251(USART), we discussed how serial communication takes place. The TTL signals

output by a USART, however, are not suitable for transmission over long distances, so these

signals are converted to some other form to be transmitted. In this section we discuss device

used to send serial data signals over long distances.

The 1960s saw widespread use of timeshare computer terminals. However, to install new

communication lines was a Herculean task. Thus modems were developed so that the

terminals could use phone lines to communicate, which were already in existence. Modems

are often referred to as data communication equipment or DCE. The terminals or computers

that are sending or receiving the data are referred to as data terminal equipment or DTE. In

response to the need for signal and handshake standards between DTE and DCE, the

Electronic Industries Association (EIA) developed standard RS-232C. This standard

describes the function of 25 signals and handshake pins for serial data transfer. It also

No

Yes

Yes

No

KEYCHK

Read Input

Port

All Keys

Open?

Return

Read Input

Port

Wait or Key

Debounce

Is a Key

Pressed?

Wait for Key

Debounce

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 42

describes the voltage levels, impedance levels, rise and fall times, maximum bit rate, and

maximum capacitance for these signal lines.

RS-232 stands for Recommend Standard number 232 and C is the latest revision of the

standard. RS-232 is a 25 pin standard but for systems where many of 25 pins are not needed,

a 9 pin connecter is also used. The voltage levels for all RS-232 signals are as follows. A

logic high, or mark, is a voltage between -3V and -15V. A logic low or space is a voltage

between +3V and +15V. Voltages such as ±12V are commonly used.

Male RS232
DB25

Pin Number Direction of signal:

1 Protective Ground

2 Transmitted Data (TD) Outgoing Data (from a DTE to a DCE)

3 Received Data (RD) Incoming Data (from a DCE to a DTE)

4 Request To Send (RTS) Outgoing flow control signal controlled by DTE

5 Clear To Send (CTS) Incoming flow control signal controlled by DCE

6 Data Set Ready (DSR) Incoming handshaking signal controlled by DCE

7 Signal Ground Common reference voltage

8 Carrier Detect (CD) Incoming signal from a modem

20 Data Terminal Ready (DTR) Outgoing handshaking signal controlled by DTE

22 Ring Indicator (RI) Incoming signal from a modem

Male RS232
DB9

Pin Number Direction of signal:

1 Carrier Detect (CD) (from DCE) Incoming signal from a modem

2 Received Data (RD) Incoming Data from a DCE

3 Transmitted Data (TD) Outgoing Data to a DCE

4 Data Terminal Ready (DTR) Outgoing handshaking signal

5 Signal Ground Common reference voltage

6 Data Set Ready (DSR) Incoming handshaking signal

7 Request To Send (RTS) Outgoing flow control signal

8 Clear To Send (CTS) Incoming flow control signal

9 Ring Indicator (RI) (from DCE) Incoming signal from a modem

Fig: 25 pin and 9 pin connectors used for RS 232 standards on DTE device

IEEE 488 standard

The IEEE-488 bus was developed to connect and control programmable instruments, and to

provide a standard interface for communication between instruments from different sources.

Hewlett-Packard originally developed the interfacing technique, and called it HP-IB

(Hewlett-Packard Instrument Bus). The interface quickly gained popularity in the computer

industry. Because the interface was so versatile, the IEEE committee renamed it GPIB

(General Purpose interface Bus).

IEEE-488 allows up to 15 devices to share a single 8-bit parallel electrical bus by daisy

chaining connections. The slowest device participates in control and data transfer handshakes

to determine the speed of the transaction. The maximum data rate is about one Mbyte/sec in

the original standard, and about 8 Mbyte/sec with IEEE-488.1-2003 (HS-488).

Downloaded from: http://www.bsccsit.com

Prepared by Prakash Bhusal 43

The IEEE-488 bus employs 16 signal lines eight bi-directional used for data transfer, three

for handshake, and five for bus management plus eight ground return lines. The main features

of IEEE-488 standard are as follows.

 Parallel 8 – bit data path for data read and write

 Three flow control lines (handshake signals)

 Five special lines for control of bus and interrupts

 Data speed of 1M bytes/sec limited by the speed of the slowest listener

 Special stackable connectors.

 A maximum of 15 instruments connected to a common bus

 Up to 20m maximum cable length

Fig: The IEEE-488 Connector

[SAP1 and SAP2 Coming Soon]

http://www.facebook.com/bsccsit.com

