

Chapter: Introduction

Design and Analysis of Algorithms

[Design and Analysis of Algorithms]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Introduction

Objectives of this Course

Design and Analysis of Algorithms

•

•

•

•

•

•

•

Introduce data structures that are fundamental in computer science

Introduce mathematical foundation for analysis of algorithms

To know why we need design and analysis knowledge

Techniques for algorithms analysis and their classifications

Alternative ways of algorithm design

Analyze some of the well known algorithms

Design some kind of algorithm and analyze them

Course Introduction

•

•

•

•

•

•

•

•

•

Mathematical tools for design and analysis of algorithms

Data structure overviews

Complexity analysis and recurrence relations

Divide and conquer paradigm: quick sort, matrix multiplication, etc. and its

application

Greedy paradigm: minimum spanning trees-prim's, Kruskal's shortest path

algorithm, etc. and its application

Dynamic Programming: Floyd's algorithm, string matching problems, etc.

Graph algorithms: BFS, DFS, Finding cycle in a graph, etc.

Geometric algorithms: line segment intersection, point inclusion, etc.

Introduction to NP-complete problems, cook’s theorem, approximation

algorithms.

Samujjwal Bhandari

2

Chapter: Introduction

Design and Analysis of Algorithms

•

Textbook: "Introduction To Algorithms", Cormen, Leiserson, Rivest, Stein.

Prerequisites

Simple mathematical tools like recurrences, set, proof techniques, big _Oh

notation, etc.

Data structures lists, stacks, queues, graphs, trees etc.

Programming knowledge (any one).

Evaluation Criterion

Assignments.

2 mid term assessments.

1 final exam.

10%

10%

80%

Note: No late submissions of assignments are marked.

Note: The mid term assessments will cover all the completed materials before exam day.

Samujjwal Bhandari

3

Chapter: Introduction

Design and Analysis of Algorithms

Algorithms

An algorithm is a finite set of computational instructions, each instruction can be

executed in finite time, to perform computation or problem solving by giving some value,

or set of values as input to produce some value, or set of values as output. Algorithms are

not dependent on a particular machine, programming language or compilers i.e.

algorithms run in same manner everywhere. So the algorithm is a mathematical object

where the algorithms are assumed to be run under machine with unlimited capacity.

Examples of problems:

You are given two numbers, how do you find the Greatest Common Divisor.

Given an array of numbers, how do you sort them?

We need algorithms to understand the basic concepts of the Computer Science,

programming. Where the computations are done and to understand the input output

relation of the problem we must be able to understand the steps involved in getting

output(s) from the given input(s).

You need designing concepts of the algorithms because if you only study the algorithms

then you are bound to those algorithms and selection among the available algorithms.

However if you have knowledge about design then you can attempt to improve the

performance using different design principles.

The analysis of the algorithms gives a good insight of the algorithms under study.

Analysis of algorithms tries to answer few questions like; is the algorithm correct? i.e. the

algorithm generates the required result or not?, does the algorithm terminate for all the

inputs under problem domain? (More on this later). The other issues of analysis are

efficiency, optimality, etc. So knowing the different aspects of different algorithms on the

similar problem domain we can choose the better algorithm for our need. This can be

done by knowing the resources needed for the algorithm for its execution.

Two most important resources are the time and the space. Both of the resources are

measures in terms of complexity for time instead of absolute time we consider growth

Samujjwal Bhandari

4

Chapter: Introduction

Design and Analysis of Algorithms

rate (time complexity), similarly for space instead of absolute value growth rate of

memory needed is considered (space complexity).

Algorithms Properties

Input(s)/output(s): There must be some inputs from the standard set of inputs and an

algorithm’s execution must produce outputs(s).

Definiteness: Each step must be clear and unambiguous.

Finiteness: Algorithms must terminate after finite time or steps.

Correctness: Correct set of output values must be produced from the each set of inputs.

Effectiveness: Each step must be carried out in finite time.

Here we deal with correctness and finiteness.

Expressing Algorithms

There are many ways of expressing algorithms; the order of ease of expression is natural

language, pseudo code and real programming language syntax. In this course I intermix

the natural language and pseudo code convention.

Random Access Machine Model

This RAM model is the base model for our study of design and analysis of algorithms to

have design and analysis in machine independent scenario. In this model each basic

operations (+, -) takes 1 step, loops and subroutines are not basic operations. Each

memory reference is 1 step. We measure run time of algorithm by counting the steps.

Samujjwal Bhandari

5

Chapter: Introduction

Design and Analysis of Algorithms

Best, Worst and Average case

Best case complexity gives lower bound on the running time of the algorithm for any

instance of input(s). This indicates that the algorithm can never have lower running time

than best case for particular class of problems.

Worst case complexity gives upper bound on the running time of the algorithm for all

the instances of the input(s). This insures that no input can overcome the running time

limit posed by worst case complexity.

Average case complexity gives average number of steps required on any instance(s) of

the input(s).

In our study we concentrate on worst case complexity only.

Example 1: Fibonacci Numbers

Input: n

Output: nth Fibonacci number.

Algorithm: assume a as first(previous) and b as second(current) numbers

fib(n)

{

a = 0, b= 1, f=1 ;

for(i = 2 ; i <=n ; i++)

{

f = a+b ;

a=b ;

b=f ;

}

return f ;

}

Samujjwal Bhandari

6

Chapter: Introduction

Design and Analysis of Algorithms

Correctness
The algorithm adds previous and current values i.e. a and b, and produces nth Fibonacci

number (n>0) after n-2 iterations. So at each step the generated value will be correct. The

algorithm terminates after n-2 iterations.

Efficiency
Time Complexity: The algorithm above iterates up to n-2 times, so time complexity is

O(n).

Space Complexity: The space complexity is constant i.e. O(1).

Next is the recursive version of fib(n) as rfib(n)

rfib(n)

{

if(n<2)

return 1 ;

else

return(rfib(n-2)+rfib(n-1))

}

Correctness:
The above algorithm rfib(n),for n>0 produces correct output for n=1, 2, ….up to n and

recursive call do obtain rfib(1) and rfib(2) as terminating condition i.e. every rfib(n) is

recursively computed unless n becomes 0 or 1.

Efficiency
Time Complexity: In the above algorithm T(0) = t(1) = 2 and T(n) = T(n-2)+T(n-1) +

Samujjwal Bhandari

7

Chapter: Introduction

Design and Analysis of Algorithms

3.By induction we can prove T(n) > T(n-1) holds for all n>=1, and T(n) > T(n-2). Using

this show that T(n) is at least 2n/2 i.e. T(n) = (2n/2).

Space Complexity: The recursive call needs stack as temporary storage and that call to

stack during execution of the above algorithm never exceeds n, so the space complexity

is O(n).

Exercises

1. You are given 12 balls of identical shape all of which, but one, are of same

weight. You are also given a balance. Find the ball of the irregular weight and its

type of irregularity (heavier or lighter), by using balance only 4 times.

2. Consider the searching problem:

Input: A sequence of n numbers A = <a1, a2, …, an> and a value v.

Output: An index i such that v=A[i] or the special value NIL if v doesn’t appear

in A.

Write pseudo code for linear search, which scans through the sequence, looking

for v.

3. Explore the word algorithm and its history.

Samujjwal Bhandari

8

Chapter: Graph Algorithms

Design and Analysis of Algorithms

[Graph Algorithms]

Design and Analysis of Algorithms (CSc 523)

Samujjwal Bhandari
Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,

Kathmandu, Nepal.

Samujjwal Bhandari

1

0 1 0 0 0

1 0 1 0 0

0 1 0 1 1

0 0 1 0 1

0 0 1 1 0

Chapter: Graph Algorithms

Design and Analysis of Algorithms

Graph is a pair G = (V,E) where V denotes a set of vertices and E denotes the set of edges

connecting two vertices. Many natural problems can be explained using graph for

example modeling road network, electronic circuits, etc. The example below shows the

road network.

Kirtipur

Kalanki

TU gate

Balkhu

kalimati

Representing Graphs
Generally we represent graph in two ways namely adjacency lists and adjacency matrix.

Both ways can be applied to represent any kind of graph i.e. directed and undirected.

An adjacency matrix is an n⋅n matrix M where M[i,j] = 1 if there is an edge from vertex

i to vertex j and M[i,j]=0 if there is not. Adjacency matrices are the simplest way to

represent graphs. This representation takes O(n2) space regardless of the structure of the

graph. So, if we have larger number of nodes say 100000 then we must have spcae for

1000002 = 10,000,000,000 and this is quite a lot space to work on. The adjacency matrix

representation of a graph for the above given road network graph is given below. Take

the order {Kirtipur,TU gate, Balkhu, Kalanki, Kalimati}

It is very easy to see whether there is edge from a vertex to another vertex (O(1) time),

what about space? Especially when the graph is sparse or undirected.

If adjacency list representation of a graph contains and array of size n such that every

Samujjwal Bhandari

2

Chapter: Graph Algorithms

Design and Analysis of Algorithms

vertex that has edge between the vertex denoted by the vertex with array position is

added as a list with the corresponding array element. The example below gives the

adjacency list representation of the above road network graph.

Kirtipur

TU gate

NULL

TU gate Kirtipur Balkhu NULL

Balkhu

Kalanki

Kalimati

TU gate

Balkhu

Balkhu

Kalanki

Kalimati

Kalanki

Kalimati

NULL

NULL

NULL

Searching for some edge (i,j) required O(d) time where d is the degree of i vertex.

Some points:

To test if (x, y) is in graph adjacency matrices are faster.

To find the degree of a vertex adjacency list is good

For edge insertion and deletion adjacency matrix takes O(1) time where as adjacency list

takes O(d) time.

Breadth First Search
This is one of the simplest methods of graph searching. Choose some vertex arbitrarily as

a root. Add all the vertices and edges that are incident in the root. The new vertices added

will become the vertices at the level 1 of the BFS tree. Form the set of the added vertices

of level 1, find other vertices, such that they are connected by edges at level 1 vertices.

Follow the above step until all the vertices are added.

Algorithm:

BFS(G,s) //s is start vertex

{

T = {s};

L =�; //an empty queue

Enqueue(L,s);

Samujjwal Bhandari

3

Chapter: Graph Algorithms

Design and Analysis of Algorithms

while (L != �)

{

v = dequeue(L);

for each neighbor w to v

if (w� L and w� T)

{

enqueue(L,w);

T = T ∗ {w}; //put edge {v,w} also

}

}

}

Example:

Use breadth first search to find a BFS tree of the following graph.

b

c

a

f

g

e

d

Solution:

Choose a as initial vertex then we have

b

c

b c

a g d
a g d

f

Samujjwal Bhandari

e

4

f

e

Chapter: Graph Algorithms

Design and Analysis of Algorithms

Order the vertices of level 1 i.e. {b, c, g, e, f}. Say order be {e, f, g, b, c}.

b

c

b

c

a

f

g

e

d

a

f

g

e

d

Analysis:

From the algorithm above all the vertices are put once in the queue and they are accessed.

For each accessed vertex from the queue their adjacent vertices are looked for and this

can be done in O(n) time(for the worst case the graph is complete). This computation for

all the possible vertices that may be in the queue i.e. n, produce complexity of an

algorithm as O(n2) . Also we can write the complexity as O(E+V).

Depth First Search
This is another technique that can be used to search the graph. Choose a vertex as a root

and form a path by starting at a root vertex by successively adding vertices and edges,

where the added edges are incident with the last vertex in the path and is not repeated.

This process is continued until no possible path can be formed. If the path contains all the

vertices then the tree consisting this path is DFS tree. Otherwise, we must add other

edges and vertices. For this move back from the last vertex that is met in the previous

path and find whether it is possible to find new path starting from the vertex just met. If

there is such a path continue the process above. If this cannot be done, move back to

another vertex and repeat the process. The whole process is continued until all the

vertices are met. This method of search is also called backtracking.

Samujjwal Bhandari

5

Chapter: Graph Algorithms

Design and Analysis of Algorithms

Algorithm:

DFS(G,s)

{

T = {s};

Traverse(s);

}

Traverse(v)

{

for each w adjacent to v and not yet in T

{

T = T ∗ {w}; //put edge {v,w} also

Traverse (w);

}

}

Example:

Use depth first search to find a spanning tree of the following graph.

b

c

a

f

g

e

d

Solution:

Choose a as initial vertex then we have

b

c

b

c

a

f

g

e

d

a

f

g

e

d

Samujjwal Bhandari

6

Chapter: Graph Algorithms

Design and Analysis of Algorithms

b

c

b c
a g d

a g d

f

b

c

e

b

f

c

e

a

f

g

b

e

c

d

a

f

b

g

e

c

d

a

a

f

b

f

g

g

e

c

e

d

d

a

a

f

b

f

g

g

e

c

e

d

d

Analysis:

The complexity of the algorithm is greatly affected by Traverse function we can write its

running time in terms of the relation T(n) = T(n-1) + O(n), here O(n) is for each vertex at

most all the vertices are checked (for loop). At each recursive call a vertex is decreased.

Solving this we can find that the complexity of an algorithm is O(n2). Also we can write

the complexity as O(E+V).

Samujjwal Bhandari

7

Chapter: Graph Algorithms

Design and Analysis of Algorithms

Minimum Spanning Tree
Given an undirected graph G = (V,E), a subgraph T =(V,E’) of G is a spanning tree if

and only if T is a tree. The MST is a spanning tree of a connected weighted graph such

that the total sum of the weights of all edges e�E’ is minimum amongst all the sum of

edges that would give a spanning tree.

Kruskal’s Algorithm
The problem of finding MST can be solved by using Kruskal’s algorithm. The idea

behind this algorithm is that you put the set of edges form the given graph G = (V,E) in

nondecreasing order of their weights. The selection of each edge in sequence then

guarantees that the total cost that would from will be the minimum. Note that we have G

as a graph, V as a set of n vertices and E as set of edges of graph G.

Algorithm:

KruskalMST(G)

{

T = {V} // forest of n nodes

S = set of edges sorted in nondecreasing order of weight

while(|T| < n-1 and E !=�)

{

Select (u,v) from S in order

Remove (u,v) from E

if((u,v) doesnot create a cycle in T))

T = T ∗ {(u,v)}

}

}

Example:

Find the MST and its weight of the graph.

7

6

17

1 18

9
7

15

2

11

10

3

8
5

13 4

Samujjwal Bhandari

8

Chapter: Graph Algorithms

Solution:

Design and Analysis of Algorithms

7

6

1

5

7

2

4

3

7

6

1

5

7

2

8

4

3

7

6

1

5

9

7

2

8

4

3

Edge with weight 11 forms
cycle so discard it

Edge with weight 15 forms
cycle so discard it

7

1

9

2

10

7

1

9

2

10

7

1

9

2

10

6

7

3
6

7

3
6

7

3

5

8

5

8

17

5

8

4 13 4 13 4

The total weight of MST is 64.

Analysis:

In the above algorithm the n tree forest at the beginning takes (V) time, the creation of set

S takes O(ElogE) time and while loop execute O(n) times and the steps inside the loop

take almost linear time (see disjoint set operations; find and union). So the total time

taken is O(ElogE) or asymptotically equivalently O(ElogV)!.

Theorem 1: Kruskal’s algorithm generates a minimum spanning tree for every connected

undirected weighted graph.

Proof:

Let G = (V,E) be any connected undirected weighted graph. Let T be the spanning tree

generated by Kruskal’s algorithm. Let T’ be the MST of the graph G. We have to show

that both T and T’ have same cost.

If G has n number of vertices then both T and T’ must have n-1 edges. Say E(T) is the set

of edges in tree T and E(T’) is the set of edges in tree T’. If we have E(T) = E(T’) then

Samujjwal Bhandari

9

Chapter: Graph Algorithms

Design and Analysis of Algorithms

we can say that both tree T and T’ have the same cost thus the cost is minimum since T’

is MST. If E(T)  E(T’), then take an minimum cost edge e � E(T) and e � E(T’). Such

an edge must exist. Now if we include the edge e in tree T’ it will form a cycle. Let the

cycle be e, e1, …, ek. Then it is clear that at least one of the edges from tree T’ is not in

E(T) otherwise T also would contain cycle e, e1, …, ek. Take any edge ej from the cycle

such that ej � E(T). If ej is of the lower cost than e then algorithm will consider ej before

e and include ej in T. So we have cost of ej ε cost of e since ej � E(T). Consider a graph

with edge set E(T’) + {e}, where there is a cycle e, e1, …, ek. If we remove any edge from

the cycle another tree will be formed say T’’. If the removed edge is ej, then it is

guaranteed that the resulting tree T’’ will have no more cost than that of T’, hence T’’ is

also MST. If we take as many as required edges from the T’ that is not in T and remove

the cycle as described above then the tree so formed after all transformations will be

transformation from T’ to T with the cost no more than T’.

Prim’s Algorithm
This is another algorithm for finding MST. The idea behind this algorithm is just take any

arbitrary vertex and choose the edge with minimum weight incident on the chosen vertex.

Add the vertex and continue the above process taking all the vertices added. Remember

the cycle must be avoided.

Algorithm:

PrimMST(G)

{ T = �;

S = {s};

// T is a set of edges of MST

//s is randomly chosen vertex and S is set of vertices

while(S != V)

{

e = (u,v) an edge of minimum weight incident to vertices in T and not forming a
simple circuit in T if added to T i.e. u � S and v� V-S
T = T ∗ {(u,v)};

S = S ∗ {v};

}}

Samujjwal Bhandari

10

2

Chapter: Graph Algorithms

Design and Analysis of Algorithms

Example:

Find the minimum spanning tree of the following graph.

7

6

17

1 18

9
7

15

5

2

11

10

3

8

Solution: note: dotted edge is chosen.

13 4

1

18

7

2

6

7

5

3

4

6

1

7

18

17

2

7

5

3

4

S

V-S

S

V-S

6

17

S

1

7

5

18

15

13

3

7

4

V-S

17

6

1

7

5

13

S

4

18

15

11

8

2

7

3

V-S

6
17

5

13

7

1

4

S

3

8

18

10

15

11

2

7

V-S

6
17

5

13

7

1

4

S

2
10

3

8

9

15

11

7

V-S

Samujjwal Bhandari

11

Chapter: Graph Algorithms

Design and Analysis of Algorithms

6
17

5

13

1 7

7 9
2

10
3

8
4

S

V-S

6
17

5

13

1 7

7 9
2

10
3

8
4

MST

The total weight of MST is 64.

Analysis:

In the above algorithm while loop execute O(V). The edge of minimum weight incident

on a vertex can be found in O(E), so the total time is O(EV). We can improve the

performance of the above algorithm by choosing better data structures as priority queue

and normally it will be seen that the running time of prim’s algorithm is O(ElogV)!.

Correctness: See Assignment 4

Shortest Path Problem
Given a weighted graph G =(V,E), then it has weight for every path p = <v0,v1,…vk> as

w(p) = w(v0,v1) + w(v1,v2) + … + w(vk-1,vk). A shortest path from u to v is the path from

u to v with minimum weight. Shortest path from u to v is denoted by (u,v). It is

important to remember that the shortest path may exist in a graph or may not i.e. if there

is negative weight cycle then there is no shortest path. For e.g the below graph has no

shortest path from a to c .You can notice the negative weight cycle for path a to b.

a

-10

3

b

c

5

As a matter of fact even the positive weight cycle doesn’t constitute shortest path but

there will be shortest path. Some of the variations of shortest path problem include:

Single Source: This type of problem asks us to find the shortest path from the given

vertex (source) to all other vertices in a connected graph.

Single Destination: This type of problem asks us to find the shortest path to the given

Samujjwal Bhandari

12

Chapter: Graph Algorithms

Design and Analysis of Algorithms

vertex (destination) from all other vertices in a connected graph.

Single Pair: This type of problem asks us to find the shortest path from the given vertex

(source) to another given vertex (destination).

All Pairs: This type of problem asks us to find the shortest path from the all vertices to

all other vertices in a connected graph.

Optimal Substructure property for shortest path problem
Lemma 1: (subpaths of shortest paths are shortest paths)

Given a weighted, graph G = (V,E) with weight function w: E � R, let p = <v1,v2,…,vk>

be a shortest path from a vertex v1 to vertex vk and, for any i and j such that 1 δ i δ j δ k,

let pij = < vi,vi+1,…,vj> be the subpath of p from vertex vi to vj. Then, pij is a shortest path

from vi to vj.

Proof:

We have p as the path from v1 to vk. Lets break the path as p1i =< v1,v2,…,vi>, pij =<

vi,vi+1,…,vj>, and pjk =< vj,vj+1,…,vk> The we have weight of the path from v1 to vk as

sum of paths from v1 to vi, vi to vj, and vj to vk i.e. w(p) = w(p1i) + w(pij) + w(pjk). If we

have the path p’ij that is shorter than pij then we will get the weight of the path w(p1i) +

w(p’ij) + w(pjk) shorter than w(p), this is a contradiction that p is the shortest path, so we

pij must be shortest path.

Single Source Problem
Relaxation: Relaxation of an edge (u,v) is a process of testing the total weight of the

shortest path to v by going through u and if we get the weight less than the previous one

then replacing the record of previous shortest path by new one.

Bellman Ford Algorithm
This is an algorithm that solves single source shortest path problem where we can have

negative edges. This algorithm returns a Boolean value indicating whether or not there is

a negative weight cycle that is reachable from the source. If the negative weight cycle is

obtained then algorithms returns false otherwise it returns true. The main idea of this

algorithm is relaxation. Distance from the source to every vertex is compared and relaxed

until the shortest path is obtained.

Samujjwal Bhandari

13

-2 g

i 4

Chapter: Graph Algorithms

Algorithm: G = (V,E) is a weighted directed graph.

BellFordSP(G,w,s)

{

for each vertex v� V

Design and Analysis of Algorithms

do d[v] = �

p[v] = Nil

//d[v] is shortest path estimate of vertex v from source.

//p[v] is the predecessor of v.

d[s] = 0

for i = 1 to |V|-1

do for each edge (u,v) � E

do if d[v] > d[u] + w(u,v)

then d[v] = d[u] + w(u,v) Relaxation

p[v] = u

for each edge (u,v) � E

do if d[v] > d[u] + w(u,v)

then return FALSE

return TRUE

}

Example:

Find the shortest path using Bellman Ford algorithm, from the source a to all other

vertices in the following graph.

9

f

6

1

a

5

2

3

e

5

b

6

5

h 1

1

4

d

c

-2

Solution:

Samujjwal Bhandari

14

� 2

5
5

2
2

5
5

h 1

Chapter: Graph Algorithms

Design and Analysis of Algorithms

9

f
�

6

1

0
a

�

5

i

2

-2

4
3

e

�

b

6

g � 5
5

h 1
�

1

4

d

�

c

-2

�

9

f

9

6

1

0
a

�

5

i

2

-2

4
3

e

�

g

5

�

b

6

h 1

1

4

d

�

c

-2

�

9

f
9

6

1

0
a

3

5

i

-2 g

5
4

3 10

e 15 1

b

6

4

d

6
c

-2

�

9

f

9

6

1

0
a

3

5

i

2

-2

4
3

e 6

2

g
5

7

b

6

5
5

h 1

1

4

d

6
c

-2

4

For other 5 iterations there are no changes. The returned value will be true for this

example.

Analysis:

Execution of first for loop block takes O(V) time. The execution of second for loop block

takes O(EV) time and the execution of third for loop block takes O(E) time. So the total

running time for above algorithm is (EV).

Correctness:

s

u1

u2

u

Let u be any vertex. Assume any shortest path from s to u. All vertices on this path must

be distinct otherwise we can get another shorter path so that the above assumption

becomes invalid. When the first iteration of the second for loop in the above algorithm

completes, we have d[u1] = (s,u1), similarly after the second iteration we have d[u2] =

(s,u2), and so on. If we have the path from s to u containing all the vertices of the graph

Samujjwal Bhandari

15

Chapter: Graph Algorithms

Design and Analysis of Algorithms

G (in worst case), then d[u] will be the value after |V|-1 iterations. So, if there are no

negative weight cycles, array d[] will contain stable values after the termination of the

loop (when all vertices are visited) and the returned value will be TRUE. Conversely, if

we get the correct output, i.e. the value returned is TRUE and there is a negative weight

cycle, say wn =<v0, v1, …, vk> reachable from s and v0 = vk then sum of weights of all the

edges in a cycle must be negative i.e.
k

i =1

w(vi �1 , vi) < 0 . We have d[vi] δ d[vi-1] + w(vi-1,

vi) (since we have return value as TRUE this condition must be true), summing up

inequalities d[vi] δ d[vi-1] + w(vi-1, vi) around the cycle produces,

k

i=1

d[vi] δ

k

i =1

(d[vi] + w(vi �1 , vi)) =

k

i =1

d[vi �1] +

k

i =1

w(vi �1 , vi) ------------(1)

Since we have v0 = vk each vertex in c appears exactly once in each of the summations

k

i =1

d[vi] and

k

i =1

d[vi �1] , hence

k

i =1

d[vi] =

k

i =1

d[vi �1]

so

we

have

from

(1)

0 δ

k

i =1

w(vi �1 , vi) = w(c), this is a contradiction that there is a negative weight cycle.

This is the proof.

Directed Acyclic Graphs (Single Source Shortest paths)

Recall the definition of DAG, DAG is a directed graph G = (V,E) without a cycle. The

algorithm that finds the shortest paths in a DAG starts by topologically sorting the DAG

for getting the linear ordering of the vertices. The next step is to relax the edges as usual.

Algorithm:

DagSP(G,w,s)

{

Topologically Sort the vertices of G

for each vertex v� V

do d[v] = �

p[v] = Nil

d[s] = 0

Samujjwal Bhandari

16

Chapter: Graph Algorithms

Design and Analysis of Algorithms

for each vertex u, taken in topologically sorted order

do for each vertex v adjacent to u

do if d[v] > d[u] + w(u,v)

then d[v] = d[u] + w(u,v)

p[v] = u

}

Example:

Find the shortest path from the vertex c to all other vertices in the following DAG.

c

1

a

9

2

e

3

f

2

2

2

b

5

6

h

1

2

g

Solution:

�

f

1

0

c
2

d

1

2

�

a

1

9

�

b
2

1

6

�

e

5

1

2

�

h
3

1

�

d 2

�

g

Topologically sorted and initialized.

�

f

From (c)

0

c
2

1

2

1

a

9

2

b
2

1

6

�

e

5

1

2

�

h
3

1

�

d 2

�

g

�

f

From (a)

0

c
2

1

2

1

a

9

2

b
2

1

6

3

e

5

1

2

�

h
3

1

�

d 2

�

g

�

f

From (b)

0

c
2

1

2

1

a

9

2

b
2

1

6

3

e

5

1

2

7

h

3

1

4

d 2

�

g

Samujjwal Bhandari

17

Chapter: Graph Algorithms

Design and Analysis of Algorithms

�

f

From (e)

0

c
2

1

2

1

a

9

2

b
2

1

6

3

e

5

1

2

4

h

3

1

4

d 2

6

g

�

f

0

c

1

2

1

a

2

b
2

3

e

1

2

4

h

3

4

d

6

g

From (h) (d) and (g) no change. So above is the shortest path tree.

Analysis:

In the above algorithm, the topological sort can be done in O(V+E) time (Since this is

similar to DFS! see book.).The first for loop block takes O(V) time. In case of second for

loop it executes in O(V2) Time so the total running time is O(V2). Aggregate analysis

gives us the running time O(E+V).

Correctness:

Lemma 2: (path relaxation property)

If p =< v0, v1, …, vk> is a shortest path from s = v0 to vk, and the edges of p are relaxed in

the order (v0, v1), (v1, v2), …, (vk-1, vk), then d[vk] = (s, vk).

Lemma 3: (Predecessor subgraph property)

Once d[v] = (s,v) for all v� V, the predecessor subgraph is a shortest paths tree rooted at

s.

Theorem 2:

For a DAG G = (V,E) with source vertex s, at the termination of DagSP algorithm, d[v] =

(s,v) for all vertices v� V, and the predecessor subgraph G� is a shortest paths tree.

Proof:

If v is unreachable from s, then there is no path from s to v so we have d[v] = (s,v) = �.

Assume that v is reachable from s, then there is some shortest path p = <v0, v1, …, vk>,

where v0 = s and vk = v. Now from the above algorithm it is guaranteed that relaxation of

edges on the path are done in a particular order as (v0, v1), (v1, v2), …, (vk-1, vk) due to the

topological ordering. So from the above lemmas 2 and 3 we complete the proof.

Samujjwal Bhandari

18

4

Chapter: Graph Algorithms

Design and Analysis of Algorithms

Dijkstra’s Algorithm
This is another approach of getting single source shortest paths. In this algorithm it is

assumed that there is no negative weight edge. Dijkstra’s algorithm works using greedy

approach, as we will see later.

Algorithm:

Dijkstra(G,w,s)

{

for each vertex v� V

do d[v] = �

p[v] = Nil

d[s] = 0

S= �

Q=V

While(Q!= �)

{

u = Take minimum from Q and delete.

S = S ∗ {u}

for each vertex v adjacent to u

do if d[v] > d[u] + w(u,v)

then d[v] = d[u] + w(u,v)

}

}

Example:

Find the shortest paths from the source g to all other vertices using Dijkstra’s algorithm.

9

f

1

6

a

2

5
2

i 4
3

e

g
5

b

6

5

h 1

1

c

2

d

Samujjwal Bhandari

19

�

�
2 �

0 g

i 4

6
2 5

0 g

1 i 4 2 h 1

�

6
2 5

g 0

i 4

6
2 5

g 0

1 i 4 2 h 1

0

0

0

0

Chapter: Graph Algorithms

Design and Analysis of Algorithms

9

f

6

9

f
3

1

6

� h 1

5

9

f
3

9

f
3

6

6

1

1

5
a

2

5
a

2

2

5

2

i 4
3

e 5

2

5

2

i 4
3

e 5

6

g

5

5

6

g

5

5

b

6

5

h 1

1

b

6

5

h 1

1

4

4

d

d

�
c

2

�

5
c

2

6

9

f

3

9

f

3

6

6

1

1

5
a

2

5
a

2

2

5

2

i 4
3

e 5

2

5

2

i 4
3

e 5

6

g

5

5

6

g

5

5

b

6

5

h 1

1

b

6

5

h 1

1

4

4

d

d

�
c

2

6

5
c

2

6

There will be no change for vertices b and d. continue above steps for b and d to

complete. The tree is shown as dark connection.

Samujjwal Bhandari

20

Chapter: Graph Algorithms

Design and Analysis of Algorithms

Analysis:

In the above algorithm, the first for loop block takes O(V) time. Initialization of priority

queue Q takes O(V) time. The while loop executes for O(V), where for each execution

the block inside the loop takes O(V) times . Hence the total running time is O(V2).

Correctness:

Let S be the set of vertices to which the shortest paths from the source is already known.

w

s

x
S

Let w be the node that is not in the set S such that the length of the path connecting s to w

and passing only through vertices in S is the shortest among all choices of w. Say this

path as special path. Let us argue that any other path connecting s to w and passing

through vertices outside of S cannot be shorter than the special path. Suppose that a path

connecting s to w passes through a vertex x outside of S and is shorter than the special

path. Then the length of the path from the s to x is shorter than the special path, this is a

contradiction special path is shortest. Hence Dijkstra’s algorithm is correct.

[Remark: You can prove for the correctness taking d[v] = (s,v) for each vertex v�S]

All Pairs Problem
As defined in above sections, we can apply single source shortest path algorithms |V|

times to solve all pair shortest paths problem.

Flyod’s Warshall Algorithm
The algorithm being discussed uses dynamic programming approach. The algorithm

being presented here works even if some of the edges have negative weights. Consider a

weighted graph G = (V,E) and denote the weight of edge connecting vertices i and j by

wij. Let W be the adjacency matrix for the given graph G. Let Dk denote an n⋅n matrix

such that Dk(i,j) is defined as the weight of the shortest path from the vertex i to vertex j

Samujjwal Bhandari

21

D (i,k) D (k,j)

Chapter: Graph Algorithms

Design and Analysis of Algorithms

using only vertices from 1,2,…,k as intermediate vertices in the path. If we consider

shortest path with intermediate vertices as above then computing the path contains two

cases. Dk(i,j) does not contain k as intermediate vertex and .Dk(i,j) contains k as

intermediate vertex. Then we have the following relations

Dk(i,j) = Dk-1(i,j), when k is not an intermediate vertex, and

i

k-1

k

k-1

j

Dk(i,j) = Dk-1(i,k) + Dk-1(k,j), when k is an intermediate vertex.

So from the above relations we obtain:

Dk(i,j) = min{Dk-1(i,j), Dk-1(i,k) + Dk-1(k,j)}.

The above relation is used by flyod’s algorithm to compute all pairs shortest path in

bottom up manner for finding D1, D2,…, Dn.

Algorithm:

FloydWarshalAPSP(W,D,n)

{

for(i=1;i<=n;i++)

for(j=1;j<=1;j++)

D[i][j] = W[i][j];

// W is adjacency matrix of graph G.

// initially D[][] is D0.

For(k=1;k<=n;k++)

for(i=1;i<=n;i++)

for(j=1;j<=1;j++)

D[i][j] = min{D[i][j], D[i][k]+ D[k][j]}; //D[][]’s are Dk’s.

}

Example:
4

1

6

3

2
2

Solution:

Samujjwal Bhandari

11 3

22

min{D0(1,3), D0(1,1)+ D0(1,3)} D (1,3) =

min{D0(2,1), D0(2,1)+ D0(1,1)} D (2,1) =

min{D0(2,3), D0(2,1)+ D0(1,3)} D (2,3) =

D (1,3) =

D (2,1) =

D (2,3) =

D (3,1) =

D (3,2) =

D (1,3) =

D (2,1) =

D (2,3) =

Chapter: Graph Algorithms

Adjacency Matrix

W 1 2 3

1 0 4 11

2 6 0 2

3 3 � 0

D1 1 2 3

1 0 4 11

2 6 0 2

Design and Analysis of Algorithms

Remember we are not showing Dk(i,i), since there
will be no change i.e. shortest path is zero.
D1(1,2) = min{D0(1,2), D0(1,1)+ D0(1,2)}

= min{4, 0+ 4} = 4
1

= min{11, 0+ 11} = 11
1

= min{6, 6+ 0} = 6
1

= min{2, 6+ 11} = 2
D1(3,1) = min{D0(3,1), D0(3,1)+ D0(1,1)}

= min{3, 3+ 0} = 3
D1(3,2) = min{D0(3,2), D0(3,1)+ D0(1,2)}

= min{�, 3+ 4} = 7

3

D2

1

2

3

D3

1

2

3

3

1

0

6

3

1

0

5

3

7

2

4

0

7

2

4

0

7

0

3

6

2

0

3

6

2

0

D2(1,2) =
=

2

=
2

=
2

=
2

=
2

=

D3(1,2) =

=
3

=
3

=
3

=
D3(3,1) =

=
D3(3,2) =

=

min{D1(1,2), D1(1,2)+ D1(2,2)}
min{4, 4 + 0} = 4
min{D1(1,3), D1(1,2)+ D1(2,3)}
min{11, 4+ 2} = 6
min{D1(2,1), D1(2,2)+ D1(2,1)}
min{6, 0+ 6} = 6
min{D1(2,3), D1(2,2)+ D1(2,3)}
min{2, 0+ 2} = 2
min{D1(3,1), D1(3,2)+ D1(2,1)}
min{3, 7+ 6} = 3
min{D1(3,2), D1(3,2)+ D1(2,2)}
min{7, 7+ 0} = 7

min{D2(1,2), D2(1,3)+ D2(3,2)}
min{4, 6 + 7} = 4
min{D2(1,3), D2(1,3)+ D2(3,3)}
min{6, 6+ 0} = 6
min{D2(2,1), D2(2,3)+ D2(3,1)}
min{6, 2+ 3} = 5
min{D2(2,3), D2(2,3)+ D2(3,3)}
min{2, 2+ 0} = 2
min{D2(3,1), D2(3,3)+ D2(3,1)}
min{3, 0+ 3} = 3
min{D2(3,2), D2(3,3)+ D2(3,2)}
min{7, 0+ 7} = 7

Analysis:

Clearly the above algorithm’s running time is O(n3), where n is cardinality of set V of

vertices.

Samujjwal Bhandari

23

Chapter: Graph Algorithms

Exercises

Design and Analysis of Algorithms

1.

2.

3.

4.

5.

Write an algorithm for Topological sorting the directed graph.

Explore the applications of DFS and BFS, Describe the biconnected component

and algorithm for its detection in a graph

Give an example graph where bellman ford algorithm returns FALSE, Justify for

the falsity of the return value

Give an example graph where Dijkstra’s algorithm fails to work. Why the found

graph does not work, give reason?

Maximum Spanning Tree of a weighted Graph G = (V,E) is a subgraph T =

(V,E’) of G such that T is a tree and the sum of weights of all the edges of E’ is

maximum among all possible set of edges that would form a spanning tree.

Modify the prim’s algorithm to solve for maximum spanning tree.

Samujjwal Bhandari

24

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

[Geometric Algorithms]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

Computational Geometry
The field of computational geometry deals with the study of geometric problems. In our

class we present few geometric problems for e.g. detecting the intersection between line

segments, and try to solve them by using known algorithms. In this lecture, we discuss

and present algorithms on context of 2-D.

Some Definitions
Point
A point is a pair of numbers. The numbers are real numbers, but in our usual calculation

we concentrate on integers. For e.g. p1(x1,y1) and p2(x2,y2) are two points as shown

below.
p2(x2,y2)

p1(x1,y1)

Line segment
A line segment is a pair of points p1 and p2, where two points are end points of the

segment. For e.g. S(p1,p2) is shown below.

p2(x2,y2)

S
p1(x1,y1)

Polygon
A closed figure of n line segments (pi, pi+1) for 0 δ i δ n-1 and (pn-1, p0) , where n ε 3. The

polygon P is represented by its vertices, usually in counterclockwise order of traversal of

its boundary, P = (p0, p1, ..., pn-1) or the line segments that are ordered as P = (S0, S1, ...,

Sn-1) such that the end point of preceding line segment becomes starting point of the next

line segment. Examples are shown below.
p1

p3
p2

p2

p3

p4

p1

p5

p6

p0

P1

Samujjwal Bhandari

p0

2

P2

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

Simple Polygon
A Simple polygon is a polygon P with no two non-consecutive edges intersecting. There

is a well-defined bounded interior and unbounded exterior for a simple polygon, where

the interior is surrounded by edges. When referring to P, the convention is to include the

interior of P. In the above figure of polygon P1 is a simple polygon but P2 is not.

Convex Polygon
A simple polygon P is convex if and only if for any pair of points x, y in P the line

segment between x and y lies entirely in P. We can notice that if all the interior angle is

less than 1800, then the simple polygon is a convex polygon.

p2

p1

p2

A convex polygon

p1

A non-convex polygon

Good Sub-Polygon
A good sub-polygon of a simple polygon P, denoted by GSP, is a sub-polygon whose

boundary differs from that of P by at most one edge. This edge, if it exists, is called the

cutting edge.

Cutting edge

GSP1 GSP2

Convex Hull
The convex hull of a polygon P is the smallest convex polygon that contains P. Similarly,

we can define the convex hull of a set of points R as the smallest convex polygon

containing R.

Samujjwal Bhandari

3

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

Polygon with dotted lines is
the convex hull of a
polygon given alongside

The convex hull of a set of
points given alongside

Diagonal
A line segment lying entirely inside polygon P and joining two non-consecutive vertices

pi and pj

Diagonal

Ear
A vertex pi of a simple polygon P is called an ear if for the consecutive vertices pi-1,pi pi+1

(pi-1, pi+1) is a diagonal. We say that two ears pi and pj are non-overlapping if the interior

of triangle (pi-1, pi, pi+1) does not intersect the interior of triangle (pj-1, pj, pj+1).

p2

p4

p3

p1

p0

Not an ear since (p2,p4) is not a diagonal of a polygon

An ear since (p4,p1) is a diagonal of a polygon

Samujjwal Bhandari

4

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

Mouth
A vertex pi of a simple polygon P is called a mouth if the diagonal (pi-1, pi+1) is an

external diagonal, i.e., the interior of (pi-1, pi+1) lies in the exterior of P.
p2 p1

A mouth since (p2,p4) is external diagonal

p3

p0 Not a mouth since (p4,p1) is a diagonal

p4

One-Mouth Theorem
Except for convex polygons, every simple polygon has at least one mouth.

Two-Ears Theorem
Except for triangles every simple polygon has at least two non-overlapping ears.

Jordan Curve Theorem
A simple closed curve C in the plane divides the plane into exactly two domains, an

inside and an outside.

Computing point of intersection between two line segments
We can apply our coordinate geometry method for finding the point of intersection

between two line segments. Let S1 and S2 be any two line segments. The following steps

are used to calculate point of intersection between two line segments. We are not

considering parallel line segments here in this discussion.

•

•

Determine the equations of line through the line segment S1 and S2. Say the equations

are L1 = (y = m1x + c1) and L2 = (y = m2x + c2) respectively. We can find the equation

of line L1 using the formula of slope (m1) = (y2-y1)/ (x2-x1), where (x1,y1) and (x2,y2)

are two given end points of the line segment S1. Similarly we can find the m2 for L2

also. The values of ci’s can be obtained by using the point of the line segment on the

obtained equation after getting slope of the respective lines.

Solve two equations of lines L1 and L2, let the value obtained by solving be p = (xi,

yi). Here we confront with two cases. The first case is, if p is the intersection of two

line segments then p lies on both S1 and S2. The second case is if p is not an

Samujjwal Bhandari

5

L1

� = x0 x1 x2

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

intersection point then p does not lie on at least one of the line segments S1 and S2.

The figure below shows both the cases.
p

(x4,y4)

p

(x1,y1) (x4,y4)

S2

S1

(x2,y2)
L1

(x1,y1)

S2

S1

(x2,y2)

(x3,y3)

L2

L2

(x3,y3)

Segments do not intersect

Segments intersect

Detecting point of intersection
In straightforward manner we can compute the point of intersection (p) between the lines

passing through S1 and S2 and see whether the line segments intersects or not as done in

above discussion. However, the above method uses the division in the computation and

we know that division is costly process. Here we try to detect the intersection without

using division.

Left and Right Turn: Given points p0(x0,y0), p1(x1,y1), and p2(x2,y2). If we try to find

whether the path p0p1p2 make left or right turn, we check whether the vector p0p1 is

clockwise or counterclockwise with respect to vector p0p2. We compute the cross product

of the vectors given by two line segments as

(p1- p0)⋅(p2- p0) = (x1- x0, y1- y0) ⋅(x2- x0, y2- y0) = (x1- x0)(y2- y0)-(y1- y0) (x2- x0), this

can be represented as
Here we have,

1 1 1
• If � = 0 then p0,p1,p2 are collinear

y0 y1 y 2 • If � > 0 then p0p1p2 make left turn i.e. there is left turn at p1.
(p0p1 is clockwise with respect to p0p2).

• If � < 0 then p0p1p2 make right turn i.e. there is right turn at p1.

(p0p1 is anticlockwise with respect to p0p2).

See figure below to have idea on left and right turn as well as direction of points. The

cross product’s geometric interpretation is also shown below.

Samujjwal Bhandari

6

p2

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

p3

Area of a parallelogram
spanned by two vectors is
given by their cross
product.

p2

p1

p1

Right turn

Anticlockwise

Fig: Cross product geometrical interpretation.
op

Clockwise

p2

p1

Left turn

p0

Fig: Right turn at p1

p0

Fig: Left turn at p1

Using the concept of left and right turn we can detect the intersection between the two

line segments in very efficient manner. To detect the intersection we follow the following

lemma.

Lemma 1:

Two segments S1 = (P, Q) and S2 = (R, S) do not intersect if PQR and PQS are of same

turn type or RSP and RSQ are of same turn type. (See Assignment 4)

Graham’s scan algorithm (Convex Hull)
We learned about convex hull. Graham’s scan algorithm is an algorithm to obtain the

convex hull from the given set of points say P. Graham’s scan depends on angular

sorting. The key idea is select the starting point p0, with minimum y-coordinate value

(leftmost point in the set in case of the tie). After selection of the point p0 sort the points

of P by polar angle with respect to p0 in anticlockwise direction. In case of the same angle

remove the point with lower y-coordinate value. Push each point of set Q onto the stack

once and the points that are not of convex hull of P are popped from the stack.

Algorithm:

Samujjwal Bhandari

7

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

GrahamScan(P) // P = {p1, p2,…, pn}

{

p0 = point with lowest y-coordinate value.

Angularly sort the other points with respect to p0. Let q = {q1,q2,…, qm} be sorted points.

Push(S, p0); // S is a stack

Push(S, q1);

Push(S, q2);

For(i=3;i<m;i++)

{

a = NexttoTop(S);

b= Top(S);

while (a,b,qi makes non left turn)

Pop(S);

Push(S,qi);

}

return S;

}

Example:

Find the convex hull of the set of points given below using graham’s scan algorithm.

p7 p8

p6

p1

Solution:

p9 p4

p2

p5

p3

q7 q6 q7 q6

q8

p0

q5

q4

q2

q3

q1

q8

p0

q5

q2

q4

q3

q1

Samujjwal Bhandari

8

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

q7

q6

q7

q6

q8

q5

q4

q3

q8

q5

q4

q3

p0

q2

q7

q1q2q3 non left turn

q1

q6

p0

q7

q2

q6

q1

q3q4q6 non left turn

q8

p0

q7

q5

q4

q2

q6

q3

q1

q8

p0

q5
q4

q2

q7

q6

q3

q1

q8

p0

q5

q4

q2

q3

q1

q8

p0

q5

q4

q2

q3

q1

q7

q6

q6q5q7 non left turn

q7

q6

q8

q5

q4

q3

q8

q5

q4

q3

p0

q2

q7

q6

q1

p0

q7

q2

q6

q1

q8

q5

q4

q3

q8

q5

q4

q3

p0

q2

q1

p0

q2

q1

Samujjwal Bhandari

9

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

Analysis:

It requires O(n) time to find p0. Sorting of points require O(nlogn) time,. Push operation

takes constant time i.e., O(1). We can understand that the pop operation inside the while

loop is done at most O(m) time infact, at most m - 2 pop operations are performed.

Therefore, the worst case for for loop takes O(n) (n > m) because while loop is executed

at most O(m) times so if it is regarded with each iteration of for loop, the cost while loop

is about constant time [O(m)/m = O(1)]. So, the worst case running time of the algorithm

is T(n) = O(n) + O(n lg n) + O(1) + O(n) = O(n lg n), where n = |P|.

Correctness:

The correctness of Graham’s scan lies in two situations, non-left turns and left turns

Lemma 2:

Each point popped from the stack is not a vertex of convex hull of P and lies inside new

convex hull of points in the stack S.

Proof:

Suppose that point qj is popped from the stack because qkqjqi makes a non-left turn.

Since points are ordered in increasing polar angle about the point p0, there exists a

triangle p0qiqk, where p0, qi, qk are all in the stack, with qj either in the interior of the

triangle (see figure 1 below) or on the line segment line qiqk. In either case, point qj

cannot be a vertex of convex hull of P. This completes the proof.

qi

qk

qj

qs

p0

Figure 1

q1

Lemma 3:

The points on stack always form the vertices of a convex polygon.

Proof:

The lemma holds after p0, q1, and q2 are pushed since p0, q1, and q2 form a convex

polygon. Inside for loop stack changes when the points are popped or when the points are

Samujjwal Bhandari

10

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

pushed. If points are popped, we have the polygon having points of stack as convex

because the geometric property says: If a vertex is removed from a convex polygon, the

resulting polygon is convex. If points are pushed we claim that the points on stack forms

convex polygon by using following lemma.

Lemma 4:

If a point qi is pushed onto the stack, the resulting points form a convex polygon.

Proof:

By pushing the point qi we have the points in the stack from the set {p0,q1,q2,…qi}in

order from left to right in the set, where we may omit some points from the set other than

p0,q1, and qi (we must have at least 3 elements in the stack otherwise in the next iteration

we may pop the point if there is non left turn such that checking turn with point set will

reduce to less than 3 points-impossible!). The points other than qi from the stack form

the convex polygon (since if convexity is not there we pop the point: see lemma 1). When

qi is pushed the point at the top of the stack will make the left turn towards qi, such that it

is in the region bounded by the boundary of the polygon that includes the points from the

stack and the point, say qj that will be considered later (see figure 2 below). This is true

since we have the polar angle of qj is greater than that of qi. By the geometry property

that, if we add point ps in the bounded regions of the polygon P then the resulting

polygon is convex, so we conclude that by pushing a point the resulting polygon so

formed with the points of the stack will be convex.

qj

qi

qk

qj

qi

qk

p0

q1

p0

q1

Figure 2

Conclusion

From lemma 2 and lemma 3 graham’s scan algorithm is correct.

Samujjwal Bhandari

11

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

Closest Pair Problem
To solve the problem of finding closest pair of points among the given set P of n points

we can use straightforward way by selecting 2 points from the set of n times. This

approach takes O(n2) time. However we can use divide and conquer approach to lessen

the running time of the algorithm that would solve the closest pair problem. The idea

behind the algorithm under discussion is given below.

Divide: Set of points, P is divided into two parts say Pl and Pr with respect to some

vertical line L such that the two parts are nearly equal i.e. number of points in both the

divided sets differ by at most one point. All points on set Pl are on or to the left of L and

all the points on Pr are on or to the right of L. We have two arrays X and Y consisting the

points where X has the points with monotonically increasing x-coordinates whereas Y

has the points with monotonically increasing y-coordinates. Divide both X and Y as Xl,

Xr and Yl, Yr with the meaning of the set as defined for their original sets respectively.

Conquer: Recursively solve the problem with set of points, with left set of points and

right set of points and find the closest pair between those two.

Combine: while combining there are things that are to be considered. The closest pair

may be returned by either left part or the right part .Let the distance returned so be d. The

second possibility is that the closest pair may be there such that one point lies on the left

part and the other in the right part. To incorporate these possibilities we do the following.

Create an array Y’� Y such that the points of Y beyond the distance d on either side

of the line L are not in Y’. The points (actually only seven points) within the

rectangle enclosed with the dimension d (vertical) and 2d (horizontal) are checked

every point in that rectangle to see whether there is a distance between two points that

is less than d if such a distance is found it is returned.

Algorithm:

Closest-Pair(P, X, Y)

{

if (|P| δ 3) then

Compute closest pair;

Return closest pair;

Samujjwal Bhandari

12

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

Divide points evenly along x axis at x = L into Pl, Xl ,Yl and Pr, Xr ,Yr.

dl = distance(Closest-Pair(Pl,Xl,Yl)); // distance routine gives Euclidean distance

dr =distance(Closest-Pair(Pr,Xr,Yr));

d = min{dl ,dr}

for each point p in (L - d) δ x δ (L + d)

check 7 points p' closest to p by y-coordinate

d' = distance(p,p')

if (d' < d) then

get new closest pair

return closest pair

}

Analysis:

Sorting of the set of points takes O(nlogn) time. The complexity of above algorithm is

obtained from the recurrence relation below.

T(n) = (1) if n δ 3, otherwise T(n) = T(n/2) + (n). (Here the cost of division of the

arrays X and Y seem to be not achievable in O(n) but if we use the reverse process of

merge sort that the two subproblems that are merged are extracted we can do this in O(n)

time.). So complexity is (nlogn)!

Correctness:

To prove the correctness of the closest pair algorithm there are two aspects to consider.

At first if the number of points is less than or equal to 3 then we can easily calculate the

possible distances and compare for the closest one (this will be terminating condition for

the recurrence). We can notice the fact that we are not trying to solve the problem with

only one point with our above terminating condition. We can use induction to show that

for higher number of points algorithm does return closest pair. Secondly we can show

that it is needed to check only 7 points from any points in the set Y’. Somewhere while

running the algorithm we let some pair of points (pl, pr) is encountered where pl � Pl and

pr� Pr, then the distance between the pair (pl, pr) must be less than d say d’. We have pr

to the right of the line L and pl to the left of the line L with distance from the line to the

points less than d. so we can say that the pair (pl, pr) falls within the rectangle of the

Samujjwal Bhandari

13

Chapter: Geometric Algorithms

Design and Analysis of Algorithms

dimension d ⋅ 2d with rectangle centered at line L. If we take the left or right half of the

rectangle we can say that at most 4 points can reside on one half otherwise by including

any other points within the half rectangle would create closest pair having distance less

than d in the one side and this is not true (see figure below). So we have at most 8 points

within the rectangle that are to be checked for and only 7 points need to be consider by

each point on the set Y’. By this we can say that our algorithm is correct.

d

Exercises

Pr

d

2d

Pl

d

Oops! We have closest pair with distance
less than d, so inner point cannot be there,
if other points are in the boundary

Coincident points, one in Pl and
the other in Pr.

1.

2.

Write down the algorithm to find the point of intersection of two line

segments, if exists.

Use Graham’s scan algorithm to find convex hull of the set of points below.

p13

p12

p11

p14

p7

p9

p1

p2

p10

p3

p8

p4

p6

p5

Samujjwal Bhandari

14

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

[NP Complete Problems
&

Approximation Algorithms]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

Up to now we were considering on the problems that can be solved by algorithms in

worst-case polynomial time. There are many problems and it is not necessary that all the

problems have the apparent solution. This concept, somehow, can be applied in solving

the problem using the computers. The computer can solve: some problems in limited time

e.g. sorting, some problems requires unmanageable amount of time e.g. Hamiltonian

cycles, and some problems cannot be solved e.g. Halting Problem. In this section we

concentrate on the specific class of problems called NP complete problems (will be

defined later).

Tractable and Intractable Problems
We call problems as tractable or easy, if the problem can be solved using polynomial

time algorithms. The problems that cannot be solved in polynomial time but requires

superpolynomial time algorithm are called intractable or hard problems. There are many

problems for which no algorithm with running time better than exponential time is known

some of them are, traveling salesman problem, Hamiltonian cycles, and circuit

satisfiability, etc.

P and NP classes and NP completeness
The set of problems that can be solved using polynomial time algorithm is regarded as

class P. The problems that are verifiable in polynomial time constitute the class NP. The

class of NP complete problems consists of those problems that are NP as well as they are

as hard as any problem in NP (more on this later). The main concern of studying NP

completeness is to understand how hard the problem is. So if we can find some problem

as NP complete then we try to solve the problem using methods like approximation,

rather than searching for the faster algorithm for solving the problem exactly.

Problems
Abstract Problems:

Abstract problem A is binary relation on set I of problem instances, and the set S of

problem solutions. For e.g. Minimum spanning tree of a graph G can be viewed as a pair

of the given graph G and MST graph T.

Samujjwal Bhandari

2

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

Decision Problems:

Decision problem D is a problem that has an answer as either “true”, “yes”, “1” or

“false”, ”no”, “0”. For e.g. if we have the abstract shortest path with instances of the

problem and the solution set as {0,1}, then we can transform that abstract problem by

reformulating the problem as “Is there a path from u to v with at most k edges”. In this

situation the answer is either yes or no.

Optimization Problems:

We encounter many problems where there are many feasible solutions and our aim is to

find the feasible solution with the best value. This kind of problem is called optimization

problem. For e.g. given the graph G, and the vertices u and v find the shortest path from u

to v with minimum number of edges. The NP completeness does not directly deal with

optimizations problems, however we can translate the optimization problem to the

decision problem.

Encoding:

Encoding of a set S is a function e from S to the set of binary strings. With the help of

encoding, we define concrete problem as a problem with problem instances as the set of

binary strings i.e. if we encode the abstract problem, then the resulting encoded problem

is concrete problem. So, encoding as a concrete problem assures that every encoded

problem can be regarded as a language i.e. subset of {0,1}*.

Complexity Class P
Complexity class P is the set of concrete decision problems that are polynomial time

solvable by deterministic algorithm. If we have an abstract decision problem A with

instance set I mapping the set {0,1}, an encoding e: I�{0,1}* is used to denote the

concrete decision problem e(A). We have the solutions to both the abstract problem

instance i�I and concrete problem instance e(i) �{0,1}* as A(i)�{0,1}. It is important to

understand that the encoding mechanism does greatly vary the running time of the

algorithm for e.g. take some algorithm that runs in O(n) time, where the n is size of the

input. Say if the input is just a natural number k, then its unary encoding makes the size

of the input as k bits as k number of 1’s and hence the order of the algorithm’s running

time is O(k). In other situation if we encode the natural number k as binary encoding then

Samujjwal Bhandari

3

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

we can represent the number k with just logk bits (try to represent with 0 and 1only) here

the algorithm runs in O(n) time. We can notice that if n = logk then O(k) becomes O(2n)

with unary encoding. However in our discussion we try to discard the encoding like

unary such that there is not much difference in complexity.

We define polynomial time computable function f:{0,1}*�{0,1}* with respect to some

polynomial time algorithm PA such that given any input x �{0,1}*, results in output f(x).

For some set I of problem instances two encoding e1 and e2 are polynomially related if

there are two polynomial time computable functions f and g such that for any i �I, both

f(e1(i)) = e2(i) and g(e2(i)) = e1(i) are true i.e. both the encoding should computed from

one encoding to another encoding in polynomial time by some algorithm.

Lemma 1:

Let A be an abstract decision problem on an instance set I, and let e1 and e2 be

polynomially related encodings on I. Then, e1(A) � P iff e2(A) � P.

The above lemma says that if we have encodings that are polynomially related then the

use of the encoding does not alter the result of the fact, whether the problem is

polynomially solvable or not.

Polynomial time reduction
Given two decision problems A and B, a polynomial time reduction from A to B is a

polynomial time function f that transforms the instances of A into instances of B such

that the output of algorithm for the problem A on input instance x must be same as the

output of the algorithm for the problem B on input instance f(x) as shown in the figure

below. If there is polynomial time computable function f such that it is possible to reduce

A to B, then it is denoted as A δp B. The function f described above is called reduction

function and the algorithm for computing f is called reduction algorithm.

Input for A
x

Samujjwal Bhandari

f

A
l
g
o
r
i
t
h
m

 for B

Algorithm for A

f(x)

Input for B Output from B

4

yes/no

Output from A

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

Lemma 2:

If L1, L2 � {0,1}* are languages1 such that L1 δp L2, then L2 � P L1 � P.

Proof:

(Try to understand from the above figure: see book for the detail proof)

Fact1: If L1 δp L2 and L2 δp L3, then L1 δp L3.

Complexity Class NP
NP is the set of decision problems solvable by nondeterministic algorithms in polynomial

time. When we have a problem, it is generally much easier to verify that a given value is

solution to the problem rather than calculating the solution of the problem. Using the

above idea we say the problem is in class NP (nondeterministic polynomial time) if there

is an algorithm for the problem that verifies the problem in polynomial time. V is the

verification algorithm to the decision problem D if V takes input string x as an instance of

the problem D and another binary string y, certificate, whose size is no more than the

polynomial in the size of x. the algorithm V verifies an input x if there is a certificate y

such that answer of D to the input x with certificate y is yes. For e.g. Circuit satisfiability

problem (SAT) is the question “Given a Boolean combinational circuit, is it satisfiable?

i.e. does the circuit has assignment sequence of truth values that produces the output of

the circuit as 1?” Given the circuit satisfiability problem take a circuit x and a

certificate y with the set of values that produce output 1, we can verify that whether the

given certificate satisfies the circuit in polynomial time. So we can say that circuit

satisfiability problem is NP.

We can always say P � NP, since if we have the problem for which the polynomial time

algorithm exists to solve (decide: notice the difference between decide and accept) the

problem, then we can always get the verification algorithm that neglects the certificate

and accepts the output of the polynomial time algorithm. From the above fact we are

clear that P � NP but the question, whether P = NP remains unsolved and is still the big

question in theoretical computer science. Most of the computer scientists, however,

believes that P  NP.

1

Every encoded decision problem can be viewed as language over alphabet {0,1}.

Samujjwal Bhandari

5

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

NP-Completeness
NP complete problems are those problems that are hardest problems in class NP. We

define some problem say A, is NP-complete if

1. A � NP, and

2. B δp A, for every B � NP.

We call the problem (or language) A satisfying property 2 is called NP-hard.

Theorem 1:

If any NP-complete problem is polynomial time solvable, then P = NP. Equivalently, if

any problem in NP is not polynomial time solvable, then no NP-complete problem is

polynomial time solvable.

Proof:

Let a problem A � P and A � NP-complete. If we have another problem B � NP, then

we have B δp A. Again we have, from lemma 2, B � P so we can say P = NP. This is the

proof. (Remember the statements in the above theorem are equivalent, where the first one

is direct implication and the second one is its contrapositive. We know contrapositive and

direct implication are logically equivalent.)

Cook’s Theorem
Lemma 3:

SAT is NP-hard

Proof: (This is not actual proof as given by cook, this is just a sketch)

Take a problem V � NP, let A be the algorithm that verifies V in polynomial time (this

must be true since V � NP). We can program A on a computer and therefore there exists

a (huge) logical circuit whose input wires correspond to bits of the inputs x and y of A

and which outputs 1 precisely when A(x,y) returns yes.

For any instance x of V let Ax be the circuit obtained from A by setting the x-input wire

values according to the specific string x. The construction of Ax from x is our reduction

function. If x is a yes instance of V, then the certificate y for x gives satisfying

assignments for Ax. Conversely, if Ax outputs 1 for some assignments to its input wires,

that assignment translates into a certificate for x.

Samujjwal Bhandari

6

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

Theorem 2: (Cook’s Theorem)

SAT is NP-complete

Proof:

To show that SAT is NP-complete we have to show two properties as given by the

definition of NP-complete problems. The first property i.e. SAT is in NP we showed

above (see pg 5 italicized part), so it is sufficient to show the second property holds for

SAT. The proof for the second property i.e. SAT is NP-hard is from lemma 3. This

completes the proof.

NP completeness proofs
Lemma 4:

If L is a language such that L’ δp L for some L’� NP-complete, then L is NP-hard and if

L � NP, then L � NP-complete.

Proof:

We have L’ as NP-complete so, for all M � NP, M δp L’. Since we have L’ δp L using

the fact 1 (above pg 5), we have M δp L i.e. L is NP-hard. It is clear that if L � NP, then

L � NP-complete from the definition of NP-completeness.

Steps for proving a problem (language) A to be NP-complete
1. Prove A � NP.

2. Select a known NP-complete problem B.

3. Describe an algorithm that computes a function f mapping every instance x of B

to an instance f(x) of A.

4. Prove that the function satisfies x � B iff f(x) � A for all x.

5. Prove the algorithm for computing f to be polynomial time algorithm.

Example:

Satisfiability of Boolean formula, BSAT, is a problem that consist of of n Boolean

variables x1, x2, …, xn; m Boolean operators as AND, OR, NOT, Implication,

Biconditional; and non redundant parenthesis for precedence. Satisfying assignment of

values of Boolean variables is the string of truth-values that produces output as 1. BSAT

ask us to find whether the given formula is satisfiable? The naïve algorithm takes O(2n)

Samujjwal Bhandari

7

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

time (how!). Now we show that BSAT is NP-complete.

We know that SAT is NP-complete. If we can show SAT δp BSAT and BSAT � NP,

then using the lemma 4 we prove that BSAT is NP-complete.

BSAT � NP: In BSAT problem take a formula (with n Boolean variables) x and a

certificate y with the set of truth values that produce output 1, we can verify the formula

with the given certificate for satisfying the formula in polynomial time. So, BSAT � NP.

SAT δp BSAT: Take a circuit C with only NOT, AND, and OR gates (All the circuits

can be constructed using the mentioned operators, since set of operators {NOT, AND,

OR} is functionally complete). For each wire xi in the circuit C assign the variable xi for

the Boolean formula, now if each gate is replaced by its appropriate operator then we

come up with the Boolean formula BC that outputs exactly what the formula outputs. This

reduction can be done in polynomial time in (circuit size) straightforward way (reducing

each input wire by a variable). If C has satisfying assignment, then clearly the formula

must be satisfied. Reduction is shown by the figure below. So we have SAT δp BSAT.

x1

x2

x3

x4

x5

x6

BC = x6 ∋ ((←x3(←x4) ∋(x3(x4))
[Since ←x3� x4, the below steps have similar reason]

∋ ((←x5(x1(x2) ∋(x5(←(x1(x2)))
∋ ((←x6((x5∋x4)) ∋(← (x5∋x4)(x6))

Approximation Algorithms
An approximate algorithm is a way of dealing with NP-completeness for optimization

problem. This technique does not guarantee the best solution. The goal of an

approximation algorithm is to come as close as possible to the optimum value in a

reasonable amount of time which is at most polynomial time. If we are dealing with

optimization problem (maximization or minimization) with feasible solution having

positive cost then it is worthy to look at approximate algorithm for near optimal solution.

An algorithm has an approximate ratio of 〉(n) if, for any problem of input size n, the

cost C of solution by an algorithm and the cost C* of optimal solution have the relation as

max(C/C*,C*,C) δ 〉(n). Such an algorithm is called 〉(n)-approximation algorithm.

The relation applies for both maximization (0 < C δ C*) and minimization (0 < C* δ C)

Samujjwal Bhandari

8

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

problems. 〉(n) is always greater than or equal to 1. If solution produced by

approximation algorithm is true optimal solution then clearly we have 〉(n) = 1.

Vertex Cover Problem
A vertex cover of an undirected graph G =(V,E) is a subset V’ � V such that for all

edges (u,v) �E either u�V’ or v�V’ or u and v � V’. The problem here is to find the

vertex cover of minimum size in a given graph G. Optimal vertex-cover is the

optimization version of an NP-complete problem but it is not too hard to find a vertex-

cover that is near optimal.

Algorithm:

ApproxVertexCover (G){

C

{ } ; E’ = E

while E` is not empty

do Let (u, v) be an arbitrary edge of E`

C = C ∗ {u, v}

Remove from E` every edge incident on either u or v

return C

}

Example: (vertex cover running example for graph below)

b c

a

f

g

e

d

Solution:

b

c

b

c

a

f

g

e

d

a

f

g

e

d

Edge chosen is (b,c) C = {b,c}

Samujjwal Bhandari

9

Edge chosen is (f,e) C = {b,c,e,f}

Chapter: NP problems & Approximation Algorithms Design and Analysis of Algorithms

b

c

b

c

a

f

g

e

d

a

f

g

e

d

Edge chosen is (g,d) C = {b,c,d,e,f,g} Optimal vertex cover as lightly shaded vertices

Analysis:

If E’ is represented using the adjacency lists the above algorithm takes O (V+E) since

each edge is processed only once and every vertex is processed only once throughout the

whole operation.

Theorem 3: ApproxVertexCover is a polynomial-time 2-approximate algorithm.

Proof: We know that ApproxVertexCover is a polynomial-time algorithm (see above).

Lets try to show that it is 2-approximate algorithm, let the set C* and C be the sets output

by OptimalVertexCover and ApproxVertexCover respectively. Let A be the set of edges

selected by the first instruction after while loop in the above algorithm. Since, we have

added vertices from the edge not already in C, we get |C| = 2|A|, the upper bound on the

size of vertex cover. As we don not know what is the size of optimal solution we can

argue that C* must have atleast one vertex from the edge from the set A, and no two

edges in A are covered by the same vertex due to the deletion of all the edges adjacent to

the vertices added, so |C*| ε |A| is the lower bound for optimal solution. From the above

two facts we have |C| δ 2|C*| i.e. |C|/|C*| δ 2 = 〉(n). Hence the ApproxVertexCover is a

polynomial-time 2-approximate algorithm.

Exercises
1.

2.

Show that vertex cover problem is NP-complete.

Investigate the travelling salesman problem and present the approximation

algorithm to deal with NP-complete travelling salesman problem.

Samujjwal Bhandari

10

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

[Mathematical Foundation]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

2

a δ 1 / 1-a ; if 0<a<1

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

Since mathematics can provide clear view of an algorithm. Understanding the concepts of

mathematics aid in the design and analysis of good algorithms. Here we present some of

the mathematical concepts that are helpful in our study.

Exponents
Some of the formulas that are helpful are :

xa xb = xa+b

xa / xb = xa-b

(x a)b = xab

xn + xn = 2xn

2n + 2n = 2n+1

Logarithms
Some of the formulas that are helpful are :

1.

2.

3.

4.

5.

6.

7.

Series

logab = logcb / logca ; c>0

log ab = log a + log b

log a/b = log a - log b

log (ab) = b log a

Log x < x for all x>0

Log 1 = 0, log 2 = 1, log 1024 = 10.

a log bn = n log ba

1.

n

i =0

i

= 2n+1 – 1

2.

n

i =0

i

= an+1 – 1 / a-1 ; else

Samujjwal Bhandari

2

Ti
m

e

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

3.

n

i =1

i = n(n+1) / 2

4.

5.

n

i =0

n

i =0

i

i

2

k

= n(n+1)(2n+1) / 6

Η nk+1 / |k+1| ; k != -1

6.

n
1/i Η log en

i =1

Asymptotic Notation

Complexity analysis of an algorithm is very hard if we try to analyze exact. we know that

the complexity (worst, best, or average) of an algorithm is the mathematical function of

the size of the input. So if we analyze the algorithm in terms of bound (upper and lower)

then it would be easier. For this purpose we need the concept of asymptotic notations.

The figure below gives upper and lower bound concept.

Input size

Why we concentrate on worst case mostly ? Why not best case or average case?

Samujjwal Bhandari

3

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

Big Oh (O) notation

When we have only asymptotic upper bound then we use O notation. A function f(x) =

O(g(x)) (read as f(x) is big oh of g(x)) iff there exists two positive constants c and x0

such that for all x >= x0,

0 <= f(x) <= c*g(x)

The above relation says that g(x) is an upper bound of f(x)

some properties:

Transitivity : f(x) = O(g(x)) & g(x) = O(h(x)) f(x) = O(h(x))

Reflexivity: f(x) = O(f(x))

O(1) is used to denote constants.

c .g(n)

f(n)

n0

f(n) = O(g(n))

For all values of n >= n0, plot shows clearly that f(n) lies below or on the curve of c*g(n)

Samujjwal Bhandari

4

Chapter: Mathematical Foundation

Examples

Design and Analysis of Algorithms

1.

2.

f(n) = 3n2 + 4n + 7

g(n) = n2 , then prove that f(n) = O(g(n)).

Proof: let us choose c and n0 values as 14 and 1 respectively then we can have

f(n) <= c*g(n), n>=n0 as

3n2 + 4n + 7 <= 14*n2 for all n >= 1

the above inequality is trivially true

hence f(n) = O(g(n))

Prove that n log (n3) is O(�n3)).

Proof: we have n log (n3) = 3n log n

again, �n3 = n �n,

if we can prove log n = O(�n) then problem is solved

because n log n = n O(�n) that gives the question again.

We can remember the fact that log a n is O (nb) for all a,b>0.

In our problem a = 1 and b = ½ ,

hence log n = O(�n).

So by knowing log n = O(�n) we proved that

n log (n3) = O(� n3)).

3.

Is 2n+1 =O(2n) ?

Is 22n = O(2n) ?

(See solution in the class)

Samujjwal Bhandari

5

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

Big Omega () notation

Big omega notation gives asymptotic lower bound. A function f(x) = (g(x)) (read as f(x)

is big omega of g(x)) iff there exists two positive constants c and x0 such that for all x

>= x0,

0 <= c*g(x) <= f(x).

The above relation says that g(x) is an lower bound of f(x).

some properties:

Transitivity : f(x) = O(g(x)) & g(x) = O(h(x)) f(x) = O(h(x))

Reflexivity: f(x) = O(f(x))

f(n)

c .g(n)

n0

f(n) =

(g(n))

n

For all values of n >= n0, plot shows clearly that f(n) lies above or on the curve of c*g(n).

Samujjwal Bhandari

6

Chapter: Mathematical Foundation

Examples

Design and Analysis of Algorithms

1.

f(n) = 3n2 + 4n + 7

g(n) = n2 , then prove that f(n) = (g(n)).

Proof: let us choose c and n0 values as 1 and 1, respectively then we can have

f(n) >= c*g(n), n>=n0 as

3n2 + 4n + 7 >= 1*n2 for all n >= 1

the above inequality is trivially true

hence f(n) = (g(n))

Big Theta (∪) notation

When we need asymptotically tight bound then we use notation. A function f(x) = (g(x))

(read as f(x) is big theta of g(x)) iff there exists three positive constants c1, c2 and x0 such

that for all x >= x0,

0 <= c1*g(x) <= f(x) <= c2*g(x)

The above relation says that f(x) is order of g(x)

some properties:

Transitivity : f(x) = ∪ (g(x)) & g(x) = ∪ (h(x)) f(x) = ∪ (h(x))

Reflexivity: f(x) = ∪ (f(x))

Symmetry: f(x) = ∪ g(x) iff g(x) = ∪ f(x)

Samujjwal Bhandari

7

Chapter: Mathematical Foundation

n0

Design and Analysis of Algorithms

C2 .g(n)

f(n)

C1 .g(n)

n

f(n) = ∪ (g(n))
For all values of n >= n0, plot shows clearly that f(n) lies between c1* g(n)and c2*g(n).

Examples
1. f(n) = 3n2 + 4n + 7

g(n) = n2 , then prove that f(n) = (g(n)).

Proof: let us choose c1, c2 and n0 values as 14, 1 and 1 respectively then we can

have,

f(n) <= c1*g(n), n>=n0 as 3n2 + 4n + 7 <= 14*n2 , and

f(n) >= c2*g(n), n>=n0 as 3n2 + 4n + 7 >= 1*n2

for all n >= 1(in both cases).

So c2*g(n) <= f(n) <= c1*g(n) is trivial.

hence f(n) =

∪ (g(n)).

2.

Show (n + a)b = ∪(nb), for any real constants a and b, where b>0.

Here, using Binomial theorem for expanding (n + a)b, we get ,

Samujjwal Bhandari

8

(n + a) >= c2*(n), for all n >= n0

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

C(b,0)nb + C(b,1)nb-1a + … + C(b,b-1)nab-1 + C(b,b)ab

we can obtain some constants such that (n + a)b <= c1*(nb), for all n >= n0

and
b b

here we may take c1 = 2b c2 = 1 n0 = |a|,

since 1 *(nb) <= (n + a)b <= 2b *(nb).

Hence the problem is solved.

Why c1 = 2b? since

C(n,k) = 2k, where k=0 to n.

Little Oh (o) notation

Little oh (o) notation is used to denote the upper bound that is not asymptotically tight. A

function f(x) = o(g(x)) (read as f(x) is little oh of g(x)) iff for any positive constant c

there exists positive constant x0 such that for all x >= x0,

0 <= f(x) < c*g(x)

for example 4x4 is O(x4) but not o(x4).

Alternatively f(x) is little oh of g(x) if

lim

x �>�

f (x)

g (x)

= 0

Note: transitivity is satisfied.

Little Omega () notation

Little omega (o) notation is used to denote the lower bound that is not asymptotically

tight. A function f(x) = (g(x)) (read as f(x) is little omega of g(x)) iff for any positive

constant c there exists positive constant x0 such that for all x >= x0,

Samujjwal Bhandari

9

Complexity 10 20 30 40 50

n 0.00001 sec 0.00002 sec 0.00003 sec 0.00004 sec 0.00005 sec

 0.0001 sec 0.0004 sec 0.0009 sec 0.016 sec 0.025 sec

 0.001 sec 0.008 sec 0.027 sec 0.064 sec 0.125 sec

 0.001 sec 1.0 sec 17.9 min 12.7 days 35.7 years

 0.59 sec 58 min 6.5 years 3855 cent cent

Chapter: Mathematical Foundation

0 <= c*g(x) < f(x) .

for example x3/7 is (x2) but not (x3).

Alternatively f(x) is little omega of g(x) if

Design and Analysis of Algorithms

lim

x �>�

f (x)

g (x)

=�

Note: transitivity is satisfied.

Some commonly used functions in algorithm analysis

f(x) = O(1)

f(x) = C*log x

f(x) = C*x

f(x) = C*x log x

f(x) = C*x2

f(x) = C* x3

constant

logarithmic

linear

linearithmic

quadratic

cubic

f(x) = C* x k polynomial in k

f(x) = C* kx

Samujjwal Bhandari

exponential in k

10

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

Order of growth

O(1)< C*log x< C*x < C*x log x < C*x2< C* x3< C* xk< C* kx

Value of k should be in increasing order.

Before we start: Is the following statement true or false? f(n) + g(n) =
∪(min(f(n),g(n))) Explain your answer.

Example Algorithm 1: Insertion Sort
Input: An array of numbers to be sorted A [] of length n.

Output: Sorted array A [].

Algorithm: InsertionSort (A [])

for (i=1; i<n; i++)

{

x = A[i];

//A[0]…A[i-1] is already sorted.

j = i-1;

while(j>=0 and A[j] > x)

{

A[j+1] = A[j];

j = j-1;

}

A[j+1] = x;

}

Correctness:
The invariant of the outer loop that the array A[0] … A[i-1] is sorted contains no

elements other than of original one. Finding invariant for inner loop is very hard still we

can see that the inner loop is for insertion and always insert correctly.

The algorithm terminates when arrays last element is read by outer loop.

Samujjwal Bhandari

11

Chapter: Mathematical Foundation

Efficiency
Time Complexity

Design and Analysis of Algorithms

InsertionSort (A [])

1. for (i=1; i<n; i++)

cost

c1

times

n

2. {

3.

c2

4.

5.

x = A[i]

//A[0]…A[i-1] is already sorted

j = i-1;

c3

c5

c4

n-1

n-1

6.

while(j>=0 and A[j] > x)

c6

n
l

l =1

7. {

c7

8.

A[j+1] = A[j];

c8

n
(l � 1)

l =1

9.

j = j-1;

c9

n
(l � 1)

l =1

10. }

11.

c10

12.

}

A[j+1] = x; c11 n-1

c12

Remember: l = i-1, cost and times are multiplied for each steps (not for space

complexity). Strikethrough costs means the costs of no importance in our analysis.

Time complexity T(n) = c1*n + c3*(n-1) + c5*(n-1) + c6*
n

l + c8*
n

(l � 1) +
i =1 i =1

c9*

n
(l � 1) + c11*(n-1)

i =1

Best Case

Best case is achieved when the inner loop is not executed, for already sorted array this

happens so best case analysis gives,

Samujjwal Bhandari

12

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

T(n) = c1*n + c3*(n-1) + c5*(n-1) + c6*(n-1) + c11*(n-1)

= ∪(n) .

Note: how some instances of inputs change the general behavior of an algorithm.

Worst Case

Worst case occurs when each execution of inner loop moves every element of an array.

T(n) = c1*n +c3*(n-1) +c5*(n-1) +c6*
2

n(n + 1)
+c8*

2
n(n � 1)

+c9*
2

n(n � 1)
+c11*(n-1)

= ∪(n2)

Average Case

For average case inner loop inserts element from an array in the middle of an array, this

takes ∪(i / 2) time.

Ta(n) =

n�1

i =1

∪(i / 2) = ∪(

n�1

i =1

i) = ∪(n2)

Space Complexity
Space complexity is ∪(n) since space depends on the size of the input.

Example Algorithm 2: Merge Sort
Input: An array of numbers to be sorted A [] of length n.

Output: Sorted array A [].

Algorithm: MergeSort (A,l,h)

if(l<h)

{

q = (l + h) / 2 ;

MergeSort(A,l,q);

MergeSort(A,q+1,h);

Merge(A,l,q,h);

}

Samujjwal Bhandari

13

Chapter: Mathematical Foundation

Algorithm: Merge (A,low,mid,high)

l = m =low; k = mid+1;

while((l<= mid) and k(<=high)

{

if(A[l]<=A[k])

{

B[m] = A[l];

l = l+1;

}

else

{

B[m] =A[k];

k = k+1;

}

m = m+1;

}

if(l > mid)

for(i =k; i < high; i++)

{

B[m] = A[i];

m =m + 1;

}

else

for(i=l; i < mid; i++)

{

B[m] = A[i];

m = m + 1;

}

for(j = low; j < high; j++)

A[j] = B[j];

Samujjwal Bhandari

14

Design and Analysis of Algorithms

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

Correctness:

Correctness of a MergeSort can be verified by induction if we can prove that Merge is

correct and correctness of Merge means two ranges of sorted sequence when get merged

the result should be sorted and the content of the original input must be same. See, second

loop just copies the array so if we prove that first loop produces sorted array then we are

done. The invariants for the first loop are

Either m=1 or B[m] is sorted at every point in the algorithm, B[m-1] <= A[l] and B[m-1]

<= A[k]. This property is true at the beginning and ending of loop (requires a bit effort to

verify with all four conditions).

Efficiency
Time Complexity
To calculate the time complexity of the above MergeSort algorithm, first for the

simplicity assume that the size of the input is power of 2. Now we can obtain time

complexity as,

T(n) = ∪(1){for if} + ∪(1){for 2nd statement} + T(n / 2) + T(n / 2) + T(Merge).

Here we need to calculate complexity of Merge algorithm also, complexity for this can be

straightforwardly calculated as ∪(n) {do yourself}

Now, if n =1 then there is no process involved other than if (l<h) so T(n) = ∪(1)

Floors and ceilings can be eliminated in asymptotic analysis. So for n>1 we can write

T(n) = 2T(n/2) + ∪(n)

You can notice that we obtained valid recurrence relation with boundary condition and is

expressed like

T(n) = ∪(1), when n = 1

T(n) = 2T(n/2) + ∪(n), when n > 1

We can write n = 2k (why? See our assumption) then,

Samujjwal Bhandari

15

Chapter: Mathematical Foundation

Design and Analysis of Algorithms

T(n) = 2T(2k-1) + ∪(2k)

= 2(2T(2k-2) + ∪(2k-1)) + ∪(2k)

= 4T(2k-2) + 2∪(2k-1) + ∪(2k)

…

= 2k∪(1)+ 2k-1∪(1)+ … +2∪(2k-1) + ∪(2k)

= k∪(2k)

= ∪(k 2k)

= ∪(n logn)

What if n is not a power of 2. Then there exists k such that 2k < n < 2k-1 and we have

T(2k)<= T(n) <= T(2k-1)

∪(k 2k) <= T(n) <= ∪((k+1) 2k+1)

here ∪((k+1) 2k+1) < 4k2k so ∪((k+1) 2k+1) is also ∪(k 2k). we have k = log n (not

exactly but floors and ceilings can be omitted). So T(n) is ∪(n logn).

Comparing performance

Comparing two sorting algorithms we can infer that MergeSort beats InsertionSort for

larger enough data due to the fact that ∪(n log n) grows more slowly than ∪(n2). Since

we are concerned with asymptotic analysis constants are neglected. However, to know at

which point does merge sort beats insertion sort we need finer analysis. If we can do this

then we can develop and design adaptive algorithms for e.g. By mixing both algorithms

such that small data set uses insertion sort while the large data use merge sort.

After these materials all the detail analysis of most of the algorithms are avoided students

can try for it (if interested).

Samujjwal Bhandari

16

Chapter: Mathematical Foundation

Exercises

Design and Analysis of Algorithms

1.

2.

Show that 2n is O(n!).

Show that the time complexity of TOH is O(2n).

3.

2.1.5: Prove theorem 2.1.

Theorem 2.1: For any functions f(n) and g(n), f(n) = ∪(g(n)) if and only if f(n) =

O(g(n)) and f(n) = &(g(n)).

2.1.6: Prove that the running time of an algorithm is ∪(g(n)) if and only if its worst

case running time is O(g(n)) and its best case running time is &(g(n)).

4. f(x) = anxn + an-1xn-1 + … + a1x + a0, where a0, a2, …, an are real numbers with

an!= 0. Then show that f(x) is O(xn), f(x) is

xn.

(xn) and then show f(x) is order of

Samujjwal Bhandari

17

Chapter: Recurrences

Design and Analysis of Algorithms

[Recurrences]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Recurrences

Design and Analysis of Algorithms

Recurrence relations, in the computer algorithms, can model the complexity of the

running time, particularly divide and conquer algorithms. Recurrence relation is an

equation or an inequality that is defined in term of itself. Recursions are useful in

computer science because it makes the expression of an algorithm easy and can be solved

easily. There are many natural problems that are easily described through recursion.

Examples

a.

b.

c.

an = an-1 + 1, a1 = 1; (what function?)

an = 2an-1 , a1 = 1 ; (what function?)

an = nan-1 , a1 = 1 ; (what function?)

a.

b.

c.

an = n

an = 2n

an = n!

(polynomial)

(exponential)

(factorial)

Solving Recurrence Relations

See an example below

T(n) = 2T(n-1) + k , where T(0) =1

= 2(2T(n-2) + k) +k

= 4(2T(n-3) + k) + 3k = 23T(n-3) + (1+2+4)k

= 24T(n-4) + (20+21+22+23)k

…

= 2pT(n-p) + (20+21+ …+2p-2+2p-1)k

let p = n then,

T(n) = 2n + (20+21+ …+2n-2+2n-1)k { 2i = 2n+1 –1 , i = 0 to n}

= 2n + 2n –1 = 2. 2n –1 = ∪(2n).

Above we solved the recurrence relation but what are the available methods to solve the

relation is next.

Samujjwal Bhandari

2

Chapter: Recurrences

Design and Analysis of Algorithms

Solving Methods

No general procedure for solving recurrence relations is known solving the recurrence

relation is an art. However there are generally used method that can solve problems of

specific type and characteristics.

Linear homogeneous recurrence relations of degree k with constant coefficients is a

recurrence relation of the form

an = c1an-1 + c2an-2 + … + ckan-k

where c1, c2, … , ck are real numbers, and ck != 0.

A sequence satisfying a recurrence relation above uniquely defined by the recurrence

relation and the k initial conditions:

a0 = c0, a1 = c1, … , ak-1 = ck-1 This kind of linear homogenous recurrence relation can be

solved by constructing characteristic equation and solving it for answer (interested

student can follow books on recurrence relation for more detail).

Now we try to solve the recurrence relation through different methods.

Note: we do not take care of floors, ceilings and boundary conditions in solving the

relations since we are solving for asymptotic value and those conditions generates extra

constants only.

Substitution Method

Given a recurrence relation

T(n) = 1, when n = 1

T(n) = 2T(n/2) + n, when n > 1

Samujjwal Bhandari

3

Chapter: Recurrences

Design and Analysis of Algorithms

In this method to obtain lower or upper bound

1. We guess the solution

2. Prove that solution to be true by mathematical induction.

The question comes over guessing i.e. how to guess for the solution?

For the above given relation we can guess the upper bound solution is O(nlogn) [we have

already come through such a relation so guessing is easy]. For the guess to be true

T(n) <= c*nlogn must be satisfied for some positive constant c.

Since we guessed solution as O(nlogn) we can assume

T(n/2) <= c*n/2log(n/2)

Then

T(n) <= 2(c*n/2log(n/2)) + n

= c*nlog(n/2) + n

= c*n(logn –log 2) + n

= c*nlogn + (1-c)*n

<= c*nlogn [this step holds as long as c>=1]

Now we have to prove that the solution holds for boundary condition. For this

mathematical induction is required.

we have , T(1) = 1,

T(1) <= c*1log1

<=0 (false)

But since we can have some n>=n0, we may choose boundary condition for n=2, 3…

Now we can find c large enough to hold the above relation with the help of extended

boundary conditions T(2) and T(3).

Why n=2 and 3 for boundary condition? Because after n>3 relation doesn’t

depend on T(1).

Samujjwal Bhandari

4

Chapter: Recurrences

We obtain T(2) = 2T(1) + 2

T(3) = 2T(1) + 3

If we put any c >=2 then,

Design and Analysis of Algorithms

=4

= 5 [3/2 = 1 as integer division)

T(2)

T(3)

<= c*2log2

<= 2c (true)

<= c*3log3

<= 3clog3 (true)

How to guess

Relate with similar previously done problem for e.g.

T(n) = 2T(n/2 + 3) + 3 + n

Here the problem is similar to the example previously done so we guess solution as

O(nlogn).

Choose good lower bound and upper bound and converge the solution by reducing range.

For e.g. for above relation since we see n on the relation we guess lower bound as &(n)

and upper bound as O(n2) . Then we can increase lower and decrease upper bound to get

tighter bound ∪(nlogn).

Problem: Lower order term may defeat mathematical induction of substitution method.

Samujjwal Bhandari

5

Chapter: Recurrences

Another Example

Consider the relation, T(n) = 2T(n/2) + 1

Guessing T(n) = O(n)

To show T(n) <= c*n

We can assume T(n/2) <=c*n/2 then,

Design and Analysis of Algorithms

T(n)

<= 2(c*n/2) + 1

<= c*n +1 is not <=c*n for any c and n ,since we cannot subtract the 1.

Lets try to subtract the lower order term then,

Guess T(n) = O(n)

To show T(n) <= c*n-b [since c*n –b = O(n)]

Assume T(n/2) <= c*n/2 –b then,

T(n)

<= 2(c*n/2 - b) + 1

<= c*n -2b + 1

<=c*n –b ,for b>=1

Some time little modification on the variable can make the problem similar to other. For

e.g. T(n) = 2T(�n) +1

Take m =logn then 2m = n, i.e. n1/2 = 2m/2 so

T(2m) = 2T(2m/2) + 1

Now rename T(2m) as S(m) so the above relation can be written as

S(m) = 2S(m/2) +1

Samujjwal Bhandari

6

Chapter: Recurrences

Design and Analysis of Algorithms

This relation is simpler an we know solution to this, however you verify the result, so

solution is S(m)= O(m) changing to T(n) we get T(logn)..

Example Factorial

Factorial(n)

if n < 1

then return 1

else return n * Factorial(n-1)

The above algorithm has recurrence relation as

T(n) = 1

T(n) = T(n-1) + ∪(1)

n=0

n>0

Guess O(n) , Show T(n) <= c*n [proof left as an exercise]

Iteration Method

The iteration method does not require guessing but it need more experience in solving

algebra. Here we are concerned with following steps.

1. Expand the relation so that summation dependent on n is obtained.

2. Bound the summation.

Take T(n) = 2T(n/2) + 1 , T(1) =1

Then we can expand the relation as

Samujjwal Bhandari

7

Chapter: Recurrences

Design and Analysis of Algorithms

T(n)

= 2T(n/2) + 1

= 2(2T(n/4) + 1) +1 = 22T(n/22)+(1+2)

= 23T(n/23) + (1+2 + 4)

….. Up to pth term

= 2pT(n/2p) + (20 +21 + … +2p-1)

observe that (20 +21 + … +2p-1) = 2p – 1

let 2p = n then expanded relation becomes

T(n)

= nT(1) + n-1

= ∪(n)

Note : iterate until the boundary is met.

Example

Given the recurrence relation

T(1) = ∪(1) when n = 1

T(n) = T(n/3) + ∪(n) when n>1 , solve using iteration method.

Here,

T(n)

= T(n/3) + ∪(n)

= T(n/9) + ∪(n) + ∪(n)

= T(n/33) + ∪(n) + ∪(n) + ∪(n)

… Up to pth term

= T(n/3p) + p∪(n)

Samujjwal Bhandari

8

a Η 1/(1 � a) when 0 < a <1}

Chapter: Recurrences

let n = 3p then p = log3n so,

Design and Analysis of Algorithms

T(n) = T(1) + log3n∪(n)

= ∪(n log3n)

This is Wrong

Right method

T(n)

= T(n/3) + ∪(n)

= T(n/9) + ∪(n) + ∪(n/3)

= T(n/33) + ∪(n) + ∪(n/3) + ∪(n/9)

… Up to pth term

= T(n/3p) +
p

 (n / 3i)
i =0

let n = 3p then,

T(n)

= T(1) + ∪(n(

p

1/ 3i))

i =0

= 1 + ∪(n (1/(1-1/3))

{

p

i =0

i

= ∪(3n/2)

=∪(n).

Samujjwal Bhandari

9

Chapter: Recurrences

Design and Analysis of Algorithms

Recursion Tree Method

This method is just the modification to the iteration method for pictorial representation.

Given T(n) = 1

T(n) = T(n/2) + 1

1

A 1
B

1
T(n/2)

T(n/2)

1

1

C

1

T(1)

Here the height is log n so T(n) = O(logn)

Samujjwal Bhandari

10

Chapter: Recurrences

Design and Analysis of Algorithms

Example: Recursion Tree

Given T(n) = 1

T(n) = 4T(n/4) + n , solve by appealing to recurrence tree.

n

T(n/4)

T(n/4)

T(n/4)

T(n/4)

n

n/4

… … ……

n/4

n/4

n/4

… … ……

T(n/16)

Continue like this ……

… … ……

T(1)

Samujjwal Bhandari

… … ……

11

T(1)

Chapter: Recurrences

Design and Analysis of Algorithms

Add the terms at each level then you will obtain

n+ n +n + … + n up to height of the tree (logn time)

=nlogn

so T(n) = O(nlogn)

Master Method

Master method is used to solve the recurrences of the form

T(n) = aT(n/b) + f(n),

where a>=1 and b>1 are constants and f(n) is asymptotically positive function. This

method is very handy because most of the recurrence relations we encounter in the

analysis of algorithms are of the above kinds and it is very easy to use this method.

The above recurrence divides problem of size n into a sub problems each of size n/b

where a and b are positive constants. The cost of dividing and combining the problem is

given by f(n).

Master Theorem: let a>=1 and b>1 be constants, let f(n) be a function, and let T(n) be

defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

Where n/b is either n / b

follows.

Samujjwal Bhandari

or n / b . Then T(n) can be bounded asymptotically as

12

Chapter: Recurrences

Design and Analysis of Algorithms

1. If f(n) = O(nlogba-) for some constant > 0, then T(n) = ∪(nlogba).

2. If f(n) = ∪(nlogba), then T(n) = ∪(nlogba logn).

3. If f(n) = &(nlogba+) for some constant > 0, and if a f(n/b) δ c f(n) for some

constant c<1 and all sufficiently large n, then T(n) = ∪(f(n)).

In each of the three cases we are comparing nlogba and f(n). Solution of the recurrence is

derived from the larger of the two. The function that is smaller or greater must be

polynomially smaller or greater by the factor of n for case 1 and 3. Additional in case 3 is

that regularity condition for polynomial a f(n/b) δ c f(n).

Examples

1.

2.

T(n) = 9T(n/3) + n

a=9, b=3, f(n) = n

nlog3 9 = n2

f(n) = n = O(nlog39-), where = 1, Case 1

So, T(n) = ∪(n2)

T(n) = 2T(n/2) + n

a=2, b=2, f(n) = n

nlog2 2 = n

f(n) = n = ∪(nlog39), Case 2

So, T(n) = ∪(nlogn)

Samujjwal Bhandari

13

Chapter: Recurrences

Design and Analysis of Algorithms

3.

T(n) = 3T(n/4) + nlogn

a=3, b=4, f(n) = nlogn

nlog4 3 = O (n0.793)

f(n) =&(nlog43+) , = (nearly)0.2,

For large n, af(n/b) = 3(n/4)log(n/4) δ 3/4nlogn = cf(n), c=3/4 , Case 3

So, T(n) = ∪(nlogn)

Exercises

1.

4.1.2: Show that the solution of T(n) = 2T(n / 2) + n is (nlogn). Conclude that

solution is ∪(nlogn).

4.1.5: Show that the solution to T(n) = 2T(n / 2 + 17) + n is O(nlogn).

2. Write recursive Fibonacci number algorithm derive recurrence relation for it and

solve by substitution method.

3.

4.2.2: Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + n is

(nlogn) by appealing to a recursion tree.

4.2.4: Use iteration to solve the recurrence T(n) = T(n-a) + T(a) + n, where a >=1 is a

constant.

4.

4.3.1: Use the master method to give tight asymptotic bounds for the following

recurrences.

4.3.2: The running time of an algorithm A is described by the recurrence T(n) =

7T(n/2) + n2. A competing algorithm A’ has a running time of T’(n) = aT’(n/4) + n2.

What is the largest integer value for a such that A’ is asymptotically faster than A?

Samujjwal Bhandari

14

Chapter: Recurrences

Design and Analysis of Algorithms

[Recurrences]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Recurrences

Design and Analysis of Algorithms

Recurrence relations, in the computer algorithms, can model the complexity of the

running time, particularly divide and conquer algorithms. Recurrence relation is an

equation or an inequality that is defined in term of itself. Recursions are useful in

computer science because it makes the expression of an algorithm easy and can be solved

easily. There are many natural problems that are easily described through recursion.

Examples

a.

b.

c.

an = an-1 + 1, a1 = 1; (what function?)

an = 2an-1 , a1 = 1 ; (what function?)

an = nan-1 , a1 = 1 ; (what function?)

a.

b.

c.

an = n

an = 2n

an = n!

(polynomial)

(exponential)

(factorial)

Solving Recurrence Relations

See an example below

T(n) = 2T(n-1) + k , where T(0) =1

= 2(2T(n-2) + k) +k

= 4(2T(n-3) + k) + 3k = 23T(n-3) + (1+2+4)k

= 24T(n-4) + (20+21+22+23)k

…

= 2pT(n-p) + (20+21+ …+2p-2+2p-1)k

let p = n then,

T(n) = 2n + (20+21+ …+2n-2+2n-1)k { 2i = 2n+1 –1 , i = 0 to n}

= 2n + 2n –1 = 2. 2n –1 = ∪(2n).

Above we solved the recurrence relation but what are the available methods to solve the

relation is next.

Samujjwal Bhandari

2

Chapter: Recurrences

Design and Analysis of Algorithms

Solving Methods

No general procedure for solving recurrence relations is known solving the recurrence

relation is an art. However there are generally used method that can solve problems of

specific type and characteristics.

Linear homogeneous recurrence relations of degree k with constant coefficients is a

recurrence relation of the form

an = c1an-1 + c2an-2 + … + ckan-k

where c1, c2, … , ck are real numbers, and ck != 0.

A sequence satisfying a recurrence relation above uniquely defined by the recurrence

relation and the k initial conditions:

a0 = c0, a1 = c1, … , ak-1 = ck-1 This kind of linear homogenous recurrence relation can be

solved by constructing characteristic equation and solving it for answer (interested

student can follow books on recurrence relation for more detail).

Now we try to solve the recurrence relation through different methods.

Note: we do not take care of floors, ceilings and boundary conditions in solving the

relations since we are solving for asymptotic value and those conditions generates extra

constants only.

Substitution Method

Given a recurrence relation

T(n) = 1, when n = 1

T(n) = 2T(n/2) + n, when n > 1

Samujjwal Bhandari

3

Chapter: Recurrences

Design and Analysis of Algorithms

In this method to obtain lower or upper bound

1. We guess the solution

2. Prove that solution to be true by mathematical induction.

The question comes over guessing i.e. how to guess for the solution?

For the above given relation we can guess the upper bound solution is O(nlogn) [we have

already come through such a relation so guessing is easy]. For the guess to be true

T(n) <= c*nlogn must be satisfied for some positive constant c.

Since we guessed solution as O(nlogn) we can assume

T(n/2) <= c*n/2log(n/2)

Then

T(n) <= 2(c*n/2log(n/2)) + n

= c*nlog(n/2) + n

= c*n(logn –log 2) + n

= c*nlogn + (1-c)*n

<= c*nlogn [this step holds as long as c>=1]

Now we have to prove that the solution holds for boundary condition. For this

mathematical induction is required.

we have , T(1) = 1,

T(1) <= c*1log1

<=0 (false)

But since we can have some n>=n0, we may choose boundary condition for n=2, 3…

Now we can find c large enough to hold the above relation with the help of extended

boundary conditions T(2) and T(3).

Why n=2 and 3 for boundary condition? Because after n>3 relation doesn’t

depend on T(1).

Samujjwal Bhandari

4

Chapter: Recurrences

We obtain T(2) = 2T(1) + 2

T(3) = 2T(1) + 3

If we put any c >=2 then,

Design and Analysis of Algorithms

=4

= 5 [3/2 = 1 as integer division)

T(2)

T(3)

<= c*2log2

<= 2c (true)

<= c*3log3

<= 3clog3 (true)

How to guess

Relate with similar previously done problem for e.g.

T(n) = 2T(n/2 + 3) + 3 + n

Here the problem is similar to the example previously done so we guess solution as

O(nlogn).

Choose good lower bound and upper bound and converge the solution by reducing range.

For e.g. for above relation since we see n on the relation we guess lower bound as &(n)

and upper bound as O(n2) . Then we can increase lower and decrease upper bound to get

tighter bound ∪(nlogn).

Problem: Lower order term may defeat mathematical induction of substitution method.

Samujjwal Bhandari

5

Chapter: Recurrences

Another Example

Consider the relation, T(n) = 2T(n/2) + 1

Guessing T(n) = O(n)

To show T(n) <= c*n

We can assume T(n/2) <=c*n/2 then,

Design and Analysis of Algorithms

T(n)

<= 2(c*n/2) + 1

<= c*n +1 is not <=c*n for any c and n ,since we cannot subtract the 1.

Lets try to subtract the lower order term then,

Guess T(n) = O(n)

To show T(n) <= c*n-b [since c*n –b = O(n)]

Assume T(n/2) <= c*n/2 –b then,

T(n)

<= 2(c*n/2 - b) + 1

<= c*n -2b + 1

<=c*n –b ,for b>=1

Some time little modification on the variable can make the problem similar to other. For

e.g. T(n) = 2T(�n) +1

Take m =logn then 2m = n, i.e. n1/2 = 2m/2 so

T(2m) = 2T(2m/2) + 1

Now rename T(2m) as S(m) so the above relation can be written as

S(m) = 2S(m/2) +1

Samujjwal Bhandari

6

Chapter: Recurrences

Design and Analysis of Algorithms

This relation is simpler an we know solution to this, however you verify the result, so

solution is S(m)= O(m) changing to T(n) we get T(logn)..

Example Factorial

Factorial(n)

if n < 1

then return 1

else return n * Factorial(n-1)

The above algorithm has recurrence relation as

T(n) = 1

T(n) = T(n-1) + ∪(1)

n=0

n>0

Guess O(n) , Show T(n) <= c*n [proof left as an exercise]

Iteration Method

The iteration method does not require guessing but it need more experience in solving

algebra. Here we are concerned with following steps.

1. Expand the relation so that summation dependent on n is obtained.

2. Bound the summation.

Take T(n) = 2T(n/2) + 1 , T(1) =1

Then we can expand the relation as

Samujjwal Bhandari

7

Chapter: Recurrences

Design and Analysis of Algorithms

T(n)

= 2T(n/2) + 1

= 2(2T(n/4) + 1) +1 = 22T(n/22)+(1+2)

= 23T(n/23) + (1+2 + 4)

….. Up to pth term

= 2pT(n/2p) + (20 +21 + … +2p-1)

observe that (20 +21 + … +2p-1) = 2p – 1

let 2p = n then expanded relation becomes

T(n)

= nT(1) + n-1

= ∪(n)

Note : iterate until the boundary is met.

Example

Given the recurrence relation

T(1) = ∪(1) when n = 1

T(n) = T(n/3) + ∪(n) when n>1 , solve using iteration method.

Here,

T(n)

= T(n/3) + ∪(n)

= T(n/9) + ∪(n) + ∪(n)

= T(n/33) + ∪(n) + ∪(n) + ∪(n)

… Up to pth term

= T(n/3p) + p∪(n)

Samujjwal Bhandari

8

a Η 1/(1 � a) when 0 < a <1}

Chapter: Recurrences

let n = 3p then p = log3n so,

Design and Analysis of Algorithms

T(n) = T(1) + log3n∪(n)

= ∪(n log3n)

This is Wrong

Right method

T(n)

= T(n/3) + ∪(n)

= T(n/9) + ∪(n) + ∪(n/3)

= T(n/33) + ∪(n) + ∪(n/3) + ∪(n/9)

… Up to pth term

= T(n/3p) +
p

 (n / 3i)
i =0

let n = 3p then,

T(n)

= T(1) + ∪(n(

p

1/ 3i))

i =0

= 1 + ∪(n (1/(1-1/3))

{

p

i =0

i

= ∪(3n/2)

=∪(n).

Samujjwal Bhandari

9

Chapter: Recurrences

Design and Analysis of Algorithms

Recursion Tree Method

This method is just the modification to the iteration method for pictorial representation.

Given T(n) = 1

T(n) = T(n/2) + 1

1

A 1
B

1
T(n/2)

T(n/2)

1

1

C

1

T(1)

Here the height is log n so T(n) = O(logn)

Samujjwal Bhandari

10

Chapter: Recurrences

Design and Analysis of Algorithms

Example: Recursion Tree

Given T(n) = 1

T(n) = 4T(n/4) + n , solve by appealing to recurrence tree.

n

T(n/4)

T(n/4)

T(n/4)

T(n/4)

n

n/4

… … ……

n/4

n/4

n/4

… … ……

T(n/16)

Continue like this ……

… … ……

T(1)

Samujjwal Bhandari

… … ……

11

T(1)

Chapter: Recurrences

Design and Analysis of Algorithms

Add the terms at each level then you will obtain

n+ n +n + … + n up to height of the tree (logn time)

=nlogn

so T(n) = O(nlogn)

Master Method

Master method is used to solve the recurrences of the form

T(n) = aT(n/b) + f(n),

where a>=1 and b>1 are constants and f(n) is asymptotically positive function. This

method is very handy because most of the recurrence relations we encounter in the

analysis of algorithms are of the above kinds and it is very easy to use this method.

The above recurrence divides problem of size n into a sub problems each of size n/b

where a and b are positive constants. The cost of dividing and combining the problem is

given by f(n).

Master Theorem: let a>=1 and b>1 be constants, let f(n) be a function, and let T(n) be

defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

Where n/b is either n / b

follows.

Samujjwal Bhandari

or n / b . Then T(n) can be bounded asymptotically as

12

Chapter: Recurrences

Design and Analysis of Algorithms

1. If f(n) = O(nlogba-) for some constant > 0, then T(n) = ∪(nlogba).

2. If f(n) = ∪(nlogba), then T(n) = ∪(nlogba logn).

3. If f(n) = &(nlogba+) for some constant > 0, and if a f(n/b) δ c f(n) for some

constant c<1 and all sufficiently large n, then T(n) = ∪(f(n)).

In each of the three cases we are comparing nlogba and f(n). Solution of the recurrence is

derived from the larger of the two. The function that is smaller or greater must be

polynomially smaller or greater by the factor of n for case 1 and 3. Additional in case 3 is

that regularity condition for polynomial a f(n/b) δ c f(n).

Examples

1.

2.

T(n) = 9T(n/3) + n

a=9, b=3, f(n) = n

nlog3 9 = n2

f(n) = n = O(nlog39-), where = 1, Case 1

So, T(n) = ∪(n2)

T(n) = 2T(n/2) + n

a=2, b=2, f(n) = n

nlog2 2 = n

f(n) = n = ∪(nlog39), Case 2

So, T(n) = ∪(nlogn)

Samujjwal Bhandari

13

Chapter: Recurrences

Design and Analysis of Algorithms

3.

T(n) = 3T(n/4) + nlogn

a=3, b=4, f(n) = nlogn

nlog4 3 = O (n0.793)

f(n) =&(nlog43+) , = (nearly)0.2,

For large n, af(n/b) = 3(n/4)log(n/4) δ 3/4nlogn = cf(n), c=3/4 , Case 3

So, T(n) = ∪(nlogn)

Exercises

1.

4.1.2: Show that the solution of T(n) = 2T(n / 2) + n is (nlogn). Conclude that

solution is ∪(nlogn).

4.1.5: Show that the solution to T(n) = 2T(n / 2 + 17) + n is O(nlogn).

2. Write recursive Fibonacci number algorithm derive recurrence relation for it and

solve by substitution method.

3.

4.2.2: Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + n is

(nlogn) by appealing to a recursion tree.

4.2.4: Use iteration to solve the recurrence T(n) = T(n-a) + T(a) + n, where a >=1 is a

constant.

4.

4.3.1: Use the master method to give tight asymptotic bounds for the following

recurrences.

4.3.2: The running time of an algorithm A is described by the recurrence T(n) =

7T(n/2) + n2. A competing algorithm A’ has a running time of T’(n) = aT’(n/4) + n2.

What is the largest integer value for a such that A’ is asymptotically faster than A?

Samujjwal Bhandari

14

Chapter: Data Structures Overviews

Design and Analysis of Algorithms

[Data Structures Overviews]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Data Structures Overviews

Design and Analysis of Algorithms

Since the main aim of this part is to introduce some of the data structures if you want

rigorous study you can always consult the book on Data Structures.

Simple Data structures

The basic structure to represent unit value types are bits, integers, floating numbers, etc.

The collection of values of basic types can be represented by arrays, structure, etc. The

access of the values are done in constant time for these kind of data structured.

Linear Data Structures

Linear data structures are widely used data structures we quickly go through the

following linear data structures.

Lists

Stacks and queues

a.

Lists

List is the simplest general-purpose data structure. They are of different variety. Most

fundamental representation of a list is through an array representation. The other

representation includes linked list. There are also variety of representations for lists as

linked list like singly linked, doubly linked, circular, etc.

There is a mechanism to point to the first element. For this some pointer is used. To

traverse there is a mechanism of pointing the next (also previous in doubly linked).

Lists require linear space to collect and store the elements where linearity is

proportional to the number of items. For e.g. to store n items in an array nd space is

require were d is size of data. Singly linked list takes n(d + p), where p is size of

pointer. Similarly for doubly linked list space requirement is n(d + 2p).

Samujjwal Bhandari

2

Chapter: Data Structures Overviews

Array representation(ordered list)

Design and Analysis of Algorithms

•

•

•

Operations require simple implementations.

Insert, delete, and search, require linear time, search can take O(logn)!!

Inefficient use of space

Singly linked representation (unordered)

•

•

•

Insert and delete in O(1) time, for deletion pointer must be given otherwise O(n).

Search in O(n) time

Memory overhead, but allocated only to entries that are present.

Doubly linked representation

•

Insert and delete in O(1) time !!

Operations on lists

create(): create an empty list

destroy():

IsEmpty()

Length():

Find(k): find k'th element

Search(x): find position of x

delete():

insert(x): insert x after the current element element

and plenty of others

Samujjwal Bhandari

3

Chapter: Data Structures Overviews

Design and Analysis of Algorithms

b.

Stacks and Queues

These types of data structures are special cases of lists. Stack also called LIFO (Last

In First Out) list. In this structure items can be added or removed from only one end.

Stacks are generally represented either in array or in singly linked list and in both

cases insertion/deletion time is O(1).

Operations on stacks

Create()

Top()

IsEmpty()

push(x)

IsFull()

pop()

The queues are also like stacks but they implement FIFO(First In First Out) policy.

One end is for insertion and other is for deletion. They are represented mostly

circularly in array for O(1) insertion/deletion time. Circular singly linked

representation takes O(1) insertion time and O(n) deletion time, or vice versa.

Representing queues in doubly linked list have O(1) insertion and deletion time.

Operations on queues

Create()

First()

IsEmpty()

Last()

IsFull()

Enqueue(x)

Dequeue()

Tree Data Structures

Tree is a collection of nodes. If the collection is empty the tree is empty otherwise it

contains a distinct node called root (r) and zero or more subtrees whose roots are directly

connected to the node r by edges. The root of each tree is called child of r, and r the

parent. Any node without a child is called leaf (you may find other definition from any

data structure book). We can also call the tree as a connected graph without a cycle. So

Samujjwal Bhandari

4

Chapter: Data Structures Overviews

Design and Analysis of Algorithms

there is a path from one node to any other nodes in the tree. The main concern with this

data structure is due to the running time of most of the operation require O(logn).we can

represent tree as an array or linked list.

Some of the definitions

•

•

•

Level h of a full tree has dh-1 nodes.

The first h levels of a full tree have

nodes.

A tree of height h and degree d has at most dh - 1 elements

Remember the following terminology tree, subtree, complete tree, root, leaf, parent,

children, level, degree of node, degree of tree, height, tree traversal, etc.

Priority Queue Trees

Heap

A heap is a complete tree with an ordering-relation R holding between each node and

its descendant. Note that the complete tree here means tree can miss only rightmost

part of the bottom level.

R can be smaller-than, bigger-than.

E.g. Heap with degree 2 and R is “bigger than”.

9

9

Heap

5

6

Not heap

4 6

1

2

4

3 5 2 1 3

Samujjwal Bhandari

5

Chapter: Data Structures Overviews

Design and Analysis of Algorithms

Applications

Priority Queue A dynamic set in which elements are deleted according to a given

ordering-relation.

Heap Sort Build a heap from the given set (O(n)) time, then repeatedly remove

the elements from the heap (O(n log n)).

Implementation

An array

Insertion and deletion of an element takes O(log n) time. More on this later.

Search Trees

a. Binary Search Trees

BST has at most two children for each parent. In BST a key at each vertex must be

greater than all the keys held by its left descendents and smaller or equal than all the

keys held by its right descendents.

Searching and insertion both takes O(h) worst case time, where h is height of tree and

the relation between height and number of nodes n is given by log n < h+1 <= n. for

e.g. height of binary tree with 16 nodes may be anywhere between 4 and 15.

When height is 4 and when height is 15?

So if we are sure that the tree is height balanced then we can say that search and

insertion has ∪(log n) run time. Other wise we have to content with ∪(n).

Samujjwal Bhandari

6

Chapter: Data Structures Overviews

Design and Analysis of Algorithms

b. AVL Trees

Balanced tree named after Adelson, Velskii and Landis. AVL trees consist of a

special case in which the subtrees of each node differ by at most 1 in their height

(Read more on your own like rotations, insertions, deletions, etc.).

c. Red Black Trees

A binary search tree in which

•

•

•

•

•

All nodes are either red or black.

The root and leaves are colored black.

All the paths from the root to the leaves agree on the number of black

nodes

No path from the root to a leaf may contain two consecutive nodes colored

red

Red nodes have only black children

Empty subtrees of a node are treated as subtrees with roots of black color.

The relation n > 2h/2 - 1 implies the bound h <

Insertion

 2 log 2(n + 1).

First insert new node as in BST. If it is root color it black else color it red. When

we color the non-root node as red then many cases arises some of them violating

the red black tree properties.

Case 1: if the parent is black, it is ok

Case 2: If the parent and parent’s sibling (better say uncle) are red. Change the

color of parent, uncle and grandparent. Some node g (parent, uncle and

grandparent) may be root if so do not change the color. This process will

introduce property violation in upper part so continue the process.

Case 3: Red parent, Black uncle; the node is “outside”. Rotate the parent about

grandparent and recolor them.

Samujjwal Bhandari

7

Chapter: Data Structures Overviews

Design and Analysis of Algorithms

Case 4: Red parent, Black uncle; the node is “inside”. Double rotation; recolor

node and grandparent.

Note: normal insertion running time O(h) i.e. O(log n) [h <

the rotation needs extra O(1)time.

 2 log 2(n + 1)] and

c. Multiway Trees

A m-way search tree is a tree in which

•

•

•

•

The nodes hold between 1 to m-1 distinct keys

The keys in each node are sorted

A node with k values has k+1 subtrees, where the subtrees may be empty.

The ith subtree of a node [v1, ..., vk], 0 < i < k, may hold only values v in the

range vi < v < vi+1 (v0 is assumed to equal - , and vk+1 is assumed to equal

infinity).

A m-way tree of height h has between h and mh - 1 keys.

Insertion

•

•

•

Search the key going down the tree until reaching an empty subtree

Insert the key to the parent of the empty subtree, if there is room in the node.

Insert the key to the subtree, if there is no room in its parent.

Deletion

•

•

If the key to be deleted is between two empty subtrees, delete it

If the key is adjacent to a nonempty subtree, replace it with the largest key

from the left subtree or the smallest key from the right subtree.

Samujjwal Bhandari

8

Chapter: Data Structures Overviews

d. B Trees

A m-way tree in which

Design and Analysis of Algorithms

•

•

•

The root has at least one key

Non-root nodes have at least m/2 subtrees (i.e., at least (m - 1)/2 keys)

All the empty subtrees (i.e., external nodes) are at the same level

B-trees are especially useful for trees stored on disks, since their height, and hence

also the number of disk accesses, can be kept small.

The growth and contraction of m-way search trees occur at the leaves. On the other

hand, B-trees grow and contract at the root.

Insertion

•

•

Insert the key to a leaf

Overfilled nodes should send the middle key to their parent, and split into two

at the location of the submitted key.

Deletion

•

•

•

Key that is to be removed from a node with non-empty subtrees is being

replaced with the largest key of the left subtree or the smallest key in the right

subtree. (The replacement is guaranteed to come from a leaf.)

If a node becomes under staffed, it looks for a sibling with an extra key. If

such a sibling exists, the node takes a key from the parent, and the parent gets

the extra key from the sibling.

If a node becomes under staffed, and it can’t receive a key from a sibling, the

node is merged with a sibling and a key from the parent is moved down to the

node.

Samujjwal Bhandari

9

Chapter: Data Structures Overviews

Design and Analysis of Algorithms

e. Splay Trees

These trees do not keep extra balancing data so also known as self-adjusting trees.

Splaying a node means moving it up to the root by the help of rotation. Most of the

rotation are double and possibly single at the ends. Double rotations have two cases

“zig-zig” and “zig-zag”.

Here let x is the non-root node on the access path at which we are rotating. If the

parent of x is the root we just rotate x and the root otherwise x has both parent and

grandparent, here we need to consider above-mentioned two cases. In the case of

“zig-zag” x is a right child and p is the left child (or vice versa). Otherwise we will

have “zig-zig” case where both x and p lies on the same side i.e. they are both, either

left children, or right children.

Operations

Search: Find the node with a given key if not found splay key’s predecessor or

successor node.

Insertion: Insert new node as in other case and splay it.

Deletion: Find the node to be deleted, splay it and delete.

Complexity

Splay trees are not explicitly balanced but with each new operation it tends to be

more balanced. The main idea behind splay tree is that even though some operation

takes O(n) times the but for m operation it takes O(mlogn) time where O(logn) is

amortized running time for each operation. Another concept is 90-10 rule i.e. in

practice 90% of processes access 10% of data.

Samujjwal Bhandari

10

Chapter: Data Structures Overviews

Suggested Exercises

Design and Analysis of Algorithms

1.

The level order listing of the node of a tree first lists the

root,

then

all

the

nodes of depth 1, then all the nodes of depth 2, and so on. Order of listing of nodes

of the same level is left to right. Write an algorithm to list the nodes of a tree in level

order (writing program also is good).

2. Give an algorithm to sort 5 elements with 7 comparisons.

Samujjwal Bhandari

11

Chapter: Sorting

Design and Analysis of Algorithms

[Sorting]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Sorting

Design and Analysis of Algorithms

We talk about sorting very much and in every part of our study of computer science

sorting is studied more than others. The reasons for this are sorting is the most

fundamental operation that is done most by the computer, the sorting algorithms are

widely studied problem and different varieties of algorithms are known. Most of the ideas

for algorithm design and analysis can be obtained from sorting algorithms like divide and

conquer, lower bounds etc.

Applications of Sorting:

Sorting being the fundamental operation in computer science has many applications.

Searching:

Searching speeds up by the use of sorted elements. Binary search is an example that takes

sorted sequence of keys to search and the whole searching operation is done in O(log n)

time.

Closest pair:

Given n numbers, we have to find the pair which are closest to each other.Once the

numbers are sorted, the closest pair will be next to each other in sorted order, so an O(n)

linear scan completes the job.

Element uniqueness:

Given n elemnts, are there any duplicate values for all elements or they are unique. When

the elements are sorted we can check every adjacent elements by linear searching.

Frequency Distribution:

Given n numbers of element, when the elements are sorted we can linearly search the

elements to calculate the number of times the elements repeats. This can be applied for

determining Huffman codes for each letters.

Samujjwal Bhandari

2

Chapter: Sorting

Design and Analysis of Algorithms

Median and selection:

Given n elements, to find kth largest or smallest element we sort the elements and find it

in constant time (array is used).

Convex hulls:

Given n numbers of points find the smallest area polygon such that every points is within

that polygon. When elements are sorted we can improve the efficiency.

Selection Sort

In selection sort the all the elements are examined to obtain smallest (greatest) element at

one pass then it is placed into its position, this process continues until the whole array is

sorted.

Algorithm:

Selection-sort(A)

{

for(i = 0;i < n ;i++)

for (j = i + 1;j < n ;j++)

if (A[j] < A[i])

swap(A[i],A[j])

}

From the above algorithm it is clear that time complexity is O(n2). We can also see that

for every instances of input complexity is O(n2).

Samujjwal Bhandari

3

Chapter: Sorting

Design and Analysis of Algorithms

Bubble Sort

The bubble sort algorithm Compare adjacent elements . If the first is greater than the

second, swap them. This is done for every pair of adjacent elements starting from first

two elements to last two elements.here the last element is the greatest one. The whole

process is repeated except for the last one so that at each pass the comparision becomes

fewer.

Algorithm:

BubbleSort(A, n)

{

for(i = n - 1; i > 0; i--)

for(j = 0; j < i; j++)

if(A[j] > A[j+1])

{

temp = A[j];

A[j] = A[j+1];

A[j+1] = A;

}

}

The above algorithm for any instances of input runs in O(n2) time. This algorithm is

similar to insertion sort algorithm studied earlier but operates in reverse order. However

there is no best-case linear time complexity for this algorithm as of insertion sort.

Heap Sort

We studied about the heap data structure. Here we present the implementation of the heap

in sorting called heap sort. We can consider heap as max heap or min heap. Consider the

heap below:

Samujjwal Bhandari

4

1 2 3 4 5 6 7

9 5 6 1 2 4 3

Chapter: Sorting

5

9

6

Design and Analysis of Algorithms

1

2

4

3

We represent the above max heap as an array like:

Remember if parent p is at A[i] place then its left child is at A[2i] and the right child is at

A[2i + 1]

Is the sequence 99, 45, 88, 32, 37, 56, 76, 15, 30, 44 a max heap?

99

45

88

15

32

44

37

56

Not a heap.

76

30

Samujjwal Bhandari

5

2

Chapter: Sorting

Design and Analysis of Algorithms

Constructing Heaps (max)

To create a heap, insert an element into the leftmost empty slot of an array if the inserted

element is larger than its parent then swap the elements and recur. At every step we swap

the element with parent to maintain the heap order.

All the levels but the last one are filled completely so height (h) of n elements is bounded

as
h

i =1

i

= 2h+1 – 1 >= n, so h = log n

Doing n such insertion takes ∪(nlogn).

Parent(i)

return i / 2

Left(i)

return 2i

Right(i)

return 2i+1

Building a Heap

The bottom up procedure for constructing heap is a good way but there is a process that

uses merge method to create a heap called heapify. Here giving the two heaps and new

element those two heaps are merged for single root.

Algorithm:

BuildHeap(A)

{

heapsize[A] = length[A]

for i = length[A] / 2 to 1

do Heapify(A,i)

}

In the above algorithm the first step takes constant time and the second and third steps

run about n/2 so the time complexity is Complexity of heapify * n/2. see analysis below.

Samujjwal Bhandari

6

Chapter: Sorting

Design and Analysis of Algorithms

Algorithm:

Heapify(A,i)

{

l = left(i)

r = Right(i)

if l <= heapsize[A] and A[l] > A[i]

max = l

else

max = i

if r <= heapsize[A] and A[r] > A[max]

max = r

if max != i

{

swap(A[i],A[max])

Heapify(A,max)

}

}

Analysis :

Time complexity for Heapify(A,i) for n node tree is given by

T(n) <= T(2n/3) + O(1)

Here 2/3 represents for worst case where the two heaps that are getting merged differ by

level 1. i.e. the last level is exactly half filled.

5

Heap1

Heap 2

6

new element

9

1 2

What is the resulting heap after merging? See the number of elements in last level.

Samujjwal Bhandari

7

Chapter: Sorting

Design and Analysis of Algorithms

Use master method on the above recurrence relation where a = 1, b =3/2, f(n) = O(1) and

log3/2 1 = 0 = O(1).

Observe that it gives case 2 so the solution is ∪(logn).

So the building of heap is ∪(nlogn). This bound is asymptotic but not tight.

Exact Analysis:

In full binary tree of n nodes there are n/2 nodes that are leaves, n/4 nodes that have

height 1, n/8 nodes of height 2, … and so on so heapify acts on small heaps for many

times.

So there are at most n/2h+1 nodes at height h, so cost of building heap is
log n

h=0

n/2h+1 O(h) = O(n

log n

h=0

h / 2 h)

see above that the series is not quite geometric. However the series converges so that

there is some ending point.

Proving convergence:

We know
�

x k = 1/1-x for 0< x < 1
i =0

Taking derivatives of both sides
�

kx k �1 = 1/(1-x)2.
i =0

Multiplying by x on both sides
�

kx k = x/(1-x)2.
i =0

Substituting ½ for x we get summation as 2.

So BuildHeap(A) time complexity is O(2n) i.e. linear.

Lesson from above analysis: do not over estimate, analyze carefully to get tighter bound.

Samujjwal Bhandari

8

Chapter: Sorting

Running Example of Heapify for heapsize[A] = 10

99

Design and Analysis of Algorithms

i=2

15

88

32

37

56

76

17

30

33

Heapify(A,2)

37

99

88

i=5

32 15 56 76

37

99

88

17

30

33

Heapify(A,5)

32

33

56

76

17

30

15

i = 10

No change

Heapify(A,10)

In the above running example the action of Heapify(A,2) is shown. Where the recursive

calls to Heapify(A,5) and then Heapify(A,2) are called. When Heapify(A,2) is called no

changes occurs to the data structure.

Samujjwal Bhandari

9

Chapter: Sorting

Running Example of BuildHeap

A[] = {10,12,53, 34, 23, 77, 59, 66, 5, 8}

10

Design and Analysis of Algorithms

12

*

53

12

10

53

34 23 77 59

66

5

8

34

*
23

77

59

i = 5, Heapify(A,5)(no change)

66
5

8

12

10

* 53

i = 4, Heapify(A,4)

10

66

23

77

59

12

*
77

34

5

8

66

23

53

59

Here recursive Heapify gives no change

So next stage is i = 3, Heapify(A,3)

*
10

34

5

8

77

66

77

66

59

12

34

5

8

23

53

59

12

34

5

8

23

53

10

Samujjwal Bhandari

10

Chapter: Sorting

Algorithm:

HeapSort(A)

{

BuildHeap(A);

//into max heap

Design and Analysis of Algorithms

m = length[A];

for(i = m ; i >= 2; i--)

{

swap(A[1],A[m]);

m = m-1;

Heapify(A,1);

}

}

Analysis:

BuildHeap takes O(n) times.

For loop executes for n times but each instruction inside loop executes for n-1 times

where instruction inside loops takes O(logn) time.

So total time T(n) = O(n) + (n-1) O(logn) = O(nlogn).

Running example of HeapSort:

A[] = {10,12,53, 34, 23, 77, 59, 66, 5, 8}

10

77

12

53 Heapify

66

59

66

34

5

8

23

77

59

12

34

5

23

8

swap

53

10

Samujjwal Bhandari

11

Chapter: Sorting

8

Design and Analysis of Algorithms

66

66

59 Heapify

34

59

12

34

5

77

23

53

10

8

12

5

77

23

53

10

5

59

34

59 Heapify

34

53

8

12

66

77

23

53

10

8

12

66

77

23

5

10

8

53

34

53 Heapify

34

10

59

12

66

77

23

5

10

59

12

66

77

23

5

8

Samujjwal Bhandari

12

Chapter: Sorting

8

Design and Analysis of Algorithms

53

34

53 Heapify

34

10

59

12

66

77

23

5

10

59

12

66

77

23

5

8

8

34

34

10 Heapify

23

10

59

12

66

77

23

5

53

59

12

66

77

8

5

53

5

23

23

10 Heapify

12

10

59

12

66

77

8

34

53

59

5

66

77

8

34

53

8

12

12

10 Heapify

8

10

59

5

66

77

23

34

53

59

5

66

77

23

34

53

Samujjwal Bhandari

13

Chapter: Sorting

5

Design and Analysis of Algorithms

10

8

10 Heapify

8

5

59

12

66

77

23

34

53

59

12

66

77

23

34

53

5

8

8

10 Heapify

5

10

59

12

66

77

23

34

53

59

12

66

77

23

34

53

5

8

10

59

12

66

77

23

34

53

Sorted sequence

A[] = {5, 8, 10, 12, 23, 34, 53, 59, 66, 77}

Self study: priority queues

Samujjwal Bhandari

14

Chapter: Sorting

Design and Analysis of Algorithms

Lower Bound for Sorting

Comparison sorts algorithms compare pair of data for relation greater than or smaller

than. They work in same manner for every kind of data. Consider all the possible

comparison runs of sorting algorithm on input size n. When we unwind loops and

recursive calls and focus on the point where there is comparison, we get binary decision

tree. The tree describes all the possibilities for the algorithm execution on an input of n

elements.

yes

b<=c

a<=b

no

a<=c

yes
no

yes no

a,b,c

yes

a<=b

no

b,a,c

yes

a<=b

no

a,c,b

c,a,b

b,c,a

c,b,a

At the leaves, we have original input in the sorted order. By comparison we can generate

all the possible permutations of the inputs are possible so there must be at least n! leaves

in the tree. A complete tree of height h has 2h leaves, so our decision tree must have h>=

log(n!), but logn! is &(nlogn). Thus, the number of comparison in the worst case is

&(nlogn). So we can say that runtime complexity of any comparison sort is &(nlogn).

Samujjwal Bhandari

15

Chapter: Sorting

Exercises

Design and Analysis of Algorithms

1.

Understand what is stable sorting algorithm and identify the stable sorting

algorithms we have studied.

2. Give the running example for Heapify, BuildHeap and Heapsort for the 14

elements input.

3.

what is the running time of heap sort on array A of length n that is already sorted in

increasing order? what about decreasing order?

Samujjwal Bhandari

16

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

[Divide and Conquer Paradigm]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

In the ancient time Roman politicians used the concept of dividing the enemy unity

somehow to conquer them. The method they used was not conceived for algorithms.

While designing any algorithm if we try to break the problem of larger size into smaller

then we adhere to the designing technique called “Divide and Conquer”. Most of the

computational problems can be solved by using this technique. Analysis of such an

algorithm developed using divide and conquer paradigm needs recurrence since divide

and conquer algorithms use recursion.

The main elements of the Divide and Conquer Solutions are:

Divide: Divide the larger problem into the problem of smaller size.

Conquer: Solve each piece by applying recursive divide and conquer.

Combine: add up all the solved pieces to a larger solution.

Binary Search

Algorithm: An array of elements A[] has sorted elements (here in nondecreasing

order)

BinarySearch(low, high, key){

if(high = = low){

if(key = = A[low]) then return low+1; //index starts from 0

else return 0;

}

else{

mid = (low + high) /2 ; //integer division

if(key = = A[mid] then return mid+1;

else if (key < A[mid]) then return BinarySearch(low, mid-1, key) ;

else return BinarySearch(mid+1, high, key) ;

}

}

Samujjwal Bhandari

2

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

We can see that the above algorithm terminates whenever key value is found or both

the index for an array low and high equals. If result is found it is returned otherwise 0

is returned. (Students should verify the correctness in detail).

Efficiency:

From the above algorithm we can say that the running time of the algorithm is

T(n)

= T(n/2) + ∪(1)

= ∪(logn) (verify).

In the best case output is obtained at one run i.e. ∪(1) time if the key is at middle.

In the worst case the output is at the end of the array so running time is ∪(logn) time.

In the average case also running time is ∪(logn).

For unsuccessful search best, worst and average time complexity is ∪(logn).

Running example

Take input array A[] = {2 , 5 , 7, 9 ,18, 45 ,53, 59, 67, 72, 88, 95, 101, 104}

For key = 2

low high mid

0

0

0

13

5

1

6

2

0

key < A[6]

key < A[2]

Terminating condition, since A[mid] = = 2, return 1(successful).

Samujjwal Bhandari

3

Chapter: Divide and Conquer Paradigm

For key = 103

Design and Analysis of Algorithms

low high mid

0

7

11

13

13

13

13

13

6

10

12

-

key > A[6]

key > A[10]

key > A[12]

Terminating condition high = = low, since A[0] != 103, return 0(unsuccessful).

For key = 67

low high mid

0

7

7

13

13

9

6

10

8

key > A[6]

key < A[10]

Terminating condition, since A[mid] = 67, return 9(successful).

Fast Exponentiation

Here our aim is to calculate the value of an. In simple way we can do this in by n-1

multiplication. However, we can improve the running time by using divide and conquer

strategy. Here we can break n into two parts i and j such that we have n = i + j. So we can

write an = ai * aj. if we use i = n / 2 then we can have, if n is even then an = ai * ai, and if

n is odd an = ai * aj * a.

Samujjwal Bhandari

4

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Algorithm:

Fastexp(a,n)

{

if(n = = 1)

return a;

else

x = Fastexp(a, n / 2);

if(n is odd)

return x*x*a;

else

return x*x;

}

Correctness:

In the above algorithm every time the value of x is ai where i = n / 2 , in both the

conditions returned value will be an. hence by induction it follows.

Efficiency:

Observe the above algorithm then you will find that each time problem is divided into

approximately half part and the cost of dividing and combining the problem constant. So

we can write time complexity as

T(n) = T(n / 2) + ∪(1)

Solving this relation we get ∪(logn).

If we concern about space then the stacks are called upto logn time hence ∪(logn).

Samujjwal Bhandari

5

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Max and Min Finding

Here our problem is to find the minimum and maximum items in a set of n elements. We

see two methods here first one is iterative version and the next one uses divide and

conquer strategy to solve the problem.

Algorithm:

IterMinMax(A,n)

{

max = min = A[0];

for(i = 1; i < n; i++)

{

if(A[i] > max)

max = A[i];

if(A[i] < min)

min = A[i];

}

}

The above algorithm requires 2(n-1) comparison in worst, best, and average cases Since

the comparison A[i] < min is needed only A[i] > max is not true. if we replace the content

inside the for loop by

if(A[i] > max)

max = A[i];

else if(A[i] < min)

min = A[i];

Then the best case occurs when the elements are in increasing order with (n-1)

comparisons and worst case occurs when elements are in decreasing order with 2(n-1)

comparisons. For the average case A[i] > max is about half of the time so number of

comparisons is 3n/2 – 1.

We can clearly conclude that the time complexity is ∪(n).

Samujjwal Bhandari

6

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Now let us see the divide and conquer strategy to solve the problem.

Algorithm:

MinMax(i,j,max,min)

{

if(i = = j)

max = min = A[i];

else if(i = j-1)

{

if(A[i] < A[j])

{

max = A[j]; min = A[i];

}

else

{

max = A[i]; min = A[j];

}

}

else

{

//Divide the problems

mid = (i + j)/2; //integer division

//solve the subproblems

MinMax(i,mid,max,min);

MinMax(mid +1,j,max1,min1);

//Combine the solutions

if(max1 > max)

if(min1 < min)

}

}

Samujjwal Bhandari

max = max1;

min = min1;

7

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

The above algorithm adopts the following idea; if the number of elements is 1 or 2 then

max and min are obtained trivially. Otherwise split problem into approximately equal

part and solved recursively.

Analysis:

Here we analyze in terms of number of comparisons as cost because elements may be

polynomials, strings, real numbers, etc. Now we can give recurrence relation as below for

MinMax algorithm in terms of number of comparisons.

T(n) = T(n / 2) + T(n / 2) + 2 , if n>2

T(n) = 1 , if n =2

T(n) = 0 , if n =1

We can simplify above relation to

T(n) = 2T(n/2) + ∪(1).

Solving the recurrence by using master method complexity is (case 1) ∪(n).

Note: Both the algorithms we have studied above have ∪(n) complexity but due to space

overhead in divide and conquer approach we prefer iterative one.

Integer Multiplication

Here our problem definition gives

Inputs:

X = xn-1, xn-2, …, x0.

Y = yn-1, yn-2, …, y0. Here X and Y are n digit positive numbers.

Output:

Z = z2n-1, z2n-3, …, z0. Here Z is product X*Y of digits 2n.

Samujjwal Bhandari

8

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Our school method solves this problem in O(n2) time (how?). But we use divide and

conquer approach algorithm (by A.A. Karatsuba, in 1962) to solve the problem

asymptotically faster. The number can be of any base but for simplicity assume decimal

numbers. Now we can have

X=
n�1

i =0

(xi) *10 i and Y =

n�1

i =0

(yi) *10i

So that Z = X*Y is

2n�1

(zi) *10i =
i =0

n�1

i =0

(xi) *10 i *

n�1

i =0

(yi) *10i

For example

X = 141 = 1*102 + 4*10 + 1*100 ; Y = 123 = 1*102 + 2*10 + 3*100.

Z = 1*104 + 7*103 + 3*102 + 4*10 + 3*100. = 17343

Now if we suppose,

A = xn-1, xn-2, …, xn/2.

B = x(n/2)-1, x(n/2)-2, …, x0.

C = yn-1, yn-2, …, yn/2.

D = y(n/2)-1, y(n/2)-2, …, y0.

Then we have

X = A*10(n/2) + B

Y = C*10(n/2) + D, and

Z = (A*10(n/2) + B)* (C*10(n/2) + D)

= A*C*10n + (A*D + B*C)* 10n/2 + B*D.

For example if X = 2345, Y = 5684 , A = 23, B = 45, C = 56, D = 84 then

X = 23*102 + 45

Y = 56*102 + 84 then

Z = 23*56*104 + (23*84 + 45*56)* 102 + 45*84 = 13328980 = 2345*5684.

Samujjwal Bhandari

9

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

The terms (A*C), (A*D), (B*C), and (B*D) are each products of 2 (n/2)-digit numbers.

From the above facts we can generate an idea that can be applied to design an algorithm

for integer multiplication. The main idea is

If the two numbers are of single digit can be multiplied immediately (Boundary).

If n > 1 then the product of 2 n digit numbers can be divided into 4 products of n/2 digit

numbers (Divide and Conquer).

Calculating product of two numbers requires additions of 4 products that can be done in

linear time and multiplication by the power of 10 that can also be done in linear time

(Combine). (Devising algorithm as an exercise #1)

Our above discussion needs the representation of an algorithm for multiplying 2 n digit

numbers by 4 products of n/2 digit number, however Karatsuba discovered how the

product of 2 n-digit numbers could be expressed in terms of three products each of 2 n/2

digit numbers. This concept however increases the number of steps required in combine

process though the complexity is O(n).

Suppose

U = A*C

V = B*D

W = (A+B)*(C+D)

Then we have A*D + B*C = W – U – V so

Z = X*Y = A*C*10n + (A*D + B*C)* 10n/2 + B*D.

= U*10n + (W – U – V)* 10n/2 + V.

Algorithm:

A, B, C, D, U, V, W are as defined in our discussion

ProdInt(X,Y,n)

{

if(n = = 1)

return X[0]*Y[0];

Samujjwal Bhandari

10

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

else

{

A = X[n-1] …X[n/2];

B = X[(n/2)-1] … X[0];

C = Y[n-1] …Y[n/2];

D = Y[(n/2)-1] … Y[0];

U = ProdInt(A,C,n/2);

V = ProdInt(B,D,n/2);

W = ProdInt((A+B),(C+D),n/2);

return U*10n + (W – U – V)* 10n/2 + V;

}

}

Analysis:

From the above algorithm we can give recurrence relation as

T(n) = 3T(n/2) + O(n).

Solving this recurrence by using master method where a = 3, b= 2, we get

T(n) = ∪(n1.58).

Quick Sort

Quick sort developed by C.A.R Hoare is an unstable sorting. In practice this is the fastest

sorting method. This algorithm is based on the divide and conquer paradigm. The main

idea behind this sorting is partitioning of the elements.

Steps for Quick Sort

Divide: partition the array into two nonempty sub arrays.

Conquer: two sub arrays are sorted recursively.

Combine: two sub arrays are already sorted in place so no need to combine.

Samujjwal Bhandari

11

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Definition: Partitioning

An array A[] is said to be partitioned about A[t] if all the elements on the left of A[t] are

less than or equal to and the all the elements on the right are greater than or equal to A[t].

Example: A[] = { 3, 7, 6 15, 14 18, 25, 55, 32, 45, 37}

Here the array A[] is partitioned about A[5](index 0, 1, 2, ….).

Algorithm:

Partition(A,i,j)

{

x = i -1; y = j + 1; v = A[i];

while(x<y)

{

do {

x++;

}while(A[x] <= v);

do {

y--;

} while(A[y] >= v);

if(x<y)

swap(A[x],A[y]);

}

A[i] = A[y]; A[y] = v;

return y;

}

Analysis:

In the above algorithm either left pointer or right pointer moves at a time and scans the

array at most 1 time. You can note that at most n swaps are done hence the time

complexity for above algorithm is ∪(n).

Samujjwal Bhandari

12

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Running Example

Take an array A[] = { 16, 7, 6 15, 14 18, 25, 55, 32, 45, 37}

(v) 16

7

6

15

14(y)

(x) 18

25

55

32

45

37

A[i] = A[4]; A[4] = 16; i is 0 here

[14

7

6

15]

16

[18

25

55

32

45

37]

Partitioned sub arrays.

Algorithm:

QuickSort(A,p,q)

{

if(p<q)

{

r = Partition(A,p,q);

QuickSort(A,p,r-1);

QuickSort(A,r+1,q);

}

}

Analysis:

The quick sort algorithm time complexity i.e. the time to sort an array A[] can be written

as the recurrence relation

T(n) = T(k-1) + T(n-k) + ∪(n).

Where k is the result of Partition(A,1,n)

Samujjwal Bhandari

13

…

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Best Case:

The best case for divide and conquer relation occurs when division is as balanced as

possible. Here best base occurs if we can chose pivot as the middle part of the array at all

time, so we have

T(n) = 2T(n/2) + ∪(n).

Solving this recurrence we get T(n) = ∪(nlogn).

The tree for best case is like

n

n/2
n/2

n/8

n/4

n/8

n/8

n/4

n/8

n/8

n/4

n/8

n/8

n/4

n/8

…

…

Up to point when all are 1

This gives the total sum of the nodes as ∪(nlogn)(verify!).

Worst Case:

Worst case occurs if the partition gives the pivot as first element (last element) all the

time i.e. k =1 or k = n this happens when the elements are completely sorted, so we have

T(n) = T(n-1) + ∪(n).

Solving this relation we get ∪(n2).

Samujjwal Bhandari

14

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

The tree for worst case is like

n

n-1

n-2

2

1

Adding all the levels we get

1+2+3+ … + n = ∪(n2)(verify!).

Case when the partition is balanced but not as of best-case partition

Lets suppose that partitioning algorithm always produce 9:1 split of the array. See here

9:1 seems unbalanced. For this situation we can write recurrence relation as

T(n) = T(9n/10) + T(n/10) + ∪(n).

Then we can show that this is ∪(nlogn) from the below recurrence tree

n

n/10 9n/10

n/100

9n/100

9n/100

81n/100

81n/1000

729n/1000

Samujjwal Bhandari

15

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Adding up all the levels we get

n + n + n + (<=n) + (<=n) + … + 1

Here when the height log10n is reached number of nodes in a level is <= n. The recursion

terminates at the height log10/9n.

Average Case:

Assumptions:

All permutations of inputs are equally likely.

Partitions may not be in the same way at all levels.

Expect some partition be balance and some are not balanced.

When we adhere to the above assumptions then we get expected running time for quick

sort as ∪(nlogn).

Randomized Quick Sort

We assumed that all permutations of inputs are equally likely but this assumption is not

always true (think of already sorted array). So we use random approach for selecting

pivot to relax that assumption. The algorithm is called randomized if its behavior depends

on input as well as random value generated by random number generator. The beauty of

the randomized algorithm is that no particular input can produce worst-case behavior of

an algorithm. The worst case only depends on random number generated.

Algorithm:

RandPartition(A,i,j){

k = random(i,j); //generates random number between i and j including both.

swap(A[I],A[k]);

return Partition(A,i,j);

}

Samujjwal Bhandari

16

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Algorithm:

RandQuickSort(A,p,q)

{

if(p<q)

{

r = RandPartition(A,p,q);

RandQuickSort(A,p,r-1);

RandQuickSort(A,r+1,q);

}

}

Analysis:

The analysis here works for the both versions of quick sort we have discussed.

Worst Case Revisited:

We saw that the worst case occurs when the partition selects the pivot at first or the last

every time. Now assume we do not know what the worst case partition is lets say q such

that,

T(n) = max1<=q<=n-1(T(q) + T(n-q)) + ∪(n).

Here q is from 1 to n-1 since partition algorithm produces two partitions where there is at

least 1 element. Since we have seen the worst case bound lets use substitution method.

Guess T(n) = O(n2).

To show T(n) <= c n2.

Assume T(q) <= c q2 and T(n-q) < = c (n-q)2.

Now substituting this we get,

T(n) <= max1<=q<=n-1(c q2 + c (n-q)2) + ∪(n).

= c max1<=q<=n-1(q2 + (n-q)2) + ∪(n).

Taking first derivatives of (q2 + (n-q)2) with respect to q we get,

2q - 2(n-q) = 2q - 2n + 2q = 4q - 2n

Second derivative with respect to q is 4 (positive).

Samujjwal Bhandari

17

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

We know if second derivative is positive and first derivative is zero then we have minima

at q and that q is n/2. So there must be some other value of q less than (or greater than)

n/2 such that the function has maxima at q. Take q at one end point (see at both end

points value is same). So we can write,

max1<=q<=n-1(q2 + (n-q)2) <= (12 + (n-1)2) + ∪(n), q =1(same for n-1).

= n2 - 2(n-1), so

T(n) <= cn2 - 2c(n-1) + ∪(n).

<= c n2.

For constant c when 2c(n-1) >= ∪(n).

Hence the worst case is O(n2).

We can eliminate the worst-case behavior of input instance by the following

Use the middle element of the subarray as pivot.

Use a random element of the array as the pivot.

Perhaps best of all, take the median of three elements (first, last, middle) as the pivot.

However, above care still gives the worst case running time as ∪(n2).

Average Case:

To analyze average case, assume that all the input elements are distinct for simplicity. If

we are to take care of duplicate elements also the complexity bound is same but it needs

more intricate analysis. Consider the probability of choosing pivot from n elements is

equally likely i.e. 1/n.

Now we give recurrence relation for the algorithm as

T(n) = 1/n
n�1

(T(q) + T(n-q)) + ∪(n).
q=1

[In randomized version extra ∪(1) is added but the final relation would be same as above]

Now for some j = 1,2, …, n-1

T(q) + T(n-q) is repeated two times so we can write the relation as,

Samujjwal Bhandari

18

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

T(n) = 2/n

n�1

j =1

T(j) + ∪(n).

Or,

nT(n) = 2

n�1
T(j) + n2. ---- (I)

[taking ∪(n) =n for simplicity]

j =1

For n =n-1 we have,

(n-1)T(n-1) = 2
n�2

T(j) + (n-1)2. ---- (II)
j =1

(I) – (II) gives,

nT(n) –(n+1)T(n-1) = 2n – 1.

Or, T(n)/(n+1) = T(n-1)/n + 2n –1 /n(n+1).

Put T(n)/(n+1) as An then we have above relation as

An = An-1 + 2n –1 /n(n+1).

The above relation is written as,

An =
n

2i –1 /i(i + 1).

[2i – 1 Η 2i]

i =1

Η 2

n
1 /(i + 1).

[Harmonic series Hn =

n
1 / i Η logn]

i =1 i =1

Η 2logn

But we have T(n) = (n+1) An Η 2(n+1)logn.

So,

T(n) = ∪(nlogn).

Final Remark on Quick Sort

Practical implementations have shown that the quick sort is the faster sorting algorithm of

all we have studied. Though worst time complexity for heap sort and merge sort are

better than that of quick sort due to the large constant overhead quick sort runs faster.

Another important factor is extra space also.

Samujjwal Bhandari

19

Sort Worst Case Average Case Best Case Comments

Insertion Sort 2
∪(n)

2
∪(n) ∪(n)

Selection Sort 2
∪(n)

2
∪(n)

2
∪(n) (*Unstable)

Bubble Sort 2
∪(n)

2
∪(n)

2
∪(n)

Merge Sort ∪(nlogn) ∪(nlogn) ∪(nlogn) Requires Memory

Heap Sort ∪(nlogn) ∪(nlogn) ∪(nlogn) *Large constants

Quick Sort 2
∪(n) ∪(nlogn) ∪(nlogn) *Small constants

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Sorting Comparison

Median Order Statistics (Selection Problems)

ith order statistic of a set of elements gives ith largest(smallest) element. In general lets

think of ith order statistic gives ith smallest. Then minimum is first order statistic and the

maximum is last order statistic. Similarly a median is given by ith order statistic where i =

(n+1)/2 for odd n and i = n/2 and n/2 + 1 for even n. This kind of problem commonly

called selection problem. We can specify selection problem as:

Input: A set of n distinct elements and number i, with 1 <= i <= n.

Output: The element from the set of elements, that is larger than exactly i-1 other

elements of the given set.

This problem can be solved in ∪(nlogn) in a very straightforward way. First sort the

elements in ∪(nlogn) time and then pick up the ith item from the array in constant time.

What about the linear time algorithm for this problem? The next is answer to this.

Samujjwal Bhandari

20

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

General Selection

This problem is solved by using the “divide and conquer” method. The main idea for this

problem solving is to partition the element set as in Quick Sort where partition is

randomized one.

Algorithm:

RandSelect(A,p,r,i)

{

if(p = =r)

return A[p];

q = RandPartition(A,p,r);

k = q – p + 1;

if(i <= k)

return RandSelect(A,p,q,i);

else

return RandSelect(A,q+1,r,i - k);

}

Analysis:

Since our algorithm is randomized algorithm no particular input is responsible for worst

case however the worst case running time of this algorithm is ∪(n2). This happens if

every time unfortunately the pivot chosen is always the largest one (if we are finding

minimum element).

Assume that the probability of selecting pivot is equal to all the elements i.e 1/n then we

have the recurrence relation

T(n) = 1/n(T(max(1,n-1)) +
n�1

j =1

T(max(j,n – j))) + O(n).

Where T(max(1,n-1)) is either T(1) or T(n-1) is due to partition must at least partition a

set with one element at a side, and

Samujjwal Bhandari

21

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

n�1

T(max(j,n – j)) is for a instance of recursive call for all except nth partition (see

j =1

above is the nth partition) where,

max(j,n-j) = j, if j>= n / 2

and max(j,n-j) = n-j, otherwise.

Observe that every T(j) or T(n – j) will repeat twice for both odd and even value of n (one

may not be repeated) one time form 1 to n / 2 and second time for n / 2 to n-1, so we

can write,

T(n) <= 1/n(T(n-1) + 2
n�1

T(j)) + O(n).
j = n / 2

In the worst case T(n-1) = O(n2). We have,

T(n) <= 2/n
n�1

T(j) + O(n).
j = n / 2

Using substitution method,

Guess T(n) = O(n)

To show T(n) <= cn

Assume T(j) <= cj

Substituting on the relation

T(n)

<= 2/n

n�1
ck + O(n).

j = n / 2

<= 2c/n(

n�1

j =1

k -

n / 2 �1

k) + O(n).
j =1

= 2c/n(n(n-1)/2 - n / 2 (n / 2 -1)/2) + O(n).

<= c(n-1) – cn/4 + c/2 + O(n)

= c(3n/4 +1/2) + O(n).

<=cn.

For c large enough such that c c(3n/4 +1/2) dominates O(n).

Hence any order statistic is O(n).

Samujjwal Bhandari

22

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Worst-case linear time Selection

Here we study the algorithm that guarantees the running time of the selection problem is

O(n) at the worst case. In this algorithm like in RandSelect mentioned previously the

input set is recursively partitioned. If we can guarantee that there will be good split of the

input by choosing some pivot then we may come up with the solution. For this purpose

we use median of medians as pivot point. To find median of medians we divide n input

elements into n / r groups of r elements each and n - n / r elements are not used.

When median of medians is used as a pivot we have each medians as r / 2 th

smallest

element so at least

n / r / 2 of the medians are less than or equal to median of medians

and at least n / r -

n / r / 2 + 1 >=

n / r / 2 of the medians are greater than or

equal to median of medians. That means at least r / 2

(greater) than or equal to median of medians.

Algorithm:

1. Select (A,k,l,u)

2. {

3. n = u – l + 1;

4. if(n <=r){

n / r / 2 elements are less

sort(A,l,u); return kth element

5. }

6. divide(A,l,u,r); //ignore excess elements

7. Get medians from all the subsets and put on array m;

8. v = select(m, n / r / 2 , 1, n / r);

9. Partition A using v as pivot.

10. If(k = =(j – l +1)) return v; //j is the position of v

11. else if(k < (j – l +1)) return select(A,k,l,j-1);

12. else

13. }

return select(A,k - (j – l +1),j+1,u);

Samujjwal Bhandari

23

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

First consider r = 5 and the elements in the array are distinct. r / 2

n / r / 2 is at least

1.5 n / 5 then we can say at least 1.5 n / 5 elements are greater than or equal to v this

implies there are at most n - 1.5 n / 5 <= .7n + a (a > 0)[Analysis shows a as 1.2, see text

book] elements smaller than or equal to v. Here we are considering that the median

finding is done in O(1) since there are few number to be sorted. Hence the steps other

than the recursive ones take at most O(n) time. Running time for line 8 is T(n/5) since r =

5. Again .7n + 1.2 is no more than 3n/4 for n>=24. Now we can write recurrence relation

as

T(n) = T(n/5) + T(3n/4) + O(n).

Guess T(n) = O(n) then we have to prove T(n) <= cn -b. Assuming guess is true for

T(n/5) and T(3n/4) we get,

T(n) <= cn/5 – cb + 3cn/4 -cb + O(n).

= 19c/20n – 2cb + O(n).

<= cn

For large c and some b such that, 19c/20n – 2cb > = O(n).

Hence T(n) = O(n).

Matrix Multiplication

Given two A and B n-by-n matrices our aim is to find the product of A and B as C that is

also n-by-n matrix. We can find this by using the relation

C(i,j) =
n

A(i,k)B(k,j)
j =1

Using the above formula we need O(n) time to get C(i,j). There are n2 elements in C

hence the time required for matrix multiplication is O(n3). We can improve the above

complexity by using divide and conquer strategy.

Samujjwal Bhandari

24

Chapter: Divide and Conquer Paradigm

Design and Analysis of Algorithms

Strassen’s Matrix Multiplication Algorithm

Strassen was the first person to give better algorithm for matrix multiplication. The idea

behind his algorithm is divide the problem into four sub problems of dimension n/2 by

n/2 and solve it by recursion. The basic calculation is done for 2 by 2 matrix. The 2 by 2

matrix is solved as

C11 C12

C 21 C 22

=

A11 A12

A21 A22

x

B11 B12

B 21 B 22

Where,

P = (A11 + A22)(B11 + B22).

Q = (A21 + A22) B11.

R = A11(B12 - B22).

S = A22(B21 - B11).

T = (A11 + A12) B22.

U = (A21 - A11)(B11 + B12).

P = (A12 - A22)(B21 + B22).

And

C11 = P + S - T + V.

C12 = R + T.

C21 = Q + S.

C22 = P + R - Q + U.

See above there are total 7 multiplications and 18 additions.

We can have recurrence relation for this algorithm as

T(n) = 7T(n/2) + O(n2).

Solving above relation by master method we get case 1 so, T(n) = ∪(n2.81).

The fastest algorithm known for this problem is by Coppersmith and Winograd that runs

in ∪(n2.376) but not used due to large constant overhead.

Samujjwal Bhandari

25

Chapter: Divide and Conquer Paradigm

Exercises

Design and Analysis of Algorithms

1.

2.

3.

4.

Write an algorithm for integer multiplication (divide and conquer) discussed in

this material but not done.

Trace out the steps of Quick Sort for the following input array

A[] ={13, 19, 9, 5, 12 ,8, 7, 4, 11, 2, 6, 21}

Write an algorithm and analyze it that multiplies two n by n matrices and has

complexity O(n3)(brute force way).

10.3.5 (pg 192)

Given “black-box” worst-case linear time median subroutine, give a simple, linear

time algorithm that solves the selection problem for an arbitrary order statistic.

Samujjwal Bhandari

26

Chapter: Sorting Revisited

Design and Analysis of Algorithms

[Sorting Revisited]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Sorting Revisited

Design and Analysis of Algorithms

We saw previously that every comparison sort has lower bound of &(nlogn).if we want to

improve running time then we can not use just only comparison to sort. Here we present

few sorting algorithms that sort in linear time.

Counting Sort

The basic idea behind the counting sort is like this:

Assume that the elements to be sorted are in between 1 to k, where k is some integer.

Then try to find how many numbers are smaller than some value x this information gives

the actual position of the element in an array.

There are three arrays array A is of inputs, B is an array for sorted output and C is an

temporary array to hold the information about the element. Size of an array C is k.

Algorithm:

CountingSort(A,B,k)

{

//all the initial elements in C are 0

for(i = 1; i <= n; i++)

C[A[i]] += 1; //number of elements count

for(j = 2; j <= k; j++)

C[j] += C[j-1]; //cumulative totaling

for(l = n; l >=1; l++)

{

B[C[A[l]]] = A[l];

C[A[l]] -=1;

} }

Analysis:

In the above algorithm first loop executes for O(n) time, second loop executes for O(k)

time and the last loop executes for O(n) time so as a whole total running time of an

Samujjwal Bhandari

2

Chapter: Sorting Revisited

Design and Analysis of Algorithms

algorithm is O(n).Note that the counting sort is stable.

What happened to our &(nlogn) lower bound!

Radix sort

In this method we write the to be sorted as d digit numbers. Then we use some stable

sorting algorithm to sort them by last digit, then sorting by second last digit and so on.

Here if we use counting sort then the running time becomes O(nd) = O(n).

Bucket Sort

If we want to sort n elements that are evenly distributed over the interval [0,m]. we split

the interval [0,m] into n equal buckets. [0,d],[d,2d], …, [(n-1)d,nd]. (d = m/n)

Here we sort data by distributing it to appropriate buckets, then sort each bucket, then

concatenate the result.

If we use an array of buckets, each item gets mapped to the right bucket in O(1) time.

With uniformly distributed keys, the expected number of items per bucket is 1. Thus

sorting each bucket takes O(1) time!The total effort of bucketing, sorting buckets, and

concatenating the sorted buckets together is O(n).

In this kind of sorting the great problem arises if wrong distribution is assumed where

key distribution takes linear time but still a bucket may have full of the inputs to be

sorted.

Exercises

1.

Write an algorithm for bucket sorting and analyze it.

Samujjwal Bhandari

3

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

[Greedy Paradigm]

Design and Analysis of Algorithms (CSc 523)

Samujjwal Bhandari
Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,

Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

Greedy method is the simple straightforward way of algorithm design. The general class

of problems solved by greedy approach is optimization problems. In this approach the

input elements are exposed to some constraints to get feasible solution and the feasible

solution that meets some objective function best among all the solutions is called optimal

solution.

Greedy algorithms always makes optimal choice that is local to generate globally optimal

solution however, it is not guaranteed that all greedy algorithms yield optimal solution.

We generally cannot tell whether the given optimization problem is solved by using

greedy method or not, but most of the problems that can be solved using greedy approach

have two parts:

Greedy choice property

Globally optimal solution can be obtained by making locally optimal

choice and the choice at present cannot reflect possible choices at future.

Optimal substructure

Optimal substructure is exhibited by a problem if an optimal solution to

the problem contains optimal solutions to the subproblems within it.

To prove that a greedy algorithm is optimal we must show the above two parts are

exhibited. For this purpose first take globally optimal solution; then show that the greedy

choice at the first step generates the same but the smaller problem, here greedy choice

must be made at first and it should be the part of an optimal solution; at last we should be

able to use induction to prove that the greedy choice at each step is best at each step, this

is optimal substructure.

Fractional Knapsack Problem

Statement: A thief has a bag or knapsack that can contain maximum weight W of his

loot. There are n items and the weight of ith item is wi and it worth vi. Any amount of item

can be put into the bag i.e. xi fraction of item can be collected, where 0<=xi<=1. Here the

objective is to collect the items that maximize the total profit earned.

Samujjwal Bhandari

2

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

We can formally state this problem as, maximize

n

i =1

xi vi using constraint

n

i =1

xi wi <= W.

Here in this problem it is clear that any optimal solution must fill the knapsack

completely otherwise there will be partial space left that can be filled by some part of

some items. i.e.
n

i =1

xi wi = W.

Algorithm:

Take as much of the item with the highest value per weight (vi/wi) as you can. If the item

is finished then move on to next item that has highest (vi/wi), continue this until the

knapsack is full.

v[1 … n] and w[1 … n] contain the values and weights respectively of the n objects

sorted in non increasing ordered of v[i]/w[i] . W is the capacity of the knapsack, x[1 … n]

is the solution vector that includes fractional amount of items and n is the number of

items.

GreedyFracKnapsack(W,n)

{

for(i=1; i<=n; i++)

x[i] = 0.0;

tempW = W;

for(i=1; i<=n; i++)

{

}

if(w[i] > tempW) then break;

x[i] = 1.0;

tempW -= w[i];

}
if(i<=n) x[i] = tempW/w[i];

Samujjwal Bhandari

3

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

Analysis:

We can see that the above algorithm just contain a single loop i.e. no nested loops the

running time for above algorithm is O(n). However our requirement is that v[1 … n] and

w[1 … n] are sorted, so we can use sorting method to sort it in O(nlogn) time such that

the complexity of the algorithm above including sorting becomes O(nlogn).

To prove the algorithm’s correctness we prove that the strategy chosen for greedy

approach gives optimal solution.

Lemma 1: when the sum of all weights is <=W, then xi = 1, 1<=i<=n is an optimal

solution.

Lemma 2: All optimal solutions will fill the knapsack exactly

Proof of correctness:

Let vh/wh be the maximum value to weight ratio. Then we can say that vh/wh >= v/w for

any pair of (v,w). Now if the solution does not contain full wh then by replacing some

amount of w from other highest ratio value will improve the solution. This is greedy

choice property. When the above process is continued then knapsack is filled completely

giving the optimal solution. Say A be the optimal solution to the problem S then we can

always find that A-a is an optimal solution for S-s, where a is an item that is picked as the

greedy choice and S-s is the subproblem after the first greedy choice is made. This is

optimal substructure.

Activity Selection (Scheduling) Problem

There is a set S = {1,2,3, … ,n} of n activities that are competing for resource which can

be used by only one job at a time.

Each activity i is associated with start time si and finishing time fi.

Samujjwal Bhandari

4

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

Selected activity i takes place during interval [si , fi).

Two activities i and j are compatible if they do not overlap i.e. si >= fj or sj >= fi.

Problem: To select the maximum size set of mutually compatible activities.

Algorithm:

Sort the input activities in order if increasing finishing time i.e. f1 <= f2 <= … fn.

This step can be done in O(nlogn) time.

GreedyAS(s,f)

{

n = length(s);

A ={1};

j = 1;

for(i =2 ; i<=n; i++)

if(si >= fj)

{

A+={i};

j = i;

}

return A;

}

Example:

Let S = {1,2,3,4,5,6,7,8,9,10,11} and the respective start and finish time are

(1, 4), (3, 5), (2, 7), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13) and (12, 14).

Considering the above algorithm

Samujjwal Bhandari

5

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

A = {1} Initialization

A = {1, 4} 1st execution of if inside for loop

A = {1, 4, 8} 2nd 1st execution of if inside for loop

A = {1, 4, 8, 11} 3rd 1st execution of if inside for loop

Out of the for loop and Return A = {1, 4, 8, 11}

Analysis:

We can easily see that above algorithm has time complexity O(n) if the input is assumed

to be sorted. If we are applying the algorithm without sorting then there is a need of

sorting step also thus the complexity becomes O(nlogn).

Correctness:

To prove the correctness of the GreedyAS algorithm if we prove for its optimality then it

is done so lets state the following theorem and prove it.

Theorem 1: Algorithm GreedyAS produces solution of maximum size for the activity

selection problem.

Proof:

Idea behind the proof of the theorem is show that the problem satisfies

i.

ii.

Greedy choice property.

Optimal substructure.

Now lets apply the above idea

i.

Let S = {1,2, … ,n} be the set of activities such that the order of activities are

sorted in terms of the increasing finishing time so that it is guaranteed that the

first activity that will be selected is 1.suppose A is a subset of S such that A is

an optimal solution. Here activities in A are sorted by finishing time. Let first

activity in A be a.

If a = 1 then the algorithm starts with greedy choice and we are done.

Samujjwal Bhandari

6

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

If a is not 1 then we can show that there is another solution B such that it starts

with activity 1(greedy choice).

Let B = A –{a} + {1} since f1 <= fk activity 1 is still compatible with A. then

we have |B| = |A|, so B is optimal that starts with greedy choice 1.

ii.

Once we made the greedy choice we must be able to show S’ = {i�S : si>=f1}

with optimal solution A’ =A –{1}. The above solution must be optimal since

if there is B’ that solves S’ with more number of activities in B’ then adding

activity 1 in B’ must be the solution for S contradicting the optimality of A

because since B is also an optimal solution with more number of activities

than A.

Hence the Proof:

Huffman Codes

Huffman codes are used to compress data by representing each alphabet by unique binary

codes in an optimal way. As an example consider the file of 100,000 characters with the

following frequency distribution assuming that there are only 7 characters

f(a) = 40,000 , f(b) = 20,000 , f(c) = 15,000 , f(d) = 12,000 , f(e) = 8,000 , f(f) = 3,000 ,

f(g) = 2,000.

Here fixed length code for 7 characters we need 3 bits to represent all characters like

a = 000 , b = 001 , c = 010 , d = 011 , e = 100 , f = 101 , g = 110.

Total number of bits required due to fixed length code is 300,000.

Now consider variable length character so that character with highest frequency is given

smaller codes like

a = 0 , b = 10 , c = 110 , d = 1110 , e = 11111 , f = 111101 , g = 111100

Total number of bits required due to variable length code is

40,000*1 + 20,000*2 + 15,000*3 + 12,000*4 + 8,000*5 + 3,000*6 + 2,000*6.

i.e. 243,000 bits

Here we saved approximately 19% of the space.

Samujjwal Bhandari

7

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

Prefix Codes

Prefix codes are those that are not prefix of other codewords. We desire prefix codes

because it is simple to encode and decode using prefix codes. For example using above

derived variable length codes (they are prefix codes) we can encode word

fag as 111101.0.111100 = 1111010111100

Above . is used for concatenation.

Since no code is prefix of other codes the codefile is unambiguous. So to decode the

encoded file we just parse the codefile so as to break like 111101.0.111100 that is fag.

The whole decoding process is represented by binary tree where all leaves are characters

and path from the root to the character is code. We assume 0 as go to left child and 1 as

go to right child.

Remember: Optimal code for file is always represented by full binary tree.

Theorem 2: A binary tree that is not full cannot represent optimal prefix codes.

Proof:

Consider a tree T of binary prefix codes that is not full then there exists an internal node,

say x that has only one child, say y. Consider another Tree T’ that represent same binary

prefix codes with same number of leaves as of T and has same depth as T except for

leaves from the subtree rooted at y. These leaves will have depth T’ implies that T cannot

corresponds to optimal prefix codes. The question here is how to get such a T’. To get T`,

merge x and y into a single node, say z. z is a child of parent of x (if a parent exists) and z

is a parent to any children of y. Then T` has the desired properties: it corresponds to a

code on the same alphabet as the code which are obtained, in the subtree rooted at y in T

have depth in T` strictly less (by one) than their depth in T.

Hence, the proof.

Samujjwal Bhandari

8

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

Some points to be noted

If C is a set of unique characters in a file then optimal prefix codes tree T will have

exactly |C| numbers of leaves and |C|-1 numbers of internal nodes.

f(c) denotes the frequency of character c in a file. dT(c) is depth of c’s leaf node in T.

Number of bits required to encode a file is

B(T) =

c�C

f (c)dT (c) , where B(T) is cost of the tree T.

Algorithm:

A greedy algorithm can construct Huffman code that is optimal prefix codes. A tree

corresponding to optimal codes is constructed in a bottom up manner starting from the |C|

leaves and |C|-1 merging operations.

Use priority queue Q to keep nodes ordered by frequency. Here the priority queue we

consider is binary heap.

HuffmanAlgo(C)
{
n = |C|;

Q = C;

For(i=1; i<=n-1; i++)

{

z = Allocate-Node();

x = Extract-Min(Q);

y = Extract-Min(Q);

left(z) = x;

right(z) = y;

f(z) = f(x) + f(y);

Insert(Q,z);
}
return Extract-Min(Q)
}

Samujjwal Bhandari

9

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

Example:

C = {a, b, c, d, e, f, g}; f(c) = 40, 20, 15, 12, 8, 3, 2; n = 7

Initial priority queue is

g

2

f

3

e

8

d

12

c

15

b

20

a

40

i=1

5 e 8 d 12 c 15 b 20 a 40

0

1

g

2

f

3

i=2
d 12 13 c 15 b 20 a 40

0
1

0

5

1

e

8

g

2

f

3

i=3

c

15

25

b

20

a

40

0 1

d

12

0

13

1

0

5

1

e

8

Samujjwal Bhandari

g

2

f

3

10

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

i=4

b

20

40

a

40

0 1

c

15

0

25

1

d

12

13

i=5

a

40

0

60

1

0

0

5

1

e

1

8

b

20

40

g

2

f

3

0 1

c

15

0

25

1

i=6

0

10

1

d

12

0

13

1

a

4

0

60

1

0

5

1

e 8

b

2

c

0

1

d

40

0

1

0

g 2

1

25

0

5

1

f

1

13

3

e

1

8

Samujjwal Bhandari

g

2

11

f

3

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

Analysis

We can use BuildHeap(C){see notes on sorting} to create a priority queue that takes O(n)

time. Inside the for loop the expensive operations can be done in O(logn) time. Since

operations inside for loop executes for n-1 time total running time of HuffmanAlgo is

O(nlogn).

Now we need to prove for the correctness of the algorithm for this as usual lets try to

prove that the problem shows greedy choice property and optimal substructure.

Lemma 3: Greedy Choice Property: Let C be an alphabet in which each character c�C

has frequency f(c). Let x and y be two characters in C having the lowest frequencies.

Then there exists an optimal prefix code for C in which the codewords for x and y have

the same length and differ only in the last bit.

Proof:

Let T be arbitrary optimal prefix code generating tree. Take T’ such that it also generates

an optimal prefix code for the same set of alphabets as of T and has x and y as sibling

nodes of maximum depth. If we can transform T into T’ with changing the prefix code

representation we are done since sibling nodes differ by last bit only with same length.

y

T

x

T’’

y

b

b

T’

c

b

c

x

c

x

y

Let b and c are sibling leaves of maximum depth in T. we can assume that f(b) <= f(c)

and f(x) <= f(y) since x and y are of lowest frequency and b and c are of arbitrary

frequency. Now swap the position of x and b to get figure T’’ then we have

Samujjwal Bhandari

12

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

B(T) – B(T’’) =

c�C

f (c)dT (c) -

c�C

f (c)dT ''(c)

=

=

=

f(x)dT(x) + f(b)dT(b) - f(x)dT’’(x) - f(b)dT’’(b)

f(x)dT(x) + f(b)dT(b) - f(x)dT(b) - f(b)dT(x)

(f(b) – f(x))(dT(b) - dT(x))

>= 0

Here f(b) – f(x) is positive since x is of lowest frequency and dT(b) - dT(x) is also positive

as b is leaf of maximum depth of T.

Similarly, we can swap y and c without increasing the cost i.e B(T’’) – B(T’) >=0 (as

above). So we can say conclude that B(T’) <= B(T). But T represents optimal solution we

have B(T) <= B(T’), so B(T) = B(T’).

Hence T’ is an optimal tree in which x and y are sibling leaves of maximum depth.

This lemma suggest that we can start merging by choosing two lowest frequency

characters to get an optimal solution so this is greedy choice property.

Hence, the proof.

Lemma 4:Optimal substructure: Let T be full binary tree representing an optimal

prefix code over an alphabet C, where frequency f(c) is defined for each character c�C.

Consider any two characters x and y that appears as sibling leaves in T, and let z be their

parent. Then, considering z as a character with frequency f(z) = f(x) + f(y), the tree T’ =

T – {x , y} represents an optimal prefix code for the alphabet C’ = C – {x , y} + {z}.

Proof:

T

z

T’

x

x

y

Since T represents optimal prefix code for C x and y are sibling leaves of lowest

frequencies. We can represent cost B(T) of a tree T in terms of cost B(T’). Here we have

for each c�C - {x, y}, we have dT(c) = dT’(c)

Samujjwal Bhandari

13

Chapter: Greedy Paradigm

Design and Analysis of Algorithms

So , B(T) =

c�C

f (c)dT (c) and B(T’) =

f (c)dT '(c) differ only for x and y
c�C �{x , y}

Then, f(x)dT(x) + f(y)dT(y) = (f(x) + f(y))(dT’(z) + 1) [since dT(x) = dT(y) = dT’(z) + 1]

= f(z)dT’(z) + f(x) + f(y) [since f(x) + f(y) = f(z)]

So we can write B(T) = B(T’) + f(x) + f(y)

If T’ does not represent optimal prefix code for alphabets in C’, then we can

always find some other tree T’’ that is optimal for alphabets in C’ i.e. B(T’’) < B(T’)

since z a character in C’ it is a leaf node in T’’. if we add x and y on the node z then we

have B(T’’) + f(x) + f(y) < B(T). This is contradiction since T is optimal. Thus T’ must

be optimal for C’.

Hence, the proof.

Theorem 3: Procedure HuffmanAlgo produces an optimal prefix code.

Proof: Using Lemma 3 and Lemma 4

Exercises

1.

17.3.2(pg 344)

What is an optimal Huffman code for the following set of frequencies, based on

the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

Can you generalize your answer to find the optimal code when the frequencies are

the first n Fibonacci numbers?

Samujjwal Bhandari

14

Chapter: Dynamic Programming

Design and Analysis of Algorithms

[Dynamic Programming]

Design and Analysis of Algorithms (CSc 523)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Samujjwal Bhandari

1

Chapter: Dynamic Programming

Design and Analysis of Algorithms

Dynamic Programming is a powerful way of designing the algorithm. Dynamic

programming is widely used to solve the optimization problems. Here a set of choices is

made to come up with the optimal solution later. Most of the problems dealt with

dynamic programming technique consist of the subproblems recurring more than one

time while calculating the solution to the problem. Here if we store the result of the

solution of the subproblem then we do not have to recalculate the solution of the

subproblem later and can be used when necessary. Unlike divide and conquer paradigm

dynamic programming works in bottom up approach. To attack the problem using

dynamic programming approach we must find the structure of an optimal solution, find

the value of an optimal solution probably recursively, and the value of an optimal

solution is calculated in bottom up fashion. If needed optimal solution should be obtained

along with its value.

The optimization problems that are solved using dynamic programming have two

properties namely optimal substructure property (this also applies for greedy method) and

overlapping subproblems property.

Optimal Substructure

Optimal substructure is exhibited by a problem if an optimal solution to the problem

contains optimal solutions to the subproblems within it.

Overlapping Subproblems

The given problem has overlapping subproblems if an algorithm calculates the solution to

the subproblem more than once in order to use its result for problem of size greater than

the solved subproblem.

There is another concept called memoization. This is the variation of dynamic

programming. Using this approach we calculate the value of each subproblem and then

store it in some table to access it later. The fashion of computation here is top down due

to the control that helps store the solution to the subproblem is like recursive algorithm.

Fibonacci numbers are calculated using this concept here in this chapter.

Fibonacci numbers
Definition: Fibonacci numbers are those numbers that are obtained by summing up two

previous Fibonacci numbers. So here we have recursive definition as fn = fn-2+ fn-1.

Samujjwal Bhandari

2

Chapter: Dynamic Programming

Design and Analysis of Algorithms

Recursive fibonacci revisited: (see chapter Introduction pg. 7) In recursive version of an

algorithm for finding Fibonacci number we can notice that for each calculation of the

fibonacci number of the larger number we have to calculate the fibonacci number of the

two previous number regardless of the computation of the Fibonacci number that has

already be done. So there are many redundancies in calculating the Fibonacci number for

a particular number. Lets try to calculate the fibonacci number of 4. The representation

shown below shows the repetition in the calculation.

Fib(4

Fib(2 Fib(3

Fib(0

Fib(1

Fib(1

Fib(0

Fib(2

Fib(1

In the above tree we saw that calculations of fib(0) is done two times, fib(1) is done 3

times, fib(2) is done 2 times, and so on. So if we some how eliminate those repetitions we

will save the running time. Now we try to work upon eliminating those repetitions.

Algorithm:
Input: A number n. Output: nth Fibonacci number.

Algorithm:

DynaFibo(n) {

A[0] = 0, A[1]= 1;

for(i = 2 ; i <=n ; i++)

A[i] = A[i-2] +A[i-1] ;

return A[n] ;

}

Analyzing the above algorithm (see chapter Introduction pg. 7 this version has slight

changes) we found that there are no repetition of calculation of the subproblems already

solved and the running time decreased from O(2n/2) to O(n). This reduction was possible

due to the remembrance of the subproblem that is already solved to solve the problem of

higher size. What is space complexity? Can we improve it?

Principle of Optimality: In optimal sequence of choices, each subsequence must also be

optimal.

Samujjwal Bhandari

3

Chapter: Dynamic Programming

Design and Analysis of Algorithms

Matrix Chain Multiplication
Let us consider the problem of multiplying matrices. If we take three matrices say A of

40 by 30, B of 30 by 40 and C of 40 by 20, then we can calculate A⋅B⋅C as 40 by 20

matrix as AB taking 40*30*40 =48000 multiplications, (AB)C taking 40*40*20 =32000

multiplications totaling 80000 multiplications. The quest here is, since multiplication is

expensive job, can we decrease the number of multiplication? The answer is it is possible

if it can be. We know that the matrix multiplication is associative we can change the

parenthesis to get the matrix multiplied; however we cannot change the permutation of

the matrices, since matrix multiplication is not commutative. Lets take above example

and see if we can reduce the number of multiplications. First compute BC this takes

30*40*20 = 24000 multiplications and A(BC) takes 40*30*20 = 24000, totaling 48000

multiplications. Seeing the above fact we can say that it is possible to reduce the number

of expensive multiplication by just changing the parenthesis.

Statement: Given a chain {A1, A2, …, An} of n matrices where for i = 1,2,…,n, matrix

pi-1⋅ pi, fully parenthesize the product A1A2…An in a way that minimizes the number of

scalar multiplications.

The stated problem can be solved by exhaustively checking all the possible

parenthesizations. By using this method the total time depends upon the number of ways

of possible parenthesizations. Let P(n) be the total number of parenthesizations for the

sequence of n matrices. Then we can define number of parenthesizations by the

recurrence relation as

1 if n = 1,

P(n) =

n� 1

P(j) P(n � j)

if n ε 2.

j=1

The above recurrence shows that if we have single matrix there is only on possible way

of parenthesizations. Otherwise the fully parenthesized matrix product is product of two

fully parenthesized subproducts and for subproducts we can split the matrix sequence in

anywhere for j = 1 to n. The above recurrence yields the similar sequence of Catalan

numbers that grows as &(4n/n3/2). This shows that the number of solution is exponential

in n thus it is a poor strategy.

Samujjwal Bhandari

4

,

Chapter: Dynamic Programming

Design and Analysis of Algorithms

Algorithm and Idea:
Before presenting the algorithm let us see how matrix chain multiplication can be

performed using dynamic programming approach. The basic steps for designing dynamic

programming algorithm and their workouts for matrix chain multiplication are given

below:

Characterizing structure to obtain optimal substructure: Given a chain Ai…j, if i<j

then any parenthesizations of the chain split product at some k, i δ k < j. So for some k

total cost is sum of costs of computing Ai…k, Ak+1…j, and multiplying Ai…k and Ak+1…j.

Suppose the optimal parenthesizations splits between Ak, and Ak+1, then parenthesizations

of Ak, and Ak+1 must be optimal, otherwise we can find another parenthesizations that is

optimal.

Recursive definition of optimal solution: let m[j,j] denotes minimum number of scalar

multiplications needed to compute Ai…j. To solve the whole problem we have m[1,n].

Now we can define the solution recursively as:

m[i, j] =
0 if i = j (sinceno multiplicationsneeded),

miniδk< j (m[i, k] + m[k +1 j] + pi�1.pk .p j) if i < j (assumingoptimalsplitat k)

Also keep track of s[i,j] =k for optimal split.

Computation of optimal cost in bottom up manner: Recursive computation of above

recurrence would take exponential time (see CLRS book for detail) but good thing is that

the subproblems are computed over and over again, so it is showing us overlapping

subproblems hence we can use the concept of dynamic programming to compute the cost

in bottom up manner. From the above recurrence we saw that the cost m[i,j] of j-i+1

matrices depends only on smaller subproblems where Ai…k is product of k-i+1 < j-i+1

matrices and Ak+1…j is product of j-k < j-i+1 matrices, for k = i, i+1, …, j-1. So if our

algorithm fills table m using increasing length of chains we can use the result of

subproblems.

Samujjwal Bhandari

5

0 9000 3750 6250 6000 5625 S[i,j] 1 1 3 3 1

 0 2250 4125 4250 4125 2 3 3 3

 0 3750 2750 2250 3 3 3

 0 1250 1500 4 5

 0 1250 5

 0

Chapter: Dynamic Programming

Design and Analysis of Algorithms

Algorithm: The input to the algorithm is array p of the orders {p0, p1, …, pn}

MatrixChainOrder(p)

{ n = length[p]-1;

for(i=1;i<=n;i++)

m[i,i] = 0;

for(l = 2;l<=n;l++)

for(i=1;i<=n-l+1;i++)

{ j = i + l –1;

m[i,j]= �;

for(k=i;k<=j-1;k++)

{ q = m[i,k]+m[k+1,j] + p[i-1].p[k].p[j];

if(q<m[i,j]) { m[i,j] = q; s[i,j] = k;}

}

}

}

Example:
Take A1(20⋅15), A2(15⋅30) , A3(30⋅5) , A4(5⋅25) , A5(25⋅10) , A6(10⋅5) matrices.

Then we have p[]={20,15,30,5,25,10,5} here considering index starts from zero. The

below table shows the steps followed in algorithm.

j=1 2 …. 6

Analysis:
The above algorithm can be easily analyzed for running time as O(n3), due to three nested loops.

The space complexity is O(n2) (how?).

Samujjwal Bhandari

6

Chapter: Dynamic Programming

Design and Analysis of Algorithms

Construction of optimal solution:

The optimal solution can be obtained from the table given by s[i,j]. Since each s[i,j] holds

value k for the optimal split the result for the sequence Ai…j is (Ai…k)(Ak+1…j). So the

recovering sequence can be viewed as

S[1,n] = (A1…s[1,n])(As[1,n]+1…n)

S[1,s[1,n]] = (A1…s[1,s[1,n]])(As[1,s[1,n]]+1…n) and so on. This can be written as recursive

algorithm like

ParenthesizeChain(s,i,j)

{ if(i==j) print ”Ai”;

else{

print “(“;

ParenthesizeChain(s,i,s[i,j]);

ParenthesizeChain(s,s[i,j]+1,j);

print “)“;

}}

Example: For our above example we have s[1,6] = 1 so (A1)(A2 A3 A4 A5 A6); s[2,6] = 3

so (A1)((A2 A3)(A4 A5 A6)); s[4,6] = 5 so (A1)((A2 A3)((A4 A5)(A6))) is the final

parenthesizations. Here the intermediate steps are not shown.

What is the complexity? O(n)!

Longest Common Subsequence (LCS)
Given a sequence X = <x1, x2, …, xl> and a sequence Z = < z1, z2, …, zm>, we say that Z

is a subsequence of X if there exists a strictly increasing sequence < I1, I2, …, Ik > of

indices of X such that for all j = 1,2, …,k xij = zj.

Example:

X = <a,a,b,b,a,a,a,b,a,a,b,b,a,b>

Y = <a,b,b,a,b,a,b,b> (subsequence of X)

Z = <a,b,a,b,a,b,a,b,b,a> (not a subsequence of X)

For Given sequences X, Y and Z we say Z is a common subsequence of X and Y if Z is

subsequence of both X and Y.

Samujjwal Bhandari

7

Chapter: Dynamic Programming

Design and Analysis of Algorithms

LCS problem statement: Given two sequences X = <x1, x2, …, xl> and Y = <y1, y2, …,

ym>, find the common subsequence of X and Y with maximum length.

Example: for X = <a,b,b,a,a,b> and Y = <a,a,b,b,b,a,b,b>, <a,b,b,a,b> is the common

subsequence (you can verify that it is the longest one by observation).

Algorithm and Idea:
The basic steps for designing dynamic programming algorithm and their workouts for

LCS are given below:

Characterizing structure to obtain optimal substructure: Given a sequence X = <x1,

x2, …, xm>, Xi = <x1, x2, …, xi> is called ith prefix of X, here we have X0 as empty

sequence.

Theorem 1: (Optimal substructure of an LCS)

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> be sequences and Z = < z1, z2, …, zk>

be any LCS of X and Y.

1. if xm = yn, then zk = xm = yn, and Zk-1 is an LCS of Xm-1 and Yn-1.

2. if xm  yn, then zk  xm implies Z is an LCS of Xm-1 and Y.

3. if xm  yn, then zk  yn implies Z is an LCS of X and Yn-1.

Proof:

1. if zk  xm then we can add xm = yn to Z to get the LCS of length k+1, this is a

contradiction that Z is an LCS, so zk = xm = yn must be true. Now Zk-1 is LCS of

Xm-1 and Yn-1, otherwise we can get common sequence of both Xm-1 and Yn-1, say

L such that it has length greater than k-1 so by adding xm = yn we get a common

sequence of X and Y with length greater than k, contradiction that Z is an LCS of

length k.

2. if zk  xm then Z is the common sequence of Xm-1 and Y. If there were common

sequence L of Xm-1 and Y with length greater than k, then L would also be the

common sequence of X and Y, contradicting that Z is an LCS of X and Y.

3. Similar as proof of 2.

Recursive definition of optimal solution: let c[j,j] denotes length of an LCS of

sequences Xi and Yj. We can define the solution, using above theorem, recursively as:

Samujjwal Bhandari

8

Chapter: Dynamic Programming

0
c[i, j] = c[i-1, j -1]+1

max(c[i, j �1],c[i �1, j])

Design and Analysis of Algorithms

if i = 0 or j = 0,

if i, j > 0 and xi = y j,
if i, j > 0 and xi  y j.

Computation of optimal cost in bottom up manner: Recursive computation of above

recurrence would take exponential time however we can notice that there are ∪(mn)

distinct subproblems. So if we can compute these distinct subproblems only once then we

save the running time. The below is an algorithm that uses dynamic programming

approach to solve LCS problem.

Algorithm: The inputs to the algorithm are sequences X and Y and outputs two arrays

c[1…m,1…n] and b[1…m,1…n], here b array is for easier computation of optimal

solution.

LCS(X,Y)

{

m = length[X];

n = length[Y];

for(i=1;i<=m;i++) c[i,0] = 0;

for(j=0;j<=n;j++) c[0,j] = 0;

for(i = 1;i<=m;i++)

for(j=1;j<=n;j++)

{

if(X[i]==Y[j]) { c[i][j] = c[i-1][j-1]+1; b[i][j] = “upleft”; }

else if(c[i-1][j]>= c[i][j-1]) { c[i][j] = c[i-1][j]; b[i][j] = “up”;}

else { c[i][j] = c[i][j-1]; b[i][j] = “left”; }

}

return b and c;

}

Samujjwal Bhandari

9

 0 A 1 B 2 B 3 A 4 B 5 A 6 B 7 A 8

0 0 0 0 0 0 0 0 0 0

B 1 0 0 u 1 ul 1 ul 1 l 1 ul 1 l 1 ul 1 l

A 2 0 1 ul 1 u 1 u 2 ul 2 l 2 ul 2 l 2 ul

B 3 0 1 u 2 ul 2 ul 2 u 3 ul 3 l 3 ul 3 l

A 4 0 1 ul 2 u 2 u 3 ul 3 u 4 ul 4 l 4 ul

A 5 0 1 ul 2 u 2 u 3 ul 3 u 4 ul 4 u 5 ul

B 6 0 1 u 2 ul 3 ul 3 u 4 ul 4 u 5 ul 5 u

A 7 0 1 ul 2 u 3 u 4 ul 4 u 5 ul 5 u 6 ul

A 8 0 1 ul 2 u 3 u 4 ul 4 u 5 ul 5 u 6 ul

B 9 0 1 u 2 ul 3 ul 4 u 5 ul 5 u 6 ul 6 u

Chapter: Dynamic Programming

Design and Analysis of Algorithms

Example:
Determining an LCS of <A,B,B,A,B,A,B,A> and <B,A,B,A,A,B,A,A,B>

Analysis:
The above algorithm can be easily analyzed for running time as O(mn), due to two nested loops.

The space complexity is O(mn).

Construction of optimal solution:

The optimal solution can be obtained from the table given by b[i,j]. First we look at

b[m,n] and trace through table following the words in it i.e. whether to left or up or

upleft. The following algorithm prints the LCS.

PrintLCS(b,X,i,j)

{

if((i==0)||(j==0)) return;

if(b[i][j] = “upleft”) {PrintLCS(b,X,i-1,j-1); print X[i];}

else if(b[i][j] = “up”) PrintLCS(b,X,i-1,j);

else PrintLCS(b,X,i,j-1);

}

Example: For our above example we have BABABA as an LCS. (Remember the LCS

may not be unique but the length is unique).

What is the complexity? O(m+n)!

Samujjwal Bhandari

10

Chapter: Dynamic Programming

Design and Analysis of Algorithms

0/1 Knapsack Problem
Statement: A thief has a bag or knapsack that can contain maximum weight W of his

loot. There are n items and the weight of ith item is wi and it worth vi. An amount of item

can be put into the bag is 0 or 1 i.e. xi is 0 or 1. Here the objective is to collect the items

that maximize the total profit earned.

We can formally state this problem as, maximize
n

i =1

xi vi using constraint

n

i =1

xi wi <= W.

Algorithm:
The algorithm takes as input maximum weight W, the number of items n, two arrays v[]

for values of items and w[] for weight of items. Let us assume that the table c[i,w] is the

value of solution for items 1 to i and maximum weight w. Then we can define recurrence

relation for 0/1 knapsack problem as

0 if i = 0 or w = 0

c[i, w] = c[i � 1, w] if w i > w
max(vi + c[i � 1, w � wi], c[i � 1, w]) if i > 0 and w ε w i

You can think the above relation like: if we have got no item or the maximum weight is

zero then the solution is 0, if the weight of the object that is being added exceeds the total

weight remaining then the solution is the solution up to the previous item addition and if

the total weight remaining is greater than or equal to the weight of the item being added,

then the solution consists of the value that is maximum between the summed up value up

to previous addition of item or the value after addition of the last item.

DynaKnapsack(W,n,v,w)

{

for(w=0; w<=W; w++) c[0,w] = 0;

for(i=1; i<=n; i++){ c[i,0] = 0;

for(w=1; w<=W;w++)

if(w[i]<W) then if v[i] +c[i-1,w-w[i]] > c[i-1,w] then

c[i,w] = v[i] +c[i-1,w-w[i]];

else c[i,w] = c[i-1,w];

else c[i,w] = c[i-1,w]; }}

Samujjwal Bhandari

11

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=1 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2

i=2 0 0 0 2 2 3 3 3 5 5 5 5 5 5 5 5

i=3 0 0 0 2 2 3 3 3 5 5 5 5 6 6 6 8

i=4 0 0 0 2 4 4 4 6 6 7 7 7 9 9 9 9

i=5 0 0 0 4 4 4 6 8 8 8 10 10 11 11 11 13

i=6 0 0 0 4 4 4 6 8 8 8 10 10 11 11 11 13

i=7 0 0 7 7 7 11 11 11 13 15 15 15 17 17 18 18

i=8 0 0 7 7 7 11 11 11 13 15 15 15 17 17 18 18

i=9 0 0 7 7 7 11 11 15 15 15 19 19 19 21 23 23

Chapter: Dynamic Programming

Design and Analysis of Algorithms

Example:
Let the problem instance be with 9 items where v[] = {2,3,3,4,4,5,7,8,8}and w[] =

{3,5,7,4,3,9,2,11,5}and W = 15.

Analysis:
For run time analysis examining the above algorithm the overall run time of the algorithm

is O(nW).

Exercises

1. Disprove that all the instances of 0/1 knapsack problem can be solved using

greedy approach.

2. Determine LCS for sequences <1,0,0,1,0,1,0,1>and<0,1,0,1,1,0,1,1,0>

3. Determine the optimal parenthesizations for sequence of matrices ABCDEF with

p array as {40,5,35,45,10,20,10}

Samujjwal Bhandari

12

W
O

RLD
LIN

K CO
N

VERG
EN

CE W

ORLDLINK Convergence is a real-time, integrated call accounting, billing and
customer care software solution that enables converged billing of voice products
and services. It offers a comprehensive, highly customizable, reliable and scalable

platform that can integrate into any voice network infrastructure. With WORLDLINK
Convergence, voice service providers can achieve consolidated billing and single-point
customer care for multiple voice service types, using RADIUS and other middleware that
allow data aggregation and call detail input from disparate voice gateways and switches.

Highlights

Unlimited, extensive and highly customizable products and account management

Real-time authentication, authorization, accounting (AAA) and CDR generation

Real-time charge accrual, billing, ratings and statistics

Corporate accounts with group billing

Highly customizable reseller management

Web-based management, customer care and self-provisioning interface

Online monitoring and statistics

Call-to-call profit/loss analysis

Highly customizable reports

Hosted billing services

Built-in data replication, redundancy and failover

Open architecture and integration ready

1

W
O

RL
D

LI
N

K
&

 B
EN

EF
IT

S

Unlimited, Extensive and Highly Customizable
Products and Account Management

WORLDLINK Convergence offers the flexibility and
needed provision to support unlimited number of
customized products and ratings, enabling service
providers to tailor their services according to the market.
Currently supported product types include:

Prepaid
Rechargeable Prepaid
Post Paid
Limited Credit Post Paid

Real-time Authentication, Authorization, Accounting
(AAA) and CDR Generation

WORLDLINK Convergence includes a full-featured
advanced RADIUS module that works with all RADIUS-
compliant gateways such as Cisco and Quintum voice
gateways. This high performance multi-threaded server fully
supports the standard as well as Vendor Specific Attributes
(VSAs). The power of this module lies in the fact that it is
highly customizable to enable a multitude of rich product
features such as flexible Interactive Voice Response (IVR)
scripts.

Corporate (Group)
Real-time Charge Accrual, Billing, Ratings and Statistics

Thanks to the open extensible architecture of
WORLDLINK Convergence, adding any new product
type can be done swiftly. Customizations of products
can be broadly applied in five areas. These are:

Product Type
Tariffs
Rating Rules
IVR Integration
Invoicing
Currency
Surcharges & Taxes

Flexible tariff management includes the ability to define
and instantly activate new tariffs or promotional offers.
Tariff schemes allow the service provider to factor in
product type, client location (originating node) time of
day, day of week, holidays and promotional offers. New
tariffs can be activated instantly or scheduled for a future
date for a specific period or duration without affecting
service. With support for multiple currencies and time
zones, service providers can deploy customized products
for any part of the world using one central system. New
products can be created within minutes and offered online
to customers. Service providers can even create
customized products for individual customers.

Reseller Management

WORLDLINK Convergence performs high throughput
charge application, billing, rating and statistical analysis in
real-time. Billing is done for each billable CDR based on
set product definitions and ratings. Real-time billing allows
the service provider to modify and fine-tune various rating
parameters and view the results instantaneously.
WORLDLINK Convergence tracks service usage and
payments in real-time. When service usage reaches a pre-
defined limit, the system automatically sends a low balance
alert via SMS and email. A voice prompt can also be played
to the customer through the IVR, if configured for the
product. Once usage reaches the credit limit defined for an
account, additional calls are not authorized and existing
calls are dynamically disconnected.

Corporate Accounts with Group Billing

WORLDLINK Convergence supports corporate customers
with multiple end-user accounts under a single group
account. This account can control and add end-user
accounts under it while affording full and independent end-
user account management through the online self-
provisioning interface. A corporate account gets a pool of
credit (prepaid deposit or postpaid credit limit) that can be
distributed among its end-user accounts or shared between
the accounts as a single pool. Individual as well as
consolidated invoices are automatically generated and sent
at predefined billing intervals.

Highly Flexible Reseller Management

Resellers are customers that market existing or customized
products to other end users on a revenue sharing model.
WORLDLINK Convergence provides resellers the capability
to independently manage all aspects of end-user accounts
under them through the online self-provisioning interface.
For the service provider, it provides real-time monitoring
and management of resellers’ activities and receivables.
For the prepaid industry, when batches of accounts are
provided to the reseller on credit, WORLDLINK
Convergence keeps track of the Failover utilization of
accounts (first use and depletion) per batch and alerts when
it crosses predefined limits for unpaid batches.

2

W
O

RLD
LIN

K CO
N

VERG
EN

CE

Web-based Management, Customer Care and
Self-Provisioning Interface

WORLDLINK Convergence includes an intuitive and
comprehensive Self-Provisioning Interface that provides
management features for all aspects of the system. All
configurations, product creation and definitions,
modifications or enhancements, reporting, security and
customer service are carried out through this interface.
Secure access is provided for all users including end-users,
resellers, corporate customers, customer service operators
and administrators based on predefined roles and access
privileges. Customers can service themselves thereby
lowering operational costs for the service provider. The
interface easily integrates into the service provider’s web
site to instantly provide a storefront for online product
purchases. For end-users, it includes easy to use features

within a product, and any other combination of the above.
Additionally, quality alarms can be configured using highly
flexible rules to send an alert (email and/or SMS) when
any combination of quality parameters degrade below a
preset level for any product, carrier, destination, or
combination of these three. Alternatively, the alarms can
be fed into a trouble-ticketing application.

Similarly, utilization and profitability can be monitored
on the basis of a destination, a breakout within the
destination, a carrier, a product, carriers within a product,
destinations within a product, as well as any other
combination of the above. These tools enable quick
response to quality degradation and losses. It allows
monitoring of peak resource utilization, and thus assists
in capacity planning. It also allows help desk operators to
manage customer service operations effectively.

to reliably and securely:
Call-to-Call Profit/Loss Analysis

Purchase any number of products using the
online storefront.
View remaining credit and account balances
Replenish accounts using secure connections
Modify existing services that have been
purchased
View or download invoices and call detail
records
Dispute call charges (Call Dispute Management)

WORLDLINK Convergence provides profit/loss analysis
on a call-to-call basis. The service provider can zoom in
on the exact calls and destinations that are profitable. More
importantly, unprofitable calls and destinations can be
instantly revealed so that the service provider can take
immediate corrective action. In real time, the effects of
these changes can be viewed, and through fine-tuning,
achieve optimal profits.

depending on the service provider
Highly Customizable Reports

Online Monitoring and Statistics
WORLDLINK Convergence provides service providers

WORLDLINK Convergence provides a host of real-time
tools that monitor and graph critical performance indicators
such as quality, utilization and profitability. Vital quality
metrics such as ASR, ACD and PDD can be monitored on
the basis of a destination, a breakout within the destination,
a carrier, a product, carriers within a product, destinations

with comprehensive reports including:

Billing and Accounting Reports
Revenue & Expenses Reports
Call reports for End-users, Resellers, Corporate
accounts and carriers
Quality and performance reports

Product Charges

3

FE
AT

U
RE

S
&

 B
EN

EF
IT

S

Adjusted Product Rates

These reports are easily exported into a variety of formats
including PDF, Microsoft Excel, Microsoft Word, HTML
or CSV. Leveraging the power of WORLDLINK
Convergence’s relational database, service providers can
generate almost any report in real-time with up-to-date
information using third party reporting tools such as Crystal
Reports and Oracle Reports.

levels. Real-time database replication with disparate
servers for billing and administration ensures high
processing speed and complete data integrity. Seamless
and real-time failover with automatic recovery on proven
industrial strength Oracle RDBMS guarantees telco-grade
reliability. A full-featured version of WORLDLINK
Convergence is also available for open source database,
PostgreSQL.

Hosted Billing Services
Open Architecture and Integration Ready

WORLDLINK Convergence can be used to offer call billing

4

services to third parties on an application service provider
(ASP) model. These third parties, known as hosted service
providers, can independently manage their voice products
and services, carriers and customers. This partitioning is
made possible by WORLDLINK Convergence’s four-tier
billing model.

Built-in Data Replication, Redundancy and

WORLDLINK Convergence exists as a server-side
application running on Oracle. The tight integration with
Oracle using native Oracle functions makes WORLDLINK
Convergence extremely fast and robust with powerful
capabilities. WORLDLINK Convergence features a multi-
server architecture with built in redundancy at multiple

WORLDLINK Convergence has been integrated with
voice gateways from Cisco and Quintum through open
standards based RADIUS. It can seamlessly integrate with
any other voice gateway or switch through customized
middleware available through Fractalcom.

Product Rates

 SYSTEM

 ARCH
ITECTU

RE

System Architecture

System Components

Hardware
Two Linux Servers. Recommended configuration: Intel Pentium Xeon 2.8 GHz, 1 GB RAM,
100 GB of RAID storage
Any RADIUS-Compliant Voice Gateway (Cisco, Quintum) or Switch

System Software

WORLDLINK Convergence
Apache Web Server with modules
Oracle SE or PostgreSQL Database Server

Client Software

Browser: Internet Explorer 5.5 or higher, Netscape 6.2 or higher, Mozilla 1.1 or higher

5

KE
Y

FE
AT

U
RE

S

Key Features

Products & Services

Corporate and regular product/service type
Comprehensive product/service types
Unlimited number of products/services
Fine-grained customization of products/
services
Integration of IVR
Cross product/service discount

Multiple Authentication Options

Account Number/Card Number
ANI
PIN
Tech-Prefix
DNIS

Multiple Billing Cycles

Weekly
Fortnightly
Monthly

Product Distribution

Customizable by service provider
Dial Options

Flexible and Extensive Rating Rules
ANI Authorization
Local Access Number
Toll Free Dialing
Abbreviated Dial (10-10)
Speed Dial

IVR

Credit Time or Balance Announcement
Customizable through Product Configuration
Multi-language IVR Support
Customizable IVR Scripts
Seamless integration of new IVRs

Multiple Surcharges

Flat or Percentage Based
Activation
Periodic
Recurring
One-time

Time of Day, Day of Week and/or
Month of Year
Vacation Rate
Peak Time
Flag fall
Deny Call
Based on ANI, DNIS
Progressive
Minute Fraction (Dual Credit Time)
Adjusted Incremental/Declining Rates

WORLDLINK Convergence is not tied to any
single billing model. Instead, the most flexible
approach possible has been taken, allowing
complete flexibility to implement the business
rules required to support virtually any billing
model. This provides the service provider the
ability to launch new products and services
quickly in full support of market demands and
regulatory requirements.

Product wise list of Customers

6

KEY FEATU
RES

Fraud Management

Simultaneous calls are not allowed for end-
user accounts, unless configured for post-paid
customers.
Attempts to authorize PINs belonging to
batches that have not been sold indicate PIN
leaks.
Within a predefined interval, if more than a
predefined number of different PIN
authorization attempts are made from a single
ANI, all further calls from that ANI are
blocked.

Call Matching, Reconciliation, Settlements & Dispute
Management

Reconcile bills of interconnecting partners by
matching billing records
Generate and send statements to carriers and
interconnecting partners
Settle accounts of interconnecting partners
through reconciliation and settlement
adjustments for disputed items

Rate Plans Analysis, Reports & Audits

Ability to model new rate plans and
analyze the impact on costs and revenues
Carry out mass rate updates
User customizable and predefined traffic
and management reports
User definable roles and access privileges
the system access and restriction
Audit history of user activities &
transactions

Carrier Account Management and Billing

Create and manage multiple carrier
accounts
Create and manage destination codes
Define buying and selling rates per
destination code per carrier
Define multiple billing cycles
Rates for time of day, day of week,
holidays and exceptions
Define usage-based, fixed and recurring
charges

Product List

7

W
O

RL
D

LI
N

K
CO

N
VE

RG
EN

CE
 F

EA
TU

RE
 L

IS
T

Product Types

Regular – 1 Card (also called PINS) per Product when purchased online through credit-card; Any number of
cards when distributed through a Reseller
Corporate – Always more than 1 Card per Product

Card Types

Prepaid
Rechargeable Prepaid
ANI based rechargeable prepaid
ANI based rechargeable prepaid with Abbreviated Dial
Post Paid
ANI based postpaid
ANI based postpaid with Abbreviated Dial
Limited credit postpaid
ANI based limited credit postpaid
ANI based limited credit postpaid with Abbreviated Dial

Product Attributes

Product Name
Product Code
Detailed Product Description

Product Property

Product Nick-Name
Product Card Type (Prepaid, Postpaid, ANI, Rechargeable, etc.)
Card length – number of digits in each card
Initial Credit Amount for Prepaid card types
Credit Limit for Postpaid Limited card types
Product type – Regular or Corporate
Default Product – Product that defines Rates for all Country Codes
Product Activation date
Billing Method – Prepaid or Postpaid
Expiration date – The date card expires
Expiration offset – Number of days, months after which the card expires after first use
Number of card(s) per Product
Billing frequency – Intervals of time at which to generate invoice for the card
Product currency
Low credit warning
Grace Period for invoice receipt in days
IVR announcement of remaining balance
IVR announcement of remaining time
Ignore Duration – Calls with duration less than this are not billed
Minimum Duration – Calls less than this duration are billed for this duration
Restrict calls for Product(s) only through a particular PSTN Access Number
Maximum call duration for postpaid accounts
Rounding Schemes for call duration
PIN authentication

Charges

Charges can be defined to be either Fixed or Percentage and applied to Products. The following charges are
supported.

Activation - When the card is first activated
Periodic – Daily, Weekly, Fortnightly, Monthly, Bi-Monthly, Quarterly, Semi-Annual, Annual
Recurring - Each time the card is used
One-time - When the card is used for the first time or when the card is activated

8

W
O

RLD
LIN

K CO
N

VERG
EN

CE FEATU
RE LIST

Tax

Tax is defined in terms of Percentage and can be applied to card(s) under product.

Product Country Rates

Rate is defined for each Country Code under the Product. Rate is based on increments. For example, for call up to 1
minute a defined rate can be applied, for call duration more than 1 minute but less than 3 minutes, a new rate can be
applied, and so on. There is no restriction to the number of intervals that can be defined. A default Product should
have Rates defined for all Country Codes.

Rating Rules

Rating Rules is perhaps the most effective mechanism to maximize profit. A Rating Rule can be defined to select the
desired Country Rate for a given call when the call originates. Moreover, a Rating Rule can be defined to pick an apt
Country Rate for a given call when it terminates, at the time of real-time billing. These adjusted Rates override the
Product Country Rates for the Country Code in contention. There is no limit to the number of Rules that can be
defined. When a Rule qualifies for a call, if the Deny Call flag is set then the call will not be authorized. The
following criteria determine whether a call qualifies for a Rule or not –

Start Date/Time, End Date/Time
Day of Month, Date of Month, Every Day
Day of Week
Time of Day
Calling Number
Called Number

The following components comprise Rating Rules.

Minute Fraction can be used to adjust number of seconds per minute for talk-time determination as well as for call
duration.

Adjusted Incremental Rates are the Rates that override the Product Country Rates. For example, a rate of $0.30 can be
defined for the first 30 seconds, then a different rate of $0.35 for calls between 30 and 60 seconds, and a different rate
for different interval and so on. There is no limitation as to the number of intervals that can be defined.

Invoice

Invoicing is done automatically as defined for the Product. The following invoicing schemes are supported for
postpaid and credit limited postpaid Products -

Weekly
Fortnightly
Monthly

Product Management

Create Products
Customize Product Attributes
Create Product type (Regular or Corporate)
Create Charges
Associate Charges with Products
Create Taxes
Associate Taxes with Products
Define Default Product Country Rates
Define Country Rates
Define Rating Rules
Define Incremental Rates
Define Minute Fraction
Generate Cards

9

W
O

RL
D

LI
N

K
CO

N
VE

RG
EN

CE
 F

EA
TU

RE
 L

IS
T

Distribute Batch of Cards to a Reseller or Distributor
Define Sales Agents
Disallow Commission for the Reseller
Define Commission Rate for the Reseller
Define Commission Type for the Reseller – Percentage or Flat
Define Commission Validity – Adhoc or Life-long
Define Exhaustion Criteria for Products distributed to a Reseller to better facilitate the invoice collection
process
Define Number of Cards assigned to the Reseller

Customer Attributes

Customer First, Middle, Last Names
Description
Nick-Name
Customer Type – Regular, Corporate, Trivial, End-User
Login Code – E-mail Address is used as the login name
Password to Login
Creation Date
Disabled Date
Secondary E-mail Address
Phone Number
Mobile Number
Fax Number
Long Address
PO Box
State, Zip Address
Corporate Customer Company Name
Corporate Customer URL
Customer Billing Frequency

Product User Status

Speak Amount – Corporate Customers can use this flag to configure whether to announce Remaining
Balance to Cards under the Customer
Speak Time – Corporate Customers can use this flag to configure whether to announce Remaining Time to
Cards under the Customer
Credit Card Number
Credit Card Expiry Date
Credit Card Verification Code
Credit Card Type

Customer Management

Create Corporate Customers
Create Trivial Customers
Create Corporate End Users – Account holders under a Corporate Customer

Customer Self-Care

Edit Profile
Purchase new Products
Register new ANIs for ANI-Based Products
View Call Detail Information
View Historical Call Details

Reseller Attributes

First, Middle, Last Names
Description
Nick-Name
Login Code – E-mail Address is used as the login name

10

W
O

RLD
LIN

K CO
N

VERG
EN

CE FEATU
RE LIST

Password to Login
Commission Rate
Sales Agent
Creation Date
Disabled Date
Secondary E-mail Address
Phone Number
Reseller Mobile Number
Reseller Fax Number
Reseller Long Address
Reseller PO Box
Reseller State, Zip Address Reseller wise list of Products
Reseller Company Name
Reseller URL
Customer Billing Frequency

Reseller Management

Create Resellers
Distribute Cards to Resellers
Assign Commission Rate
Assign Commission Type

Reseller Self-Care

Edit Profile
Purchase new Products
Register new ANIs for ANI-Based Products
View Call Detail Information
View Historical Call Details

Reports

Call Detail Information per Card (or PIN) – Card, Timestamp, DNIS, Call Duration, Duration Cost, Charges,
Taxes
Scratched Cards
Percentage Scratched
Exhausted Cards
Percentage Exhausted
Card used per Product
Calls Completed
Calls Failed
Calls not Answered
Fraudulent Uses
Call Success Rate (CSR)
Average Call Duration (ACD)
Maximum Call Duration
Minimum Call Duration
Total Call Traffic in minutes, hours, week, month

Call Records

Analysis of terminated calls
Real-time Remaining Balance for Prepaid and Rechargeable Prepaid Cards
Real-time Remaining Credit for Credit Limited Postpaid Cards
Reseller vs. Reseller Performance Analysis
Country Code Analysis

Customer Service Operators

Depending upon the privileges, a Customer Service Operator can assist the Customer or Reseller in the following
manner.

11

W
O

RL
D

LI
N

K
CO

N
VE

RG
EN

CE
 F

EA
TU

RE
 L

IS
T

Search for Customers by card number (PIN), card distribution number, serial number, card type, product
type, product, etc.
Search for Resellers by card number (PIN), card distribution number, serial number, card type, product type,
product, distribution date, sales agent, commission type, commission validity, etc.
View or Edit Customer Account Information
View or Edit Reseller Account Information
View Call Detail Information for a Customer
View Customer Account Transactions
Credit Card Transaction
Add disputed balance
Log complaints

Customers

Customers are classified into – (i) Corporate Customers that own at least one Corporate Product (ii) Trivial Customers
that own Regular Product(s) (iii) Corporate End Users are Customers under a Corporate Customer
A Corporate Customer can –

Purchase any number of Products using the online web-shop
View Remaining Balances of Cards under Products
View Credit Remaining in case of Credit Limited Products
View Current Balance of Postpaid Products
Recharge Cards
View Call Detail Information
View Historical Call Details
View or Download Invoices
Transfer Balance from the Credit Pool to Cards or vice-versa
Set Credit Limits on individual cards
Opt for a secret PIN number authentication for a Card and set PIN number
Add new ANIs for ANI-Based Products
Override Product flag to not speak Remaining Balance
Override Product flag to not speak Remaining Time
Edit Personal Profile and Contact Information
Trivial Customers and Corporate End Users have the privileges to –
Purchase any number of Products using the online web-shop
View Remaining Balances of Cards under Products
View Credit Remaining in case of Credit Limited Products
View Current Balance of Postpaid Products
Recharge Cards
View Call Detail Information
View Historical Call Details
View or Download Invoices
Opt for a secret PIN number authentication for a Card and set PIN number
Edit Personal Profile and Contact Information

Web Storefront

Service providers can integrate their own merchant gateway services. All transactions are secured through Secure
Socket Layer Protocol. The storefront is tightly integrated with billing and reflects real-time balances.

A Customer can:

View product details like rates and charges
Add purchased product into own account
Provide payment via credit card

12

Intrusion Detection and Reaction in
VoIP Networks

An internship report
submitted by

MORES AIRES Daniel

MSc

Responsible: CUPPENS Fr´ed´eric
CUPPENS Nora

June 2008
D´epartement R´eseaux et Services Multim´edias (RSM)

Telecom Bretagne

2, Rue de la Ch´etaigneraie 35510 SESSON SEVIGNE - FRANCE

2

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my project guides Fr´ed´eric and Nora Cuppens,
Enseignant-chercheur, D´epartement R´eseaux et Services Multim´edias (RSM) Telecom Bretagne,
for their constant guidance, encouragement and constructive criticism during the whole course of
the internship.

I also wish to acknowledge the indispensable moral support extended by Yacine Bouzida,

D´epartement R´eseaux et Services Multim´edias (RSM), Telecom Bretagne, who has been painstak-
ingly helped for the timely completion of the project.

I would like to place on record the deep gratitude towards Fabien Autrel for his help towards

my odd work with CRIM and Fran¸cois Wang for his gratefully help on language coding.

I also sincerely acknowledge the help of all the people who directly or indirectly helped me in
my project work and constantly encouraged me.

Daniel MORES AIRES
MSc 2A

Rennes, june 2008

Contents

Abstract

Introduction

1 VoIP Attacks: Detection, Correlation and Reaction Models

5

6

7

1.1 VoIP Introduction . 7

1.1.1 Classic VoIP architecture . 8

1.2 Introduction to SIP . 9

1.2.1 SIP Architecture . 9

1.2.2

1.2.3

SIP Methods . 10

SIP Call Example . 10

1.3 SIP: Different Vulnerabilities . 11

1.3.1

1.3.2

1.3.3

Elementary Attacks . 12

SIP Attacks by Special Crafted Messages . 16

SIP Specific Vulnerabilities . 16

1.4 Protection and Detection Mechanisms . 19

1.4.1

1.4.2

Basic counter measures . 19

Intrusion Detection Mechanisms . 19

1.5

1.6

1.7

Reaction Techniques . 21

CRIM as a Correlation and Reaction Model . 22

Conclusion . 24

2 Experimentation

25

2.1

2.2

Introduction . 25

Implemented Attacks . 25

2.2.1

2.2.2

2.2.3

2.2.4

ARP Cache Poisoning and MAC Spoofing 26

DNS Cache Poisoning: Transaction ID prediction 28

SIP Attack: Bye Message . 30

Denial of Service: Identity Hijacking . 33

CONTENTS

2.2.5

4

SIP Fuzzing . 33

2.3 Attack Scenario . 34

2.3.1

2.3.2

Including Snort Attack Signatures . 34

Experimentation: generating IDMEF alarms 36

2.4 Correlation and Reaction Models . 37

2.4.1

2.4.2

2.4.3

Results

Conclusion

Bibliography

Elaborating Lambda Action Models . 38

Correlating Action Models . 39

Correlating Attack Models with the Intrusion Objective 40

43

45

46

Abstract

Packet-based services such as Voice over IP systems are being adopted globally as an ad-
vantageous way of communication. Cost savings in hardware by merging voice, video and data
applications can bring telecom carriers and organizations tremendous benefits, increasing produc-
tivity and generating new advantage services. However, how to conciliate an adequate Quality of
Service (QoS) with the same safety levels of the Plain Old Telephony Systems (POTS) is still a
great challenge nowadays.

Authentication and coding schemes adopted by those companies and service suppliers may be
efficient, but with vulnerabilities in the network infrastructure, the whole system will be seriously
exposed to attacks. Generally, hackers explore vulnerabilities by pretending to be legitimate servers
and by connecting to the target network, promoting some kind of transaction and causing damage
to the vulnerable system.

The goal of this internship is to firstly experiment some of the most usual attacks targeting
VoIP networks. Secondly, The reaction models are studied and combined to quickly and efficiently
detect and react to VoIP-based attacks. More specifically, the correlation and reaction tool CRIM
(Cooperation and Recognition of Malevolent Intentions) developed by Telecom Bretagne will be
used to generate adapted models capable of detecting and reacting to the intrusions presented in
this report.

VoIP attacks, intrusion detection, correlation, anti-correlation and reaction systems.
Key words

Introduction

There are two approaches commonly used to avoid attacks. The first approach attempts
to prevent intrusions by using access control technique, such as con figuring firewalls with best
fitted access-lists, user-access control policies and so on. The other method is called the intrusion
detection approach and is focused on detecting attacks and providing special counter measures to
obstruct attacks before they cause damage. The advantage of the second approach is the capacity
to adjust itself to new attacks, thus providing specific reaction models to each attack detected. In
these circumstances, two different variations of this last method are applied to detect intrusions:
the scenario-based approach which uses a collection of previous attacks as input to generate alarms,
and the behaviour-based approach which focuses on abnormal user activity to generate alarms.
On the other hand, both techniques have weaknesses when employed independently. In fact they
compensate mutual lacks, because a weakness of one is a strength of the other.

Different reaction techniques can be found in the literature. Some of them are compensation
actions that either apply end-to-end encryption to the traffic or insert new firewall policies on the
system. Other reactions are based on vulnerabilities due to bad code implementation and thus
could be corrected by applying software updates. The reaction scheme used in this document is
based on the anti-correlation method, proposed by CRIM.

This report is organized in two chapters. Chapter 1 describes VoIP-based architectures (section
1.1); the utilisation of SIP protocol (section 1.2); several vulnerabilities that are specific to VoIP
and SIP (section 1.3), and finally detection methods and reaction models (sections 1.4 and 1.5),
specifically the approach used by CRIM (section 1.6). Chapter 2 firstly presents the implementation
of VoIP attacks (section 2.2). Secondly, section 2.3 presents an attack scenario, to which test two
reaction models are tested. Section 2.4.3 presents the results of the experimentations, that validate
the reaction techniques that are experimented.

Chapter 1

VoIP Attacks: Detection, Correlation

and Reaction Models

1.1

VoIP Introduction

Solutions based on Voice over IP (VoIP) offer telephony services across networks using the Internet
Protocols. They are the potential evolution of the classic telephone system (PSTN). VoIP tech-
nology consists of signaling and transmission protocols. Signaling protocols establish, control, and
terminate telephone calls. Transmission protocols are used to efficiently deliver digitalized voice
signals between servers in the IP network.

Refers to the figure 1.1 that illustrates the different protocols used on a classical VoIP system.
This figure takes the example of a basic call flow between two entities. The first step is converting
analog voice signals to digital pulses, using an analog-digital converter. Since digitized voice
requires a large number of bits, a compression algorithm can be used to reduce the volume of
data to be transmitted (G.711, G.723.1, G.726, G.729, and GSM). The next step is to insert voice
samples into data packets to be transported on the Internet. The protocol used to encapsulate
voice packets is typically the Real-time Transport Protocol [24]. RTP packets have special headers
to keep correlation among them and to be correctly re-assembled in the destination. RTP streams
are carried as data by UDP datagrams, which can then be processed by an ordinary network such
as the Internet.

At the destination, the process is reversed: packets are disassembled and delivered to the de-
jittering buffer which temporally stores packets so that they can be played out in the correct order.
Generally, packets are dropped if they arrive too late to be reassembled. If a frame is lost, the
decoder interpolates this “gap” with the last and the previous frames. Finally, the digitized voice
is extracted from the frames and uncompressed, processed by a digital-to-analog converter and
sent the analog signal to the handset speaker.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

Fig. 1.1 : VoIP Protocols and Layers.

8

1.1.1

Classic VoIP architecture

Before utilizing VoIP as the infrastructure of protocols to transport voice over data networks,
companies and service suppliers maintained two independent networks. These networks were
controlled by two distinct signaling systems as well. The voice system had a centralized circuit
switched network composed by Carrier Classes Switches (CCS) or Private Branch eXchange (PBX)
and the packet-based network being composed by structured servers and gateways.

As depicted in figure 1.2, basically there are two ways to implement VoIP architectures. The
simplest way is a distributed solution, also called peer-to-peer topology. In this approach, there
is no single centralized point, each peer controls, initiates or terminates VoIP sessions. Another
solution is a client/server mode. Clients are any kind of equipment that are set up or teardown
connections, such as IP phones, softphones, etc. The server controls and routes incoming and
outgoing calls to PSTN. Special requisites and functioning related to the SIP architecture will be
further detailed in section 1.2.

Fig. 1.2 : VoIP Architecture.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

9

1.2

Introduction to SIP

There are several standardized protocols capable of executing call control on packet-based networks.
The first protocol used to start and teardown voice sessions was H.323. This protocol is based
on a set of PSTN protocols defined by ITU Telecommunication Standardization Sector (ITU-T).
On the other hand, the Session Initiation Protocol (SIP), as de fined by the Internet Engineering
Task Force (IETF) [3], is a protocol used to create, modify and terminate media streams between
servers. The experimentations described in Chapter 2 were conducted using SIP. The reasons for
that choice are:

· SIP is being adopted by telecom carriers as a standard, mainly because it uses the same

syntax and scripting technologies already used on Internet, thus facilitating its integration
with already existing data systems.

· Most vendors of VoIP solutions are based on the SIP protocol.

· SIP makes possible to combine existing voice services with new multimedia services.

· The Third Generation Partnership Project (3GPP) accepted SIP as an element of the IP

Multimedia Subsystem (IMS) to deliver IP based-services to mobile users.

1.2.1

SIP Architecture

SIP works in a client/server approach. The client part is called a “user agent”. It originates
and terminates voice sessions. The server part is normally called a “SIP server” and works as a
registrar, proxy, redirect, location and presence server to their clients.

The user agent is divided in two basic components: the (UAC) User Agent Client from which
a call is originated, and the (UAS) User Agent Server, that receives the call. The SIP peer-to-peer
architecture presented in figure 1.3 has the benefit of scalability and reliability, as there are no
single point of failure. In this architecture, each peer is a UAC and UAS at the same time.

SIP servers execute name resolution and user location. Therefore, a SIP client/server topology
is mostly employed because of its facility to add and route clients. SIP servers are also divided
into the following components:

· Proxy: contains both UAC and UAS functions: forward call requests to other servers.

· Redirect server: replies to clients to contact an alternative server. It is mainly used to exploit

some voice features. It does not initiate sessions.

· Location server: sends replies to clients with the actual redirect and proxy location. Used to
allow the growth of an intelligent network.

SIP uses requests or methods for communication between peers and server. These methods are

included in the next section.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

Fig. 1.3 : SIP Architecture.

10

1.2.2

SIP Methods

According to SIP’s RFC standard [3], there are actually fourteen request types. They are used to
establish signaling control between the elements.

INVITE: used to “invite” a user.
ACK: used to guarantee a reliable message exchange on the INVITE method.
BYE: used to teardown an established media session or to refuse a new call.
CANCEL: terminates a previous request.
OPTIONS: solicits information about a user’s capability.
REGISTER: used to register a client in a SIP Registrar.
INFO: used to carry DTMF signals over an open RTP session.
SUBSCRIBE: requests the current state for a remote node.
MESSAGE: defines instant messaging capabilities between nodes in real-time.
NOTIFY: used to notify a node that an event which has been requested by an earlier SUBSCRIBE
method has changed.
PRACK: has the same function as the ACK method but for provisional responses.
PUBLISH: used to publish presence state information.
REFER: used to enable many applications, such as call transfer.
UPDATE: allows the user to update parameters of a media session such as the voice codecs.

1.2.3

SIP Call Example

In the example of figure 1.4, two geographicly distinct SIP Proxies are considered to mediate call
signaling between Alice and Bob.

Alice initiates a call to Bob by sending an INVITE request to her proxy server. That INVITE
contains a Session Description Protocol (SDP) which is used to negotiate media details between
clients, such as the proposed voice codec, UDP port, etc. Assuming that Bob is available to talk to
Alice, he will send back to his proxy server a “180 Ringing ” and a “200 OK ” message. The “200

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

11

OK ” message contains Bob’s media preferences in the SDP format. Once the ACK message is
received, the media exchange starts through the RTP/RTCP ports previously negotiated. Notice
that all the signaling was transported through one port in a simple text format (as this call does
not use any encryption protocol such as IPSec1 or SRTP2).

Fig. 1.4 : SIP call example.

1.3

SIP: Different Vulnerabilities

Ways to improve security of voice over IP networks is a very large subject. The list of possibilities
to break a network security is tremendous. Nevertheless, it is always possible to classify those
vulnerabilities into three major areas: integrity, availability and confidentiality. Intuitively, lack
of integrity on communications results on illicit user’s personi fication. Availability attacks are
focused on denial of services or equipment crashes and confidentiality problems results the attacker
to eavesdrop packets from users.

A list of some vulnerabilities explored in this chapter is described in Figure 1.5. The very
first four vulnerabilities can be evaluated as elementary attacks, due to the fact that they could

1

IPSec (Internet Protocol Security) is a set of recommendations (OSI layer 3) that uses certain algorithms

allowing the transportation of privacy data along a network.
2 Secure Real-time Transport Protocol (SRTP) adds an encryption, authentication and integrity methods to RTP

(Real-time Transport Protocol). SRTP was proposed by Cisco and Ericsson and is standardized by IETF under
the RFC 3711.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

12

be considered as pre-requisites to achieve VoIP attacks. For the rest of the table, some of the
vulnerabilities are associated to exposures of the SIP protocol, in a similar way that message
replaying results in identity hijacking, for instance. However, other evasions are related to SIP
programming errors, resulting in dysfunctional actions, and causing the attacker to break through
the system and corrupting it.

Fig. 1.5 : Some VoIP attacks and vulnerabilities.

1.3.1

Elementary Attacks

The elementary attacks described in this section constitute a sort of a list of needed requisites
to obtain access to a client’s network and then engage other attacks against a VoIP operation.
However, they do not exploit security breaches of the SIP; they are just required attacks to execute
a variety of VoIP attacks, such as forging identities, redirecting RTP flows, and so on.

1. Attacks based on ARP Cache Poisoning APR (ARP Poison Routing) is a technique

based on the legitimate use of the ARP Protocol [2]. Its aim is to modify traffic termination
allowing attackers to sniff data frames in the same broadcast domain. It consists of sending
spoofed ARP messages over the LAN network to associate the attacker’s MAC address with
the IP address of another machine. Hence, as the ARP table in the LAN switch is changed,
all traffic originally sent to Alice (see figure 1.7), will be forwarded to the attacker’s machine.
The intruder may decides whether to re-transmit the packets to Alice’s machine (passive
capture) or to modify the traffic before sending it (man-in-the-middle attacks).

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

13

Figure 1.6 represents the normal case, where ARP tables were not poisoned. IP addresses
from Alice and Bob were successfully associated to the MAC address from the switch ports
to which they are connected. Thus, the traffic passes just between these corresponding ports;
no other switch interface can observe the traffic.

Fig. 1.6 : No ARP poisoning.

In the example of figure 1.7, the attacker replies to ARP messages sent by the switch with
his own MAC address. This fact, induces the switch to associate Alice’s IP address with the
attacker’s MAC address. Therefore, the original destination of the traffic (Alice) is transfered
to the attacker.

Fig. 1.7 : ARP poisoning in action.

2. DNS Cache Poisoning. There are numerous ways to poison a DNS cache. All of them
conduct to the same objective: to associate an illegitimate IP address with a certain do-
main. Some variants of this attack will be presented below. The last method was studied
and implemented during the internship at Telecom-Bretagne and is based on a prediction
transaction ID number. The reasons for such choice will be further discussed in section 2.2.2.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

14

(a) Redirecting name servers: attacker’s domain to the target’s domain
This attack is initiated when Alice sends a DNS query to the server, asking the IP
address of attacker.com
may have received an email to visit the attacker’s web site. If the DNS server hasn’t

 (see figure 1.8). To generate this first query, for example, Alice

already cached this IP address, it will ask on the Internet who knows the authoritative
nameserver responsible for attacker.com. At this point, the attacker’s DNS server will
reply this query with a redirection to the target domain (proxy.sip-fool.com

entry pointing to its own IP address. The attacked DNS server, after receiving this

) with
an

response, will add this new entry on its table that associates the attacker’s IP address
to proxy.sip-fool.com

attacker’s domain to the name server of the victim and then adding an additional A-

 . Briefly speaking, it consists of changing the nameserver of
the

record (Additional-record) pointing to the attacker’s IP address.

Fig. 1.8 : DNS poisoning: attacker’s domain to the target’s domain.

(b) Redirecting nameservers: target’s domain to attacker’s domain

This attack is very similar to the previous item. The difference is that the attacker
redirects the target domain to his own domain and adds an additional A-record pointing
to his IP address (see figure 1.9). This method is more difficult to implement because
one needs to intercept the real response from the real domain and forge a fake message
with his own IP address.

(c) Predicting DNS queries

For each DNS query, a random number is generated to identify this query and to
correlate it to a specific response. This number must be unique for the tuple (query,
reply). A DNS server will accept the first reply with the same ID expected that reaches
it. It means that in the presence of two identical replies, the server will only take into
account the first packet that arrives on it and thus inserting a new cache entry with the
supplied IP address. However, if a reply with a different transaction ID is received, this
packet will be automatically discarded.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

15

Fig. 1.9 : DNS poisoning: target’s domain to attacker’s domain.

Hence, if someone is able to predict the next generated value, he can forge faked replies
pretending to be a legitimate DNS server and send those messages to the target DNS
before the real answer arrives. As a result, the attacked DNS will include on its cache a
fake IP address pointing to the requested domain. This information is cached in a DNS
entry table and remains on it for a while, until the expiration of the value contained
in the field time to live (TTL) present on every DNS response. This poisoning method
was firstly described by A. Klein on [7] who details how those IDs can be predicted to
generate fake DNS replies and poisoning vulnerable servers.

Concisely, this prevision mechanism works when the actual transaction ID (received
by the attacker in some DNS query) has its Least Signi ficant Bit (LSB) equal to 0.
Afterwards, according to the technique described by A. Klein, an algorithm is used to
predict 10 possible transaction IDs. It means that the next DNS query will be one of
those predicted values. Thereby, when the DNS server sends its next query, the attacker
prepares 10 DNS responses and sends all of them as quickly as possible, to avoid that
the real DNS response be considered.

One possible way to force the DNS server to generate consecutive DNS queries is based
on CNAMEs records3. For each CNAME reply, the attacked DNS will send a new
query with a new transaction ID. This process is repeated until the attacker can find a
transaction ID that can be predicted.

The diagram of this attack is depicted in figure 1.10. Alice asks for the resolution of
attacker.com
is no entry related to this domain in its cache, it will send one new query directly to the

 (message 1). As the DNS server could not solve this query because there

attacker’s nameserver (message 2). The attacker receives this query and veri fies if the

3

A CNAME record or canonical name record is a DNS response pointing to another domain. Generally it is

used to provide many entries related to different applications running on the same IP address. For example, the
domains ftp.company.com and http.company.com run on 192.168.60.70

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

16

Least Significant Bit (LSB) of the transaction ID is equal to 0. In this case 10 possible
predictions are generated. They will be used to create 10 DNS replies. If not, the
attacker sends one DNS CNAME response pointing attacker.com to
(message 3). This will cause the DNS server send to the attacker a new query asking

 www1.attacker.com

for the location of www1.attacker.com
LSB from the query receive is 0 (transaction ID is 81fc) (message 6). Consequently the

 (message 4). This process is repeated until the

attacker sends a last CNAME response pointing to the target domain proxy.sip-fool.com
(message 7) and also calculates 10 possible transaction IDs (40fe c0fe 2032 2007 6032
6007 a032 a007 e032 e007). As the DNS server does not have the entry for proxy.sip-
fool.com (or it expired), it will then send a query directly to the target’s nameserver
(message 8). At this point, the attacker sends responses as quickly as possible with all
the predicted transaction IDs (those results are ordered in such a way that the first two
values have a greater likelihood than the others to be exact). If succeeded, one fake
entry that associates proxy.sip-fool.com with the attacker’s IP address will be created
(message 10). In this example, the cache was poisoned after receiving message 9. Note
that the real answer from the real name server was just received at the end of the flow
and by default, DNS servers discard duplicated messages. Alternatively, this attack
can be also understood as a “message flow routine” (figure 1.11). This message flow
graph was used as base to implement one algorithm that executes this attack, during
the internship. Refers to section 2.2.2 to find the simulation results.

1.3.2

SIP Attacks by Special Crafted Messages

SIP Fuzzing Denial of Service DoS

This vulnerability was extensively exploited in PROTOS Test-Suite c07-sip [11]. Basically, PRO-
TOS sends illegal characters, buffer overflows or malformed fields in SIP INVITE messages. The
idea is to verify if softphones, IP phones or even SIP Proxies are immune to these kinds of attacks.
Section 2.2.5 presents an experiment using PROTOS to provoke a crash of a speci fic softphone.

1.3.3

SIP Specific Vulnerabilities

The attacks presented in this section are based on security flaws in the SIP protocol. Some of
them need pre-requisites (i.e., one elementary attack from section 1.3.1); others are successfully
applied by their own.

1. SIP Registration Hijacking. This attack is mostly employed to make someone else believe

that the attacker is a legitimate user. Thereby one can sniff SIP signaling and extract essential
fields used to identify users or to distinguish calls. Those fields could be the Call-ID and
the user’s SIP phone user: URI (Uniform Resource Identi fiers). Some attacks using those
fields were described in sections 2.2.3 and 2.2.4.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

17

Fig. 1.10 : DNS poisoning by prediction the transaction ID.

To execute this attack, one has to intercept SIP packets. There are two alternatives for that.
The first is to place the attacker in the LAN network and perform an ARP poisoning attack
(described in section 1.3.1). The other alternative is to use a DNS poisoning attack. This
last technique is more efficient, because generally, the attacker is located elsewhere.

2. SIP Teardown Attacks. SIP teardown messages use BYE and CANCEL messages. The

attacker may use those messages to terminate calls, causing a denial of service to the legiti-
mate user.

What is important with this attack is that depending of the softphone client, capturing only
the Call-ID is not sufficient to teardown the call. Thus, the attacker has to use also the user’s
URI, destination UDP port, etc to force calls to terminate.

3. Eavesdropping. The aim of this attack is to redirect or to inject illegal RTP flows in normal

conversations. It is employed mostly as a man-in-the-middle attack and there are numerous
tools that exploit this failure [11, 12].

To perform this attack, similar to SIP Hijacking, the attacker needs to sniff the network
(through a LAN connectivity) or to perform a DNS poisoning attack (intercepting packets

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

18

Fig. 1.11 : DNS poisoning by transaction ID prediction.

on the Internet).

4. Breaking Challenge Responses by Using Rainbow Tables. The SIP user’s authenti-
cation described in RFC 3261 uses a challenge/response method (section 1.2.2. For each de-
mand for authentication, SIP Proxies generate one credential (nonce number). That random
generated number together, along with other parameters such as Alice’s URI, SIP method
used on authentication, realm, username and password, are hashed by an MD-5 function to
compose the challenge response.

The idea is to use a method called rainbow tables [18] to crack the challenge response. How-
ever, it is necessary to generate the tables beforehand, which are formed by finite sequences
of successive plaintexts that are passed through hash functions and then through reduction
functions (producing other plaintexts) and again through hash functions. The article [18]
provides more detailed information about the rainbow tables schema.

5. Directory Scanning. The idea behind this attack is to gather valid user SIP phone identi fi-

cation (URI) directly from the VoIP carrier operator. As described in [1], this vulnerability is
based on different SIP responses from valid/invalid users when the server is asked for a REG-

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

19

ISTER or INVITE. After collecting valid URIs, the attacker can perform other elementary
attacks such as a brute force or dictionary attacks to find the user’s password.

6. Nonce Variation. This attack was described in [1] as a security weakness during the

“nonce” generation of the SER SIP server [35]. This SIP server generates the same nonce
if two requests for authentication arrive almost together. In such conditions, replay attacks
can be executed.

1.4

1.4.1

Protection and Detection Mechanisms

Basic counter measures

There is a set of basic counter-measures that could be employed on a normal SIP network. They
are based on basic security rules that could avoid many inconveniences with intruders.

· Security on the physical infrastructure (switches, routers, VoIP gateways, etc).

Ideally, voice and data traffic should be segregated into different VLANs to enforce the
security on the network. Therefore, even is one of those VLANs is exposed to an attack, the
operation of the other subnetwork will not be corrupted.

· System and user authentication. To centralize access management of each network

element and providing AAA (Authentication, Authorization and Accounting). Systems ad-
ministrators can use RADIUS networking [30] protocol or its successor, DIAMETER [31] to
provide better AAA. Using those methods, we can garantee that users are authenticated in
a trusted server.

· Voice and signaling confidentiality. User authetication and encryption, such as IPSec

and SRTP, to guarantee confidentiality of flows.

1.4.2

Intrusion Detection Mechanisms

Classical Approaches

As most of the described attacks need another elementary attack to be executed, a detection system
able to detect those anomalies and producing efficient alarms is a good approach to maximize the
security level of the network. Those detection systems may be translated by IDSs probes (Intrusion
Detection Systems) that are localized in strategic points in the network. When an illegal situation
is detected, an alarm is generated and sent to the network administrator.

In the other hand, one of the issues faced by IDSs is the problem of inappropriately generating
alarms. If an alarm was generated due to a false evasion, then it is called a false positive. If the
attack is a success and no alarm was generated, then it is called a false negative. What causes
those malfunctions are generally inefficient rules or a rule that does not correspond to an evasion.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

20

There are two classic approaches that helps avoiding massive alert generation or no single
alarm intrusion. They are described in the literature as behavior-based approach and scenario-
based approach. By contrast, both of them have pros and counters. The table 1.12 depicts a
comparison between these two approaches.

Fig. 1.12 : Behavior and scenario-based approaches.

Note that both of the approaches are complementary in the sense that the weakness of one is
a strength employed by the other. Besides that, there are some scenarios in which traditional IDS
probes do not produce desired results when trying to detect some VoIP attacks. This is mainly
due to the fact that some of those attacks (SIP identity hijacking for example) have a regular flow
exchange not distinguishable from normal utilization.

Some good articles [1, 13, 14] introduce different approaches specifically to detect VoIP attacks
in an efficiently way. But until the present day, there is no practical implementation of a VoIP-
based IDS. This could penalize the whole applicability of my work in detecting and reacting to
those anomalies. However, to perform some categories of VoIP attacks, the attacker must listen the
traffic from legitimate users. One could use this argument to detect those signature-based attacks
and then correlate alerts to finally react to the global intrusion attempt (i.e., to block ports or the
attacker’s IP address). The approach used by CRIM (Cooperation and Recognition of Malevolent
Intentions) [15] is extremely valid on this scenario.

Different Intrusion Detection Systems

Table 1.13 shows a comparison between some of most popular intrusion detection systems. Snort
IDS was used during my experiments. The reason for this choice is based in the following argu-

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

21

ments:

· This IDS is easily to configure and it is possible to download optimized rules to improve the
detection of new attacks;

· Several snort plugins are available to execute special tasks. As an example, some plugins

can convert the alarm file generated by Snort to a IDMEF (Intrusion Detection Message
Exchange Format) data file [18], readable by CRIM. Other plugins are used to implement
counter-measures to attacks based on Snort rules: Snort Inline4[16] and SnortSam5[17].

Fig. 1.13 : IDS comparison.

1.5

Reaction Techniques

The main goal of reaction techniques is to implement best fitted counter-measures for attacks.
Different reaction approaches can be used. Some examples are described below:

1. Software update. The administrator is conducted to apply patches that solves the speci fic

vulnerability that might cause the attack.

2. The system administrator inserts new firewall policies. When the attacker is located
in the outsider’s network, his action can be blocked by restricting certain traffic on certain
UDP/TCP port.

4

Snort Inline: Snort plugin that con figures IP tables whether the packet should be dropped, rejected, modified,

or allowed to pass based on a snort rule.
5 SnortSam: plugin allows for automated blocking of IP addresses on several firewalls available on the market.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

22

3. Using Intrusion Detection Systems (IDS) with plugins to execute countermea-
sures. Attacks detection done by Snort IDS are based on signatures that best describes
how attacks are executed. Those signatures (or traces) are used to differentiate normal user
actions from illegitimate behaviors. Normally traces can be identified either in each packet
launched by the attacker or in a dialog between two clients. In this last situation, if one client
sends continuously ping packets to other client, this action could be identified as an attempt
of intrusion, because replying pings could reveal some information about the network. When
Snort recognizes an attack signature (activated by a rule), one alarm is generated and stored
in a directory. At the same time, Snort triggers the reaction plugin that request the firewall
to insert a new rule and blocking the intrusion.

4. Use the anti correlation approach used by CRIM. The approach proposed by [34] is

based in a reaction library with different kinds of countermeasures. As the administrator
cannot chose directly the most efficient countermeasure for one specific attack, the correla-
tion and reaction model proposed by CRIM uses the alarms generated by IDSs as a base
to chose the appropriated counter-measure. More specifically, CRIM uses the technique of
alarm correlation to identify the attack scenario and the anti-correlation technique to pro-
pose counter-measures. Correlating attacks means to colligate different alarms previously
generated to produce a model that describes the attack scenario. Consequently, the anti cor-
relation technique tries to find the best reaction (with different counter-measures) that must
be applied to stop the attack. For both techiques, CRIM uses a formalism called Lambda
language. Refers to section 1.6 to find more information about CRIM and the Lambda
language.

1.6

CRIM as a Correlation and Reaction Model

CRIM is a tool capable of correlating IDS-based alarms, analyze if they could become an attack and
in such event, propose actions to react against the intrusion. As discussed before, the Behavior and
Scenario models generates false positives and negatives alarms, respectively. One of the objectives
of CRIM is to complement both approaches to minimize false negatives and mostly eliminate false
positives.

To accomplish its goal, the attacker executes successfully steps called elementary attacks. Those
atomic attacks are detected by IDS probes, hence generating an alarm for each action. Afterwards,
CRIM combines those alarms in a cooperation schema to obtain a precise network diagnosis. To
globally understand how this tool works, each one of its six modules is explained in details:

1. Management of alarms. Collects all the alerts generated by the probes and saves them

in a database. Those alarms are described in the IDMEF standard. The main goal of using
this class hierarchy data format is to facilitate communication between IDSs and the CRIM’s
reaction model.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

23

2. Regrouping of alarms. This module determines if there is a link between the detected
alarms and the alarms stored in a database. This function can reduce the number of alarms
which will be analyzed by the next module.

3. Fusion of alarms. Creates a new alarm (global alarm) that synthesizes all the information

included in each alarm collected by IDS probes.

4. Correlation of alarms. Analysis of the global alarm in such a way that it is possible
to find the attacker’s strategy by correlating his actions. This function returns a set of
possible attacks for each global alarm. The correlation used by this module is based on a
logical description, using the Lambda language [34]. This language defines four attributes to
correctly identify an attack:

· Pre condition: condition that must be fulfilled for the accomplishment of the attack.

Pre conditions are described using special predicates that define actions taken by the
attacker when the attack is a success.

· Post condition: specify all the symptoms for this attack if successfully achieved. Post
conditions are written using predicates to describe what the attacker knows or controls
after the attack.

· Detection: correspondence between one Lambda model and one alarm. This field is
used to create a connection between pre and post conditions with the alert attributes,
represented in the IDMEF data format.

· Verification: this field is used to verify if the attack was accomplished. This verification
will not be used in my experiments, because I suppose that the implemented attacks
are sucessfully executed.

5. Intention recognition. The intention recognition function is the module responsible to

determine the intentions of the attacker. For example, the attacker’s objective is to provoke
the crash of one softphone by sending malformed SIP packets. CRIM uses logical conditions
to formulate intention recognition. The idea is to extend the same formalism adopted to
correlate alarms using also the Lambda language. We can say that one attack (A) and the
intrusion objective (I) are correlated if post(A) and obj(I) have at least one predicate in
common, thus they can be unified.

The correlation process creates unified alarms called candidate plans. Each of these plans are
verified by the intention recognition module if they could conduct to an intrusion objective. In
case positive we can say that this specific candidate plan is a success attack scenario and this
scenario is sent to the reaction function (item 6). Otherwise, we consider that this candidate
plan did not accomplish its goal yet. In this case, the intention recognition module can
extrapolates the next possible actions that the attacker will perform, and generate different
scenarios of intrusion. Moreover, this module associates a coefficient of correlation to each
step of the scenario. Thus, classifying by order each one of those potential attack scenarios.

Chapter 1. VoIP Attacks: Detection, Correlation and Reaction Models

24

6. Reaction based on anti-correlation. Determines the best fit counter-measures that could
stop the attack progression. Generally those counter measures try to break the chain between
one or two successive elementary attacks. CRIM uses a library also described in terms of the
Lambda language to block the global attack.

The diagram 1.14 shows the CRIM architecture with each one of its modules. The relation-
ship between these modules and the database is also included.

Fig. 1.14 : CRIM architecture [15].

1.7

Conclusion

In this chapter I introduce several VoIP attacks and vulnerabilities related to the SIP protocol.
Secondly, I studied two approaches to avoid VoIP-based attacks. The first approach establish
security policies to users and to the network infrastructure to prevent attacks. The other approach
is a correlation and reaction model. CRIM is used to correlate alerts and thus identifying the
attack scenario to which specific counter-measures are proposed to block the attack plan.

The next chapter includes different experiments that were proposed to test the correlation and
reaction model used by CRIM as well as to examine another reaction model, proposed by Snort
and SnortSam plugin.

Chapter 2

Experimentation

2.1

Introduction

This chapter introduces different experiments conducted entirely on the Security Lab/Telecom
Bretagne. The experimentation is divided in 3 parts. Firstly, in (section 2.2) I implement some
of the attacks previously described in section 1.3 and verify the vulnerabilities caused by them.
Secondly, section 2.3 presents an attack scenario, (chosen from the implemented attacks in the
precedent section) to which I will test two reaction models: the correlation and reaction model
proposed by CRIM (section 2.4.3) and the second reaction model using SnortSam plugin (section
2.4.3).

2.2

Implemented Attacks

ARP and DNS poisoning were called as basic/elementary attacks because they are needed to
accomplish a more global attack. By using them, the attacker can listen or redirect IP traffic to
a malicious machine. Afterwards, a VoIP attack can be executed against clients or the SIP proxy
server. However there is another category of VoIP attacks that does not dependent of ARP/DNS
poisoning attacks. They explore some SIP vulnerabilities to achieve their goals: DoS against users,
system crashes, etc. To demonstrate this last case, a SIP fuzzing attack was implemented and will
be showed at the end of this session.

As the physical environment was reduced, more than one function was supported by each PC.
The table 2.3 shows the functions/software installed and running on each computer.

The idea with these experiments was to develop six physical entities: (1) Alice and (2) Bob as
SIP softphones; (3)the SIP proxy on which legitimate clients are registered; (4) the attacker, (5)
the IDS Snort probe and finally (6) CRIM as a correlation and reaction tool.

The tool SIPp traffic generator tool [22] was used to create and modify SIP packets. In fact,
originally it is used as a traffic generator for the SIP protocol, but in this experiment, I created
useful scripts to execute SIP DoS attacks and identity hijacking. Its role will be further detailed
in the next sessions.

Chapter 2. Experimentation

26

Fig. 2.1 : Architecture 1 - LAN topology.

Fig. 2.2 : Architecture 2 - Internet topology.

The main objective of the PROTOS test case [23] in this scenario is to generate SIP packet
fuzzing. PROTOS injects invalid characters on SIP INVITE messages to verify if the target is
vulnerable to malformed packets that might either crash the software or allow the execution of
arbitrary code as described in [10].

All the experimentations included in this Chapter were conducted under two scenario-based
situations: figure 2.1 depicts the case where the attacker is located in the LAN (same network as
Alice, Bob, SIP proxy) and he is able to sniff the target user, thus provoking several VoIP attacks.
Figure 2.2 shows the attacker can be in a public domain (Internet) that uses a DNS poison attack
to redirect the target flow to itself and then execute VoIP attacks as well.

2.2.1

ARP Cache Poisoning and MAC Spoofing

This attack can be reproduced with the first topology: attacker in the LAN - figure 2.1. The first
constraint to this attack regards its applicability. This attack can only be applied in the same
LAN segment where the target is localized. This resides on the fact that ARP protocol is used to
associate layer 3 protocols (i.e., IP address) to the layer 2 MAC address, enabling communication
between peers in the same LAN segment. Section 1.3.1 item 1 gives more detailed information

Chapter 2. Experimentation

27

Fig. 2.3 : Tools used in the experiments.

about ARP protocol and associated attacks.
There is a huge quantity of software available on the Internet to produce such ARP poisoning

attacks. The chosen tool used on this experiment was Cain & Abel [19]. This tool explores the
APR technique (ARP Poison Routing) to achieve different results, such as password recovery,
cracking encrypted passwords using dictionary, brute-force and cryptanalysis attacks, recording
VoIP conversations, etc.

Nevertheless, this tool was used only to achieve our objective, which is to poison the ARP
table on switches. As a result of this attack, the intruder is able to listen to all the traffic from the
victim and then execute some VoIP attack against it.

The ARP poisoning tool - Cain & Abel - was running on PC3 (see figure 2.4). Its configuration
is simple: it is sufficient to provide the target IP address at which the attacker wants to listen to
the traffic. In the configuration experimented in figure 2.4, the attacker redirects and sniffs the
traffic originally sent to Alice (PC1 with IP address 192.168.57.151) by sending ARP replies over
the LAN network to associate the attacker’s MAC address to Alice’s IP address.

Afterwards, all traffic meant to Alice is forwarded mistakenly to the attacker. Note that this
tool does not allow changing the spoofed MAC address. It is possible to associate two IP addresses
to the same MAC address; however, Ethernet switches may have malfunctions in the presence of
two identical MAC addresses sharing the same IP address on the same LAN.

Chapter 2. Experimentation

Fig. 2.4 : Caim & Abel configuration dialog.

28

2.2.2

DNS Cache Poisoning: Transaction ID prediction

There are several possibilities to accomplish a DNS cache poisoning attack as explained in section
1.3.1 item 2). The method chosen to be experimented, exploits a vulnerability on BIND9 servers
with versions inferior to 9.5.0a5 [8]: transaction ID prediction. This attack was chosen because of
its innovation, and because it can be explored on several DNS servers running on the Internet, as
they use BIND9 as a DNS server solution. The document presented by A. Klein[7] shows one code
written in Perl language to predict transaction ID numbers on BIND servers with versions under
9.5.0a5. Besides, a proof of concept (PoC) [21] written in Python language implements the same
prediction algorithm and includes a basic DNS server.

As part of the work developed on the internship, the PoC was used as a base to develop a
complete algorithm to explore this attack. The code was also written in Python and is able to
interact with the target DNS server, creating CNAME replies, predicting the next transaction ID
and finally forging DNS replies that causes the cache poisoning. Section 1.3.1, item 2c presents
in details how this vulnerability is applied and also the reader can find a graph 1.11 with all the
steps done by the attacker to poison the DNS server.

Conditions for a successful attack

Some constraints must be followed to maximize the likelihood of success for this attack. Some of
those conditions are also defined in [7] and others were observed during the experimentation of our

Chapter 2. Experimentation

29

algorithm:

· DNS Bind version inferior from 9.5.0a5;

· Cache entry for the target domain must be empty;

· The target DNS server must accept CNAME records [26];

· The 10 DNS forged responses must arrive sooner than the real response in order to guarantee
effective poisoning. The prediction algorithm uses a Python script and the forged responses
takes 3-4 milliseconds running on an Intel Core 2 CPU at 2.13 GHz. According to A. Klein,
this delay could be reduced by implementing the code in a language that compliles to binary,
such as C/C++.

· The UDP destination port used by the DNS must be static. Considering all the Bind versions

when the process is started, one destination UDP port is randomly chosen and kept until the
next restart.

Execution of the DNS poisoning attack

The scenario used to test this attack was the same described in figure 2.2 - Internet topology. The
tools used in this test are showed in the table 2.5. In this experiment, the attacker is PC3, located
in the outsider’s network and the target DNS server is running on PC1. PC2 is the client that
originally sends the first DNS query: attacker.com
for example as an email with a link to that domain.

 . This query can be transmitted in several ways,

Fig. 2.5 : DNS poisoning experimentation.

The attack begins when the client (PC2) asks its DNS server to resolve attacker.com
simulate this condition, the nslookup application was used on the client’s machine:

 . To

This query is sent to PC1 running the vulnerable BIND9 DNS server. As this domain was
not yet cached, the server will interrogate the authoritative server responsible for that domain:
PC3. That causes our algorithm to verify on the received query if the next transaction ID can be
predicted. If not, the algorithm will send back a CNAME record with the domain
and receive a new query demanding the attacker’s server to solve

 x.x.attacker.com
 x.x.attacker.com

is repeated until the transaction ID can be predicted. The following screenshots show the message

 . This
process

exchange between PC1 (target DNS server) and PC3 (attacker). What is important to verify is that

Chapter 2. Experimentation

30

Fig. 2.6 : Nslookup configuration shell: client sends a DNS query attacker.com to the vulnerable server.

when PC1 (192.168.57.151) sends to PC3 (192.168.60.162) the query asking for
(figure 2.7), the very first attacker’s response was able to predict the transaction ID number (7bf7)

 proxy.sip-fool.com

(figure 2.8).

Fig. 2.7 : Wireshark capture: query from the vulnerable DNS server.

Finally this attack will result in the poisoning of the entry proxy.sip-fool.com

tacker’s IP address (192.168.60.162). From now on, every time a host interrogates this DNS server
 with the at-

about proxy.sip-fool.com
experiment, the TTL field was set up to 1 second, but in a real attack scenario, it is preferred to

 , the server will respond with a fake IP address (see figure 2.9). In this

increase this value to be maintained as long as possible in the cache entry. Looking at the nslookup
program started in the client’s machine (PC2), the final result will be:

2.2.3

SIP Attack: Bye Message

This is one of the simplest attacks using Denial of Service that clearly exposes a vulnerability on
the SIP protocol: to transport in clear text of the Call ID field. This field is used to uniquely
identify each call attempt in one SIP proxy server. Both the server and the client have the ability
to generate this number.

By sniffing SIP packets, it is possible to capture the Call ID used to establish a SIP call. The
attacker can use this same value to forge a BYE message and tearing down that session. Basically,

Chapter 2. Experimentation

31

Fig. 2.8 : Wireshark capture: response from the attacker (with the predicted transaction ID) to the
vulnerable DNS server.

Fig. 2.9 : Nslookup configuration shell: poisoned response from the attacked DNS server.

that was the procedure used in this experimentation to create this attack. Using an ARP or DNS
poisoning, the attacker captures SIP packets, finds the actual Call ID and send SIP forged messages
to the target.

Executing a SIP BYE attack

As mentioned before either an ARP poisoning or DNS poisoning needs firstly to be performed.
This experiment adopted the topology of figure 2.1 - Architecture 1 - LAN topology and the used
tools is presented in the figure 2.10.

At a first glance, Alice and Bob are initially registered on Asterisk SIP proxy. This SIP proxy
acts as a classic PBX, receiving signal and media packets from one client and forwarding them
to the other client. Therefore, in this communication two Call IDs are being used, one between

Chapter 2. Experimentation

32

Fig. 2.10 : SIP BYE message experimentation.

Alice and Asterisk and another between Asterisk and Bob. As the attacker intends to drop down
Alice, he will execute an ARP poisoning attack first, to associate his MAC address with Alice’s
IP address: 192.168.57.151. In the end, the intruder receives packets from Asterisk and forwards
them to Alice. In this replay scenario, their Call ID is exposed and afterwards a BYE message is
generated with the help of the SIPp tool.

The attacker finally sends this forged packet to Alice. Alice checks if the Call ID is the same
one used to communicate with Asterisk and executes the bye routine, tearing down the session.
Note that the field “from ” includes the attacker’s URI but Ekiga softphone does not use it to
verify the integrity of this message.

This same experiment was performed with X-Lite and Twinkle softphones. With both of them,
just re-injecting the Call-ID was not enough to bring down the connection. However, using the
“branch ” and “tag ” identifiers from “via ” and “from ” fields and the source UDP port from the
capture a new BYE message was forged and finally re-injected in one new BYE message, causing
Alice to disconnect the call. As Bob is never warned about the disconnection, its session with
Asterisk remains active until one sort of timer is exceeded, bringing down the connection also as
RTP packets are no longer being received.

Conditions for a successful attack

During the experimentation, some remarks were noticed as important factors to achieve the success
of this attack:

· One of the elementary attacks: ARP poisoning or DNS poisoning has to be performed first;

· All the fake BYE messages were executed using the same destination port used by Alice:

SIP UDP 5070;

· Ekiga softphone only needs the Call ID to teardown a session;

· X-Lite and Twinkle softphones need additional fields to provoke disconnection: tag, branch
and source SIP UDP port.

Chapter 2. Experimentation

33

2.2.4

Denial of Service: Identity Hijacking

The attack experimented in the figure 2.11 originally intercepts a SIP INVITE message from
Alice to Bob and uses it to invite another client. It was assumed that a DNS poisoning took
effect earlier. First, the DNS cache entry for the domain proxy.sip-fool.com
attacker’s IP address. The attack begins when Alice sends an INVITE to Bob towards the attacker

 is poisoned with the

(1). This INVITE is modified by the attacker, changing its destination from Bob to Charlie and
then replaying the modified packet to the true SIP proxy (2). After receiving it, the proxy server
sends an authentication SIP response with a random nonce number (407 proxy Authentication
Required) to the attacker (4) that replays it to Alice (6), who is the only one able to solve that
challenge. Alice sends a new INVITE with a response to that challenge1 to the attacker (8). The
attacker changes the destination of the new INVITE from Bob to Charlie and replays it with the
response given by Alice to the SIP proxy (9). As the SIP proxy is able to calculate that response
(because it knows Alice’s password), it compares the response arrived with the one calculated. If
both are equal, the authentication is accepted and the proxy server contacts Charlie (11) and an
RTP flow is closed between Alice and the proxy server (18). In the end, Alice receives a BYE
message (19), provoking a DoS against her.

SIPp tool was used to perform this attack. Since an attacker needs to exchange messages with
two entities at the same time (Alice and the SIP proxy), there are in actually two XML scripts
mutually synchronized running on the attacker’s machine.

Note that the attacker only could contact Charlie because in the replayed INVITE message, the
user’s URI was modified from bob@proxy.sip-fool.com to charlie@proxy.sip-fool.com. Furthermore,
Asterisk SIP proxy did not match the SIP URI included in the challenge response (bob@proxy.sip-
fool.com) with the user’s URI on top of the INVITE message (charlie@proxy.sip-fool.com).

2.2.5

SIP Fuzzing

The attack presented in figure 2.12 explores vulnerabilities in SIP Proxies or softphones. In our test
scenario, one security flaw provoking a denial of service was identified on the twinkle softphone.
The tool used to identify this vulnerability was the PROTOS sip test case [23]. This test case
generates malformed and invalid fields, and injects them in a SIP INVITE message. Furthermore,
for each modified packet, PROTOS sends a well-formed INVITE to verify if the subject under test
is still responding to messages.

The vulnerability tested on the Twinkle softphone is in the CSeq field. PROTOS generates
a buffer overflow by inserting the “a” character on that field. In the example below, just one
malformed INVITE packet was necessary to crash Bob’s softphone.

1

This response was generated by a 32-bit hash function that took as input the following parameters: nonce

received, Alice’s URI, SIP method, realm, username and password. All those parameters were transmitted in clear
text, except Alice’s password. Note that it would be very time consuming for the attacker to guess Alice’s password
from the hashed response.

Chapter 2. Experimentation

Fig. 2.11 : Denial of Service: Identity Hijacking.

34

2.3

Attack Scenario

The attacks described below were chosen to compose an attack scenario. I chose a DNS poisoning
attack because of its strength to cause damages in real scenarios and because it can be used as an
atomic attack to execute others attacks. The second attack was chosen mainly because it usurps
from an user’s identity to make illicit calls. The third and last attack does not need neither of
previously described attacks to be executed. Therefore one solution adopted in this experiment
was to detect this attack with a Snort rule and use SnortSam to con figure IPTables to block this
intrusion.

1. DNS Poisoning using transaction ID prediction

2. Denial of Service - Identity Hijacking

3. SIP Fuzzing

2.3.1

Including Snort Attack Signatures

Snort sniffs the network traffic and searches specific fields or contents that might have anomalies
or indicates a suspicious behavior.

Chapter 2. Experimentation

35

Fig. 2.12 : SIP fuzzing in action.

However, one inconvenient using Intrusion Detection Systems such as Snort is related to the
detection of VoIP attacks, such as man-in-the-middle (MiD) attacks and session hijacking. As
showed in the figure 2.11 of section 2.2.4 there is no irregularities in the message exchange in those
attacks, when compared to an authentic SIP flow. To detect a possible MiD attack or a session
hijacking, it would be necessary to employ a VoIP IDS [1], which would be capable of interpreting
VoIP sessions and distinguish possible attacks from genuine communication attempts.

Despite this intrinsic characteristic, it is still possible to employ Snort to detect VoIP attacks.
Section 2.2.4 presents that elementary attacks need to be performed to execute these VoIP attacks.
As ARP and DNS poisoning have a detectable intrusion signature, it is possible to use a correlation
model and associate those elementary attacks in a more global attack and finally define a reaction
scheme to block those wrongful conducts.

As commented before, the second attack (Identity Hijacking) of my attack scenario, by itself,
can not be detected using Snort, as there are no traces (signatures) on the message exchange that
could express this attack using Snort rules set. However this attack can be modeled using the
Lambda language [15] and by using CRIM, a correlation can be established with the first attack
(DNS Poisoning). It means that to execute the identity hijacking, the attacker needs first to poison
the DNS cache entry.

DNS Poisoning Signature

As also explained earlier, this poisoning attack starts by sending CNAME records to the vulnerable
DNS. The attack detection is based exactly on that constraint. One Snort rule was created to detect
each CNAME message sent to the target DNS and generate an alarm. The reason to base the
attack detection on those canonical messages, is that their usages are discouraged by the respective
RFC standard [26] to avoid problems with message integrity and cache poisoning.

The rule of figure 2.13 searches for CNAME fields on UDP source port 53 to any destination
UDP port. Snort jumps 28 bits (offset parameter) and than starts searching for binary field “00
05 ”, which by DNS definition means the type of DNS answer: CNAME (Canonical name for an

Chapter 2. Experimentation

36

alias). The field “classtype ” will be used by CRIM to correlate this elementary alarm with a global
intrusion attempted. The field “idmef ” generates the alarm file using the file format defined by
IDMEF (Intrusion Detection Exchange Format) [27]. The objective of this data format is to de fine
a standard between IDS probes and reaction modules from different manufacturers.

Fig. 2.13 : Snort rule to detect CNAME fields in DNS messages.

SIP Fuzzing

Snort can also produce a detectable signature for the third attack (SIP fuzzing). The signature
rule is presented in figure 2.14.

Fig. 2.14 : Snort rule to detect the SIP fuzzing attack.

Snort sniffs UDP packets from any IP and UDP sources to any destination with UDP ports
from 5060 ∼ 5070. After that, by using the ”isdataat ” parameter, it veri fies if the payload has data
at a specified location (13 bits), looking for data relative to the end of the previous content match
(the character sequence “CSeq ”). If it founds this sequence, by using “within ” this rule verifies if
there are at most 13 bits until the end of the line. The fields “reference ” just tag this alarm with
the IETF attack classification. As in the previous rule, the parameter “idmef ” generates an alarm
using the IDMEF data format. The last field “fwsam ” is used to trigger the reaction rule to this
attack and will be further detailed on section 2.4.3.

2.3.2

Experimentation: generating IDMEF alarms

The rules described in the precedent section were added to the Snort rule’s directory (/etc/snort/rules)
under the file “voip.rules ” and a new rule description was inserted in the Snort configuration file
(/etc/snort/snort.conf). The topology used in this experiment is presented on figure 2.2. The
tools used are presented in figure 2.15.

DNS Poisoning alarm

Firstly, Snort was start up on the machine PC1 to listen to all traffic on ethernet interface 1
(192.168.60.0/24). Secondly, the DNS poisoning tool was launched in the attacker’s machine to
poison the domain proxy.sip-fool.com with the attacker’s IP address 192.168.60.162.

Chapter 2. Experimentation

37

Fig. 2.15 : Tools used to generate alarms.

After Snort had detected the CNAME messages exchanged with PC2 (DNS vulnerable), the
IDMEF alert was created and stored on the file (/snort-idmef/idmef-messages.log). Part of the
IDMEF alert is presented in figure 2.16.

Fig. 2.16 : IDMEF alert to the “CNAME chain attempt“.

SIP Fuzzing alarm

PROTOS tool was started up on the attacker’s machine (PC3) to generate a buffer overflow in the
CSeq field in an INVITE message.

Consequently, the IDMEF alert referent to the SIP fuzzing was also created and stored on the
same file (/snort-idmef/idmef-messages.log). Part of the IDMEF alert is presented in figure 2.17.

2.4

Correlation and Reaction Models

The prototype CRIM implements a cooperation model with alarm correlation, using the Lambda
language [29]. This language is a technique to derivate links between alarms to produce a global
attack scenario. This logical language is also used to describe possible counter-measures used by
the system’s administrator to block this attack scenario.

The subsections presented below describes the correlation, anti-correlation, intention recog-
nition and finally the reaction models used by CRIM against DNS poisoning and the identity
hijacking. The last subsection shows the reaction against SIP fuzzing using SnortSam plugin.

Chapter 2. Experimentation

Fig. 2.17 : IDMEF alert to the SIP fuzzing attack.

38

2.4.1

Elaborating Lambda Action Models

Lambda language has four attributes to define attacks (pre conditions, post conditions, detection
and verification). Pre and post conditions are created using predicates. Recall that pre conditions
are conditions that must be fulfilled by the system so that the attack is feasible, and post-conditions
are the effects on the system induced by the attack. If some actions done by the attack cannot be
written using a composition of those predicates, new actions can be easily created.

The list of the predicates used to create the Lambda models of our attack scenario (DNS
poisoning, identity hijacking and SIP fuzzing) is presented bellow:

· is on(Dns server): DNS server is up and running.

· run program(Dns server, bind 9, version 9.5.0a5, root, V1): Bind9 installed in the DNS

server.

· vulnerable(Dns server, cve-2007-2926): DNS server is vulnerable to the transaction ID pre-
diction.

· corrupted(Dns server, cve-2007-2926): DNS server is corrupted (poisoned).

· corrupted(Alice, cve-2005-4050): Alice’s softphone is corrupted (softphone crashed).

· authorized(Attacker, cname reply, Dns server): Attacker is authorized to send CNAME

queries to the DNS vulnerable.

· knows(Attacker, uri(Alice, URI)): Attacker knows Alice’s URI.

· knows(Attacker, sip port(Alice, Port)): Attacker knows Alice’s source UDP port.

· user access(Attacker, Asterisk, session, root): Attacker using Alice’s identity, is registered
on Asterisk.

Using the predicates above, for each attack, Lambda action models were written using pre and

post conditions, as presented in figure 2.18.

Chapter 2. Experimentation

Fig. 2.18 : (a) DNS poisoning model; (b) SIP identity hijacking model; (c) SIP fuzzing model.

39

2.4.2

Correlating Action Models

Two action models can be correlated if they have at least one predicate in common. For example,
the same predicate present in a pre condition of one action model and also present in the post
condition of the other action model. By equivalence, this affirmation is also true when we have
the same predicate appearing in a post condition of one action model and in a pre condition of the
other action model.

When we compare the DNS poisoning action model with the SIP identity hijacking model, we
can verify that both share the predicate (DNS server is corrupted, poisoned). This is the same
conclusion presented by CRIM when these action models are loaded and correlated. The figure
2.19 shows the predicate that allowed these models to be correlated.

Fig. 2.19 : Correlating Action Models.

Comparing also the SIP fuzzing model with the others action models, we can verify that there is
no predicate that could allow a correlation among the SIP fuzzing and the others two attacks. This
result was already anticipated, as the attacker does not need to perform neither a DNS poisoning

Chapter 2. Experimentation

40

nor an identity hijacking attack to accomplish a SIP fuzzing. As a matter of fact, the SIP fuzzing
attack occurs in parallel with both DNS poisoning and SIP identity hijacking.

2.4.3

Correlating Attack Models with the Intrusion Objective

The intention recognition function is the CRIM’s module responsible to determine the intentions
of the attacker. In our case, the attacker’s intention is to hijack Alice’s identity and to provoke a
DoS against Alice (softphone crash). We can express this intrusion objective using the Lambda
language and correlate it with our action models. For example, if a post condition of an action
model (A) and an objective intrusion (I) have at least one predicate in common, thus they can be
unified.

Figure 2.20 shows the intrusion objective and the common predicates that permitted the cor-
relation with our action models.

Fig. 2.20 : Correlating Attack Models with the Intrusion Objective.

CRIM: reaction by anti-correlation

Reaction models are written using the same formalism used to create action models: pre and post
conditions. A pre condition for a reaction is defined as a logical condition in the system state that
allows the counter-measure to be executed. A post condition is a logical condition that de fines the
effect of the counter-measure application.

The goal of the anti-correlation is to provide possible counter-measures that block the intrusion.
Similarly to the correlation method, a counter-measure (C) is anti-correlated with the intrusion
objective (I) if one predicate in the post condition (post(C)) and the negation of this same predicate
appears in (obj(I)).

The common predicate that correlates the DNS poisoning with the identity hijacking means
that the attacker needs firstly to poison the DNS cache entry to finally hijack Alice’s identity.
Therefore, the counter-measures for this attack are to block the DNS poisoning by applying: a

Chapter 2. Experimentation

41

patch installation that corrects the Bind9 vulnerability (prediction of the transaction ID); or to
block/reroute CNAME responses from the attacker at the firewall level. Both of these counter-
measures can be expressed using the Lambda language. Figure 2.21, shows these reaction models
and the anti-correlation done with the actions models.

Fig. 2.21 : Reaction by anti-correlation based in the intrusion objective.

SnortSam: reaction against the SIP Fuzzing

As the SIP fuzzing cannot be correlated neither with DNS poisoning nor with SIP hijacking, it
is impossible to CRIM applies the same counter-measures. Therefore an alternative solution was
used. When an alarm corresponding to this attack is generated, the SnortSam plugin [17] is used
to automatically insert a firewall rule and stop this intrusion attempt by blocking the UDP SIP
port from the attacker’s IP address.

In the other hand, similarly to the anti-correlation done in the precedent section, CRIM could
be used to elaborate an anti-correlation rule by inserting another elementary attack (refers to
section 1.3.1) that allows the correlation with this particular attack.

SnortSam is composed of two parts: one output plugin that interacts with Snort and an agent
that runs on the firewall. It was decided to use the Linux firewall IPTables for its simplicity of
configuration. To apply SnortSam plugin, it is necessary to re-compile Snort and insert the line
above in the Snort configuration file (“snort.conf ”). This command informs the localization of the
SnortSam agent and the password it must use to close the TCP encrypted:

output alert fwsam: 192.168.57.151/12345

Chapter 2. Experimentation

42

and the parameter “fwsam: src, 15 minutes ” was also included on the Snort rule (2.22):

Fig. 2.22 : Snort rule to detect SIP fuzzing and triggering SnortSam plugin.

The SnortSam configuration file was created accordingly to the figure 2.23. This file means

that SnortSam will accept connections from Snort, localized on 192.168.57.151 with a password
12345. It also indicates the IP address where the IPTables firewall is running and the ethernet
interface where that rule must be applied. A log file directory was optionally included.

Fig. 2.23 : SnortSam configuration file.

After those configurations, the SIP fuzzing attack was launched on the attacker’s machine
(PC3). When the correspondent rule is triggered, Snort sends an encrypted TCP packet to the
SnortSam agent that requests the firewall to insert a new rule to block the attacker’s IP address:

iptables -I FORWARD -i eth1 -s 192.168.60.162 -j REJECT

To test this configuration, a new attack was launched. One ICMP packet was received in the
attacker’s machine, proving that all the traffic from the attacker’s machine is blocked up. After
the stipulated 15 minutes, SnortSam unblocks the traffic from the 192.168.560.162, by removing
that IPTables rule.

iptables -D FORWARD -i eth1 -s 192.168.60.162 -j REJECT

Alternatively, the traffic coming from the attacker’s machine could be permanently blocked.
However, this temporarily blocking is useful, as SIP fuzzing attacks are intermittent, differently
from DoS attacks.

Results

Using both scenarios described in section 2.2, figures 2.1 and 2.2, different experiments were elab-
orated over the proposed attack scenarios: 1) DNS Poisoning using transaction ID prediction; 2)
Denial of Service - Identity Hijacking; and 3) SIP Fuzzing. The first two attacks are called “ele-
mentary attacks” because the attacker executes successive steps in order to achieve his final result.
The third one, by itself is completely independent from the precedent attacks. In fact, to perform
this attack, it is sufficient to know the target IP address, SIP UDP port and the user’s URI SIP.
Those information could come from another elementary attack, such as a dictionary attack, as
explained on [1] or by another illicit methods.

Detection rules were inserted in the Snort Intrusion Detection System which were able to de-
tect the first and the last attack, generating IDMEF standards alerts for them. However, for the
second attack, Snort was not used to detect it due to a lack of a signature on packets, that could
denounce it. IDS generally operates either with rules based on certain exceptions or how a packet
flow arrives at the target. But the behavior of this hijacking attack is exactly the same as a normal
user registration which invalidates its detection by a normal IDS probe.

For the three attacks, Lambda models were created, specifying pre and post-conditions to de-
scribe each attack. Finally CRIM was used to merge those elementary attacks and try out to
correlate them as an attempt to perform a more global attack. As presumed, CRIM was able to
correlate the first and the second attack, hence generating counter-measures to block this “more
global” attack. But CRIM could not correlate the third attack with the precedents due to the fact
that to accomplish its task, the attacker does not need to poison the DNS server to fuzzing a SIP
client. The counter-measure proposed to stop this attack was triggered directly by Snort, using a
plugin that insert IPTables rules, thus blocking the attacker’s IP address.

Table 2.24 resumes the experimentations executed and includes the counter-measures to the
attacks and by whom they were produced.

I recall that the SIP fuzzing attack could be used with a previous attack, such as a dictio-
nary scanning. Therefore in this case, CRIM can be used to correlate the alerts and propose an
appropriate counter-measure. However, this condition was not implemented because one of the

Chapter 2. Experimentation

44

Fig. 2.24 : Attack scenario with counter-measures applied.

purposes of this experimentation was also to verify the usability of other reaction models, such as
using IPTables triggered by the SnortSam plugin.

Conclusion

In this document, it was exhibited several VoIP vulnerabilities and proposed CRIM as a method
to correlate and react to attacks beginning with ARP or DNS poisoning and finishing by VoIP
attacks that do not have detectable IDS signatures. In the other hand, for VoIP attacks that may
leave a signature trace, the IDS Snort with the reaction pluging SnortSam provided a good and
best fitted solution as well.

Future works for this study considers to include VoIP-based predicates on CRIM to extend its
database of attacks and to study the applicability of a VoIP IDS to detect attacks that cannot be
identified on regular IDS available on the market.

Bibliography

1. Y. Bouzida, C. Mangin. A framework for detecting anomalies in VoIP networks. Ares 2008,
march 2008

2. Y. Volobuev. ARP and ICMP redirection games. September 1997. Available at:

http://insecure.org/sploits/arp.games.html. Acessed on april 2008

3. RFC 3261 SIP: Session Initiation Protocol. Available at:http://www.ietf.org/rfc/rfc3261.txt.

Acessed on february 2008

4. RFC 1035 Domain Names: Implementation and Speci fication. Available at:

http://www.ietf.org/rfc/rfc1035.txt. Acessed on march and april 2008

5. Birthday Attack. Available at: http://en.wikipedia.org/wiki/Birthday attack. Acessed on
february 2008

6. J. Stewart. DNS Cache Poisoning: The Next Generation. Available at:

http://www.lurhq.com/dnscache.pdf. Acessed on march and april 2008

7. A. Klein. BIND 9 DNS Cache Poisoning. March-june 2007. Available at:

http://www.trusteer.com/docs/bind9dns.html. Acessed on march and april 2008

8. BIND Predictable DNS Query IDs Vulnerability. Available at:

http://secunia.com/advisories/26152/

9. Microsoft Windows DNS Client Predictable Transaction ID. Available at:

http://secunia.com/advisories/29696/

10. D. Geneiatakis, G. Kambourakis, C. Lambrinoudakis, T. Dagiuklas, S. Gritzalis. SIP Mes-

sage Tampering: The SQL Code Injection attack.

11. VOMIT: Voice over Misconfigured Internet Telephone. Available at: http://vomit.xtdnet.nl/.
Acessed on march 2008

12. RTP InsertSound and RTP MixSound. Available at:

http://www.hackingvoip.com/sec tools.html/. Acessed on march 2008

Chapter 2. Experimentation

47

13. Y.S. Wu, S. Bagchi, S. Garg, N. Singh, and T. K. Tsai. SCIDIVE: A Stateful and Cross
Protocol Intrusion Detection Architecture for Voice-over-IP Environments. In Proceedings of
the 2004 International Conference on Dependable Systems and Networks (DSN’04), Florence,
Italy, July 2004.

14. H. Sengar, D. Wijesekera, H. Wang, and S. Jajodia. VoIP Intrusion Detection Through

Interacting Protocol State Machines. In Proceedings of the 2006 International Conference
on Dependable Systems and Networks (DSN’06), Pennsylvania, USA, June 2006.

15. Fabien Autrel and Fr´ed´eric Cuppens. CRIM - Cooperation and Recognition of Malevolent In-

tentions. CRIM : an alert correlation and reaction module. Annales des T´el´ecommunications,
2006.

16. Snort Inline. Available at: http://snort-inline.sourceforge.net/. Acessed on may 2008

17. SnortSam. Available at: http://www.snortsam.net/. Acessed on may 2008

18. IDMEF - Intrusion Detection Message Exchange Requirements. IETF draft document: draft-

ietf-idwg-requirements-02.txt. Acessed on may 2008

19. Caim & Abel software. Available at: http://www.oxid.it/index.html. Acessed on february
and march 2008

20. BIND DNS Server. Available at: http://www.bind9.net. Acessed on march and april 2008

21. Bind9 ID Prediction - Proof of Concept. Available at: http://www.coromputer.net/. Acessed

on march and april 2008

22. SIPp traffic generator for the SIP protocol. Available at: http://sipp.sourceforge.net/.
Acessed on march and april 2008

23. PROTOS Test-Suite: c07-sip. Available at:

http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/#h-ref18.

Acessed on april

and may 2008

24. RFC 3550. RTP: A Transport Protocol for Real-Time Applications. Available at:

http://www.ietf.org/rfc/rfc3550.txt. Acessed on may 2008

25. RFC 2327. SDP: Session Description Protocol. Available at: http://www.ietf.org/rfc/rfc2327.txt.
Acessed on may 2008

26. RFC 1034. Domain Names: Concepts and Facilities. http://www.ietf.org/rfc/rfc1034.txt.

Acessed on march and april 2008

27. IDMEF: Intrusion Detection Message Exchange Requirements. Internet draft: draft-ietf-
idwg-requirements-02.txt. Acessed on may 2008

Chapter 2. Experimentation

48

28. P. Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off Laboratoire de Securit´e
et de Cryptographie (LASEC)

29. Cuppens (F.), Ortalo (R.), LAMBDA : A Language to Model a Database for Detection

of Attacks. Proceedings of the Third International Workshop on the Recent Advances in
Intrusion Detection (RAID’2000), Toulouse, France, October 2000

30. RFC 2865. Remote Authentication Dial In User Service (RADIUS). Available at:

http://www.ietf.org/rfc/rfc2865.txt. Acessed on may 2008

31. RFC 3588. Diameter Base Protocol. Available at: http://www.rfc-editor.org/rfc/rfc3588.txt.

Acessed on may 2008

32. RainbowCrack 1.2. Available at: http://www.antsight.com/zsl/rainbowcrack/. Acessed on
march and april 2008

33. J. Garcia, S. Castillo, G. Navarro and J. Borrell. Mechanisms for Attack Protection on a

Prevention Framework.

34. F. Cuppens, F. Autrel, Y. Bouzida, J. Garcia, Gombault (S.) et Sans (T.), Anticorrelation
as a criterion to select appropriate countermeasures in an intrusion detection framework.
Annales des Telecommunications, n. 61, pp 197-217, March 2006.

35. SIP Express Router - SER. Available at: http://www.iptel.org/ser/. Acessed on may 2008

The High Cybercafe: Internet in the Nepal

Himalayas

SVF-3903

Tanel Saimre

Master of Philosophy in Visual Cultural Studies

Faculty of Humanities, Social Sciences and Education

University of Tromsø

May 2012

Acknowledgements

My fieldwork, film and thesis were made possible through the help and participation of many
people. My gratitude goes to: my wonderful informants and others from Khumbu Lodge for

permission and help with conducting fieldwork in this establishment; teachers of the Shree

Himalaya Primary School in Namche, especially the computer and mathematics teacher and 5th

grade children; my hosts at Moonlight Lodge for a wonderful and cosy stay; translators Ramesh

Simkhada, Dik Rai and Prakash Sapkota; Bente Sundsvold for supervision, time and devotion, Ane

Lyngstad Oltedal for the Fleck 2000 tip; and all my other classmates (except Esben:)). VCS 2010

will be in my heart forever.

Table of Contents

1 Introduction..1
1.1 The Topic...2

1.2 Reflexive Aspect..2

1.3 Technology, Society and ANT...3

1.4 Modernity, Globalisation and Cyberspace...5

1.5 High-Context and Low-Context...7

1.6 Actor-Networks, Black Boxes and Punctualisation...8

1.7 My Methodological Toolbox..10

2 The Setting..11

2.1 Nepal, Khumbu and the Sherpas..11

2.2 Namche Bazaar and the Role of Tourism..13

2.3 Modernity and Change?...16

3 Fieldwork in Namche...19

3.1 Two Months of Yaks, Cables and Cybercafes..19

3.2 Khumbu Cyber, Sameer and Rajesh..20

3.3 Namche Primary School and Dawa...21

3.4 Trips Along the Network..21

3.5 Note-taking...22

3.6 Video Camera Use...22

4 High Context Communication at the School..25

4.1 Computer Lessons at the School..25

4.2 It's Government Service and Therefore Useless?..28

4.3 Summary ...32

5 Punctualisation Battle at the Cybercafe..33

5.1 Mediators to the Cyberworld...33

5.2 Actors and Networks..35

5.3 Summary..38

6 The Internet as an Actor-Network..39

6.1 What Is It Used For..39

6.2 Accompanying Effects: Language, Alphabet and Calendar...41

6.3 Sameer's Facebook Friendship...43

6.4 Monks and Nuns..45

6.5 Chronological View...46

6.6 Discussion..47

7 Conclusion..49

8 References..51

1 Introduction

It was a long hike. I had planned to walk the distance from the airfield to my fieldwork
site in a day, maybe two. But the reality of my 30 kg backpack and hard mountain trails going

either up or down but never really level for any length, dictated my tempo and it took me

three days instead.

I was 3000 m up in the Himalayas of Nepal, on a hike from the airfield at Lukla to my
fieldwork location in Namche Bazaar. Tourists carrying light day packs were constantly

whizzing past me. I was moving more or less at an equal tempo with the porters, poor Nepali

men, slowly taking their careful and measured steps uphill, carrying their incredible loads of

up to 90 - 100 kg. I had refused to hire a porter myself. It's cheap for a westerner, but I wanted

to carry all my own gear. “To get to know what it feels like to be a porter,” I had thought.

“What an idiot,” was I thinking now, my lungs gasping for oxygen in the thin atmosphere and

all my strength squeezed out of me. This is the High Himalayas. There are no roads, only frail

mountain trails. The only means of transport besides your own feet are charter helicopters or

yak caravans for those who can pay.

Anthropologists are not among the wealthy and the powerful, so I walked. On the third
day, totally exhausted, I reached Namche Bazaar. A beautiful place, as I remembered from my

visit as a tourist about one year ago: a crescent-shaped little cluster of houses on the side of a

mountain above a huge gorge, with a nice stream running through it. It takes a day or two to

hike to the airfield, a week to the nearest bus stop. Mountainous terrain isolates this place

from the transportation networks, roads and airports of our planet. But it is located 30 km

from Mount Everest, and therefore it is visited by tens of thousands of tourists per year. It is a

place interwoven into the global cultural fabric of economic ties, personal acquaintances and

communication networks. The latter was the aspect I came here to study – communication

networks, more specifically the internet. For more or less than eight years the people of

Namche Bazaar have had access to the internet, and it is slowly working its way into the

everyday life of the people here. Smartphones, wifi and cybercafes are a part of everyday life

for a growing part of the population here. Physically isolated but still interwoven – this is my

research setting.

1

1.1 The Topic

The aim of this paper is to look more closely at the processes involving the adoption of
internet in a Nepali mountain village. Two and a half months of fieldwork was performed at a

primary school and a cybercafe in Namche Bazaar, Solukhumbu district, Nepal. My aim is to

be informative about the processes revolving around the internet in a general global sense.

Therefore my thesis is more concerned with the internet than the particular cultural setting of

Nepal or Namche.

Internet is a form of information and communication technology. The fact that it is
information AND communication technology is of importance here. While no device is able

to purely transmit a message without modifying it, communication technology coupled with

information technology is designed to not just relay information, but also to process it. Chat

messages are saved in log files, e-mails are scanned for viruses, uploaded digital photos are

automatically shared with certain people, etc. Technology affects our communication in ever

more ways.

Computers and the internet originate in the achievements of white North-American
military engineers and mathematicians of the Cold War period. By now, however, 44.8% of

internet users are from Asian countries, with over a billion Asian people using the internet.

Europe and North-America account for just 34.1% of internet users (Miniwatts Marketing

Group n. d.). Contrary to these statistics we still tend to assume that internet is “English” and

“Euro-American”, and if people from other countries start using the internet, then it makes

“them” more similar to “us”. So I went on fieldwork to have a look and find out what is really

happening: how does the adoption of internet, as an alien technology (i.e. used but not

produced locally), take place and what other processes are related to it?

1.2 Reflexive Aspect

I think the best research is done on subjects to which the researcher has a special relation.
It does not have to be a wholly positive one, a relation of love and kisses only, but it better be

a long, eventful and emotional one. I find my immersion into the topic to be long enough – I

wrote my first computer programs about 25 years ago. It was done in the BASIC language on

a personal computer with a green monochrome monitor and using a cassette tape recorder as a

2

storage device. From using 2400 baud modems to connect to nodes on a precursory internet-
like formation called the FidoNet on the ancient analogue pulse-dialling phone network of the

collapsing Soviet Union, to the 12 Mbaud ADSL connections of the digital broadband of

today, I have witnessed the development of computers, and the ensuing altering of the face of

the society, of the ways we talk and think. My generation has, in a way, grown up as the same

time as computers, spending our childhood in the computer-free age, suffering our adolescent

hardships and self-discovery period together with the computers coming out of the nerd niche

and breaking into mainstream use, and living as grown-ups in a world of which the computers

and the internet are a natural part.

My homeland Estonia is seen as a quick developer among other post-Soviet countries, the
so-called “Baltic Tiger”, with one of its characteristics being the fast adoption of information

and communication technologies (including internet banking, voting on elections and doing

administrative things such as declaring your taxes and establishing limited liability companies

over the internet). The concept of e-state (which means that the Estonian state is accessible to

its citizens online in many convenient ways) together with the fact that the popular internet

voice-call software Skype was founded and is being developed in Estonia, form a very

important part of the identity of Estonians.

This aspect of our identity makes me feel interest in the internet, after having witnessed
on the one hand its going through such an enormous change during the past couple of decades

and on the other hand my own society being so thoroughly transformed by it. Therefore it

dawned on me, when travelling in Nepal as a tourist and seeing the internet popping up

everywhere – here I have an opportunity to see this kind of a phenomenon again!

1.3 Technology, Society and ANT

Broadly speaking, I will be exploring society and technology. I will not give precise
definitions of these terms for now, and I will come back to this in the end of this section.

There is a spectrum of theories about the mutual interaction between society and

technology, with extreme technological determinism constituting one end of it, and the social

construction of technology (SCOT) on the other.

Social construction of technology started out as a protest against the mindset according to

3

which social factors were needed only when explaining a false belief or adaption of a non-
working technology. The claim of the founders of SCOT was that social input is needed for

the proper explanation of all beliefs, true and false. SCOT recognises that the criteria for

judging whether a technology actually works are the socially conditioned. One of its core

concepts is the “interpretive flexibility”, meaning that different groups of people can have

very different understandings of a technology, including, but not limited to, the symbolic

meaning of a technology like a car or aircraft (MacKenzie and Wajcman 1999, 21). The

internet, for example, can be a information-finding-engine, a communication device, a

political tool, a status symbol, etc.

Technological determinism is in many ways the opposite of SCOT. It claims that
technology matters, not just to the material and biological conditions of our lives, but also to

the way we live together socially. Langdon Winner, in his essay “Do artifacts have politics?”

discusses some very valid points about political consequences that certain technologies may

have, bringing some (by now, classic) examples of technology either enabling the settling of a

certain issue: the low bridges of the parkways of Long Island, New York, that were arguably

designed to keep out the buses of the public transportation system (and people from the lower

classes with them) or huge plazas on US university campuses that were designed to defuse

student demonstrations; or technologies that inherently contain a certain political model, like

the centralised nuclear power with a techno-scientific-military elite versus the egalitarian,

more democratic, decentralised solar power (Winner 1980, 33-34).

Technological determinism does have some valid aspects and our SCOT-inspired
sensitivity towards the influence of social relations on technological artefacts should not result

in neglect of the valid points of the opposite view. Further, technological determinism would

be very tempting to use in the case of this research. This seems to be a clear cut case of

“foreign” technology coming in “determining” certain kind of social change. But to view

matters this way would mean to lose sight of half of the situation – why and how does the

“foreign” technology “come”. We must preserve a holistic view on the situation and

remember that changing technology will always be only one factor among many others:

political, economic, cultural, and so on (MacKenzie and Wajcman 1999, 5).

The reason I refused to define “society” and “technology” above is that they are not
isolated spheres, with only some kind of “influence” moving between them. There is a tight

4

interwovenness there – technology and society are mutually constitutive (MacKenzie and
Wajcman 1999, 23). In that sense the word “society” also includes “technology”, among all

the other persistent and patterned relations that make a troop of primates of the biological

species Homo sapiens into a society. The phenomena denoted by these two words should not

be ripped apart by theory.

One approach which attempts to theorise society and technology (and much else)
holistically is the actor-network theory, often abbreviated as ANT. It starts from the standpoint

that to reduce all social relations to either human or material/technological actors is an

unacceptable reductionism. Social networks are not composed only of people, but also of

machines, animals, money, texts, architecture, etc. (Law 1992, 2-3). Both society and

technology are made of the same “stuff”: networks linking human beings and non-human

entities (MacKenzie and Wajcman 1999, 24).

1.4 Modernity, Globalisation and Cyberspace

Technological change, especially such where new technology (like the internet) is
adopted by a more traditional society (like Nepal), can be seen as an act of two things:

modernisation (a pre-modern society adopting modern characteristics) and globalisation (a

Nepali village becoming interwoven into the interconnectedness of the global modern world

through internet and telecommunications). So both modernity (the state of being modernised)

and globalisation, and the relation of internet to them, are relevant and require some

explanation.

“Globalisation” is an umbrella term denoting a complex set of phenomena. One of these
is disembedding, the movement towards a more abstract world. A world with writing, that

allows knowledge without a given person, a “knower”. A world with the clock, which

externalises time, chops it up into units that are identical for everybody, anywhere and any

time, independent of the ebbs and flows of experienced time. A world with units of

measurement – abstract concepts of otherwise subjective experiences like length and weight.

Anthony Giddens defines disembedding as the “lifting out” of social relations from local

contexts of interaction and their restructuring across indefinite spans of time-space (1990, 21).

In other words, it is a transition from a concrete society, based on intimate, personal

relationships, memory, local religion and orally transmitted myths, to an abstract society

5

based on formal legislation, archives, a book religion and written history (Eriksen 2007, 18).
A lifting out of things from their context into abstractness.

The above description of globalisation as a movement towards a more abstract world also

fits modernity. In fact, modernity is in many ways a similar thing, except it takes place on a

smaller scale, like that of a nation or a state (Eriksen 2007, 25-27). So globalisation is

modernity with a global spread (Eriksen 2007, 30). So globalisation is (among the plethora of

other phenomena) global disembedding.

What role does the internet play in this? A good amount of theory has been produced on
the relations between the internet and globalisation. One of the authors in this field, Manuel

Castells, says the conditions for an accelerated and intensified globalisation were created

primarily by three processes: the deregulation of world markets, the end of the Cold War, and

the growth of information technology (1996, 3). Now, thanks to the latter, distance between

cause and effect can be enormous and space is relativised through the use of

telecommunications.

Now, let us clarify one final notion, that of “cyberspace”. The word was coined by the
science fiction author William Gibson. In his 1984 science fiction novel “Neuromancer” he

depicted cyberspace as a global monolithic placeless medium in a future world which had

degenerated into a similarly placeless capital-driven dystopia ruled by transnational

corporations, where words denoting locations and nationalities were used as mere adjectives

or trademarks: Danish vodka, Japanese neurosurgery, German steel. The novel demonstrated

eerie foresight and the word entered mainstream use together with the internet in the 1990-s.

Initially it denoted the idea of what internet use was going to be like: global and placeless,

almost a psychedelic experience of extreme disembedding from the offline reality. As shown

by many studies (Miller and Slater 2000, Ahola 2005, Burrell 2012), this is a fruitless view.

The term “cyberspace” has by now become ubiquitous and its field of meanings has exploded

to the point of uselessness. Meanwhile, the view of internet as a disembedded online reality

has fallen out of use, as people do not see the internet as a “place” where you go and become

detached from your physical surroundings. In my work the situation appears to be similar –

this new media appears to be deeply embedded in the rest of the participants' social lives, not

separated from it.

6

1.5 High-Context and Low-Context

The concept of context played an important role above: we saw how globalisation and
modernisation signify the “lifting of the social relation out of their local contexts of

interaction”. The movement towards abstraction is all about losing the context, hiding it or

decreasing its importance.

In current research the approach of high context versus low context communication plays
an important role. This approach was developed in the 1970-s by Edward Twitchell Hall, Jr.,

an influential American anthropologist and cross-cultural researcher. Hall was an adherent of

a view (quite trivial now, but important at its time), according to which culture is a model

constructed by its bearers, that helps us make sense of the real world. It protects our senses

from information overload, categorises reality and puts order into it (Hall 1976, 9-15).

According to Hall, culture defines how we experience reality through the use of context.
Some cultures rely on context more than others. He distinguishes between two different styles

of communication, high-context and low-context: “A high-context (HC) communication or

message is one in which most of the information is either in the physical context or

internalised in the person, while very little is in the coded, explicit, transmitted part of the

message. A low-context (LC) communication is just the opposite; i.e., the mass of the

information is vested in the explicit code. Twins who have grown up together can and do

communicate more economically (HC) than two lawyers in a courtroom during a trial (LC), a

mathematician programming a computer, two politicians drafting legislation, two

administrators writing a regulation, or a child trying to explain to his mother why he got into a

fight.” (Hall 1976, 86-91)

7

Illustration 1: The LC-HC axis (Hall 1976,
102)

Change pushes our communication towards the LC end of the scale. Since change makes
a lot of context dysfunctional we have to be more and more explicit (LC) in our

communication. Globalisation, i.e. change towards disembedding “lifts our social relations

out of the local context”, and places it into new ones. So on the one hand, globalisation moves

us toward a more abstract world of less context, but on the other, context will always be there,

especially in more and more complex situations, since complexity will result in overload, if

we do not turn towards more HC style of communication and let context take care of some of

the meaning-making.

The notion of modern life being abstract or context-independent has come under
criticism. Bruno Latour has even used the statement “we have never been modern” as a title of

his book (1993). In other words he claims that we have always been dependent on context.

With modernity as a move towards a more abstract world we have not reduced the amount of

context, but just turned to a different kind of one. The actor-network theory is meant as a tool

to help bring that context back into view and explore it.

1.6 Actor-Networks, Black Boxes and Punctualisation

In order to start seeing the context, ANT proposes that we think of the world as made up
of actors, and the relations between them. In contrast to other similar approaches, like Manuel

8

Castells' network society (1996), the actors do not necessarily have to be human. Actors are
simply “entities that do things” – be they humans, animals, artefacts, machines, groups,

institutions, etc. According to Latour, the distinction between human and non-humans,

embodied or disembodied skills, impersonations or “machination,” are less interesting than

the complete chain along which actions are distributed (Latour 1992, 243). The emphasis here

in on relations between entities, not entities themselves.

An important aspect of actors is that they consist of a number of elements – a human is
made of organs and body parts, knowledge, habits, preferences; a technical system is made of

its components and relations. These components can in turn be considered actors. So any

actor is simultaneously a network of other actors; and any actor is simultaneously a network

of its components. That is the meaning of the term actor-network: the world is made up of

collections of components, which in turn are components in bigger collections, bigger

networks. Naturally, an actor obtains its essence only in relation to the network it is in. Actors

and networks are mutually constitutive.

The next important concept is a black box. The term is derived from cybernetics, where it
signifies a piece of machinery or a set of commands that might be very complex but can be

substituted by a box because it is regular and stable (Wiener 1948). In studying sociotechnical

phenomena, a black box could be a computer, a car, a television or any other object that

operates as it should. When this occurs, the complex sociotechnical relationships that

constitute it are rendered invisible, or black-boxed. The more a box appears to be closed, the

more are the networks it includes assumed to be reliable and stable themselves. "The more

automatic and the blacker the box is, the more it has to be accompanied by people" (Latour

1987, 137). Relating to the previous section about context: a black box is an actor-network, a

sociotechnical system, that is lifted out of its context, or whose context has been hidden from

view. In a sense, it is a high-context unit, context that has been sealed up.

Punctualisation refers to the process by which complex actor-networks are black boxed.
The process of punctualisation thus converts an entire network into a single point or node in

another network (Callon 1991, 153; Law 1992, 4-5). For example, a university is a network

consisting of personnel, technical devices, financial resources and facilities. When seen from

the level of a state government, all these actors are punctualised into a singe entity: the

university. So punctualisation is the verb which leads to the noun of the black box. Of course,

9

as we shall see, a black box is not a state, a configuration of things, but more like a process in
itself, so to a certain degree these two concepts can be considered synonyms.

1.7 My Methodological Toolbox

In describing the sociotechnical system I am using concepts taken from the actor-network
theory. ANT grew out of an environment of high technological impact (science and

technology studies) so I find it suitable for studying the social relations around a computer

network. ANT is also appropriate for explaining social processes in situations of abrupt

change, where sets of concepts have not yet been developed (Latour 2005, 149) or where

previously existing concepts and categories like the classical anthropological concepts of

kinship, power, magic, tradition or religion, might be misleading.

To summarise my approach: as an anthropologist interpreting my experiences during
fieldwork in Namche, I will be concentrating on the sociotechnical system consisting of the

internet, computers and people (both Nepali and tourists). Point one: my approach is informed

by the distinction between modern and traditional, which in simplified terms is the degree of

reliance on context. For characterisation I am using Edward Hall's categories of high-context

and low-context. Point two: my approach is also informed by the critique of point one, of the

idea of low-context communication, of context-independence, of abstract modernity. For this I

rely on the actor-network theory.

10

2 The Setting

2.1 Nepal, Khumbu and the Sherpas

By going to a “developing country” or “emerging market”, in other words by doing my
research in a cultural environment which is different from the one where ICT technologies are

being spawned and developed I hope to gain a better insight into the adoption (as opposed to

creation) processes. Besides, most of the growth in internet usage now is happening outside

the traditional “technologically advanced” geographical areas of the world (which gives

reason to question the validity of such a division). According to a report on internet trends by

a private venture capital consultation company Kleiner Perkins Caufield & Byers, the fastest

growers in the amount of internet users during 2007-2010 were China, India, Nigeria and

Russia (Meeker 2011, slide 7). Nepal is located between the two fastest growers, China and

India, and can be considered as non-contributing to the ICT sector (China and India contribute

by housing factories and software R&D departments of both national and multinational

companies). So the internet in Nepal can be considered something purely consumed and not

locally produced. This gives me an opportunity to observe an adoption of a totally alien

technology.

Nepal is an interesting field for anthropological study. Until 1949 the government of
Nepal rigorously excluded foreigners from travelling outside of Kathmandu by rule of the

then governing Rana dynasty that closed Nepal to all foreigners (in a successful attempt to

protect it from British colonial influence). From then on just a few mountaineering

expeditions were granted passage. In the 1950-s came a change of attitude and tourists were

welcomed in (According to Stevens 1993, 356 this was in relation to King Mahendra's

coronation in 1955; according to Sherry Ortner 1978, 28 this happened in 1952). From then

on this previously isolated and technologically stagnant country has seen a growing torrent of

tourists, and been heavily affected by it. In a few decades it made a quantum leap from a

medieval-like setting to a 20th century life with electricity, internal combustion engine,

telephone and now, the computers.

My fieldwork area was in the region of Khumbu, famous as the land of the Sherpas.

11

Illustration 2 - Location of Khumbu and Namche (called Nauje on this map). From
Stevens 1993, 25.

Khumbu is also the location of Mount Everest that has sparked interest in Europeans ever

since they had the social and technological organisation sufficient to cater for such a

dangerous and irrational pastime as climbing inaccessible peaks. In the 1950-s when China

occupied Tibet and Nepal ended the isolation policy, mountaineering expeditions were

launched from Nepal instead of Tibet. The region of Khumbu became a staging ground for the

race to “conquer” the world's highest mountain. The local people, the Sherpas, became

entangled in that race.

“When men first were drawn to Everest, it was an unknown quantity. It lay between two
unknown countries – Tibet and Nepal.” This is a quote from the narrator's text in the 1953 UK

documentary “The conquest of Everest”. This Freudian slip describes the British attitude of

the time: the mountaineers were considered the first “men” to arrive at Mount Everest, the

local population living there for centuries was something more like a natural resource to be

used. Over time the role of Sherpas has, however, came to be more and more recognized and

now they enjoy worldwide fame. Both the Sherpas and their land of Khumbu have been

researched extensively by anthropologists. The race to the top of Mount Everest and the social

12

and cultural effects of this and other mountaineering activities are described by anthropologist
Sherry Ortner in her excellent study “Life and Death on Mt. Everest: Sherpas and Himalayan

Mountaineering” (1999). She has also done extensive research on Buddhism – the religion of

the Sherpas, and described her findings in “Sherpas Through Their Rituals” (1978) and “High

Religion” (1989). Stanley Stevens has done cultural ecological research on the Sherpas, their

sustenance (agriculture and pastoralism), and the effects of tourism described in “Claiming

the High Ground” (1993). I will also be referring to Christoph von Fürer-Haimendorf, one of

the first anthropological explorers of the region, a man with a very interesting life story. At the

breakout of World War II he found himself, a citizen of Austria and the word “Fürer” in his

name, trapped in Allied India. Fortunately for anthropology, the British authorities gave him a

reasonable amount of freedom and he conducted his fieldwork while being confined to India

and Nepal, much like during the previous World War Malinowski was trapped on the

Trobriand Islands. He did extensive research among the Sherpas and has written several books

about his findings, including: “The Sherpas of Nepal” (1964) and “The Sherpas Transformed”

(1984).

2.2 Namche Bazaar and the Role of Tourism

The location of my fieldwork was Namche Bazaar, Nepal. The name is alternatively
Namche, Namche Bazaar or Nauje. Sherry Ortner and Stanley Stevens use Nauje, and this is

considered to be the Sherpa name. I use the Nepali name Namche, because during all my time

there I did not hear anybody refer it to in any other way than that (probably because I

communicated in English, not Sherpa).

As mentioned in the introductory section, Namche is physically isolated by mountainous
terrain. There is an airfield about one or two day's hike away, at the village of Lukla. There is

also a short airstrip just above Namche, but only small Pilatus Porter aircraft and certain

helicopters can use it, because of its short length and the fact that is located so high in the thin

atmosphere. The usual route, however, is to fly from Kathmandu to Lukla (120 USD for the

ticket) and hike from there. Another option is to hike from Jiri, which is the nearest bus stop.

This takes about a week, depending on the physical ability of the hiker.

Namche village is located on a hillslope, with the lowest point at 3450 m ASL. It is the
main economic hub of the region, with a weekly market on Saturdays. As this is the heart of

13

Sherpa territory, the inhabitants are mostly Sherpas, with a historic Rai minority. The
economic and tourism boom of the recent decades has brought people from many other

ethnicities (or castes, as they were rather seen by my informants) to seek jobs there. These

people are mostly Rais and Tamangs, but it is possible to find many other peoples as well.

Namche is in fact a very multicultural place, even excluding the tourists. The general

language of communication is Nepali. Sherpas using their own language among themselves,

but are switching more and more to Nepali (since they cannot read and write in Sherpa, but

only Nepali, or some of them in English, Tibetan script is taught at the primary school now, so

this situation might change in the future). Rais, Tamangs, Chaudharys, etc. all have their own

languages, but not all of them are able to speak their indigenous languages, so they also use

Nepali. In this paper I will use the term Nepali to denote a Nepali person regardless of the

caste/ethnicity.

Namche is on the trail to the Base Camp of Mount Everest. Everest Base Camp is a very
popular trekking destination for tourists and is called EBC for short. Most trekkers want to see

Mount Everest and be able to say that they have stood at the foot of it. Besides EBC there are

other attractions: smaller peaks and high passes for enjoying the views and putting yourself to

the test.

There are two tourism seasons in a year: March to May and September to December.
Summer is rainy season (with snow in the higher regions) and wintertime is too cold for

comfortable trekking. Catering to the flow of trekkers can be considered the main economic

activity in Namche. This takes three different forms: offering porter and guide services,

keeping a lodge and a restaurant, or running a tourist shop. There is now tens of lodges in

Namche, providing accommodation and food for all the trekkers and hikers. According to

Stevens (1993, 363-364) these were originally, until the 1970-s, just ordinary Sherpa houses

with a sign up front, inviting trekkers in for a meal and a bed. Nowadays, however, lodges are

purpose-built houses with separate rooms and have little in common with traditional Sherpa

houses (i.e. houses used before the rise of tourism). By the way, it is important to note, that

previously Sherpas depended heavily on trade with Tibet as a source of income. In 1967 the

Chinese government restricted trade with occupied Tibet, which was a major economic blow

for the Sherpas. Fortunately this coincided more or less with the rise in tourism, which

provided, after a short period of doubt and transition, an alternative source of income (Fürer-

Haimendorf 1975, 3). Tourism, just like trade, could be made to fit well with traditional

14

agricultural and pastoral activities to diversify the sources of income. Now, limited over-the-
border trade is again being carried out with Tibet, which has diversified the Sherpa economy

even further.

Illustration 3: The position of mountaineering and trekking (Mar-
May and Sept-Nov) in the Sherpa Calendar according to Fisher

(1990).

According to Stevens, even households which earned most of their income from tourism
still continued to grow crops. He estimates that tourism accounts for 90% of monetary income

for the Khumbu region, but nevertheless it is a supplementary activity. The Sherpas are aware

of tourism's unstable character, its responsiveness to the ebbs and flows of global economy

and have stated their readiness to return to agro-pastoralism if tourism loses its attractiveness

15

(1993, 371). While I did not conduct specific research on this topic, I noticed that my host
family was cultivating potato, and all the terraces in Namche were being used for either crops

or grazing cattle, so people were involved with agropastoralism at least to some extent.

Nevertheless, to think of this area as a “traditional” culture would be clearly a mistake.

As of now, Namche is visited by thousands of tourists every year (according to a wall
chart in the National Park Office in Jorsale, the average tourist count of the last 13 years is

about 23 000 per year, excluding the mountaineering expeditions, which probably amounts to

a couple of hundred people per year). These tourists come from all over the world (I listed 20

different countries without really concentrating on it) and usually spend around two days in

Namche to rest and acclimatize to the high altitude. The local people who speak English have

plenty of contact with tourists during the high season. So despite its geographically isolated

location it is much more in contact with other countries than most rural Nepali villages. And I

haven't even mentioned the internet yet.

2.3 Modernity and Change?

Although due to the history of Nepal, some fifty years ago Namche Bazaar could surely
have been considered a pre-modern society, together with concrete relations, memory-based

history, personal and oral history and intimate relationships, it would be a grave mistake to

still regard it as such. The “pure, untouched” state is described by the early explorers like von

Fürer-Haimendorf (1964). He also described with much tragedy the social change resulting

from the increasing tourist flow and contact with the money-based impersonal polluting

western culture (1984). Whether to regard the social change as a fall from grace or a welcome

progress in technology, medical facilities and social organisation remains up to the interpreter.

But it is indisputable that the social change has been remarkable.

On the opposite side, it could be argued that the Sherpa society has always experienced
change. Stevens describes a widely accepted view (1993, 213-214), according to which the

Sherpa agropastoral history can be divided into three relatively static phases: early period of

mixed agropastoralism brought from Tibet, the “potato revolution” starting in the mid-1800

(described by von Fürer-Haimendorf as a powerful event, resulting in a population explosion,

16

settling new and higher areas and a new level of prosperity, including a new number of
temples and monasteries being built) and the “tourism period” where reliance on traditional

subsistence has decreased and transformed by effects of mountaineering and mass tourism.

This view already would implicate a fair amount of change over the history, but Stevens
argues against it and believes the truth to be even more dynamic. His research (1993, 214-

215) has showed the local history not to be a static traditional existence with just two periods

of rapid change (first potato, then tourists), but as a much more diverse and eventful

evolution: “Sherpas do not support this view on their past. Khumbu oral traditions and oral

history […] tell a story instead of a more dynamic history of innovation and adaptation.”

While there has been a fair amount of change in the lifeways of the people there, in 1950
the characterisation as “pre-modern” still holds, since none of the change by then can be

described as disembedding or lifting the social relations out of local context. There were

mountaineering expeditions and job-seeking trips to Darjeeling in India, but the scale of these

was small, compared to the onslaught of tourism triggered by the construction of the airstrip

in Lukla in 1964 (Ortner 1999, von Fürer-Haimendorf 1984, Fisher 1990). This resulted in an

explosion of change (see Illustration 4).

17

Illustration 4: Change in 1950-1990 in Khumbu (Fisher 1990,183).
While the reason for building the airstrip was to start a school construction project, James

Fisher, the anthropologist who was also participating in the school construction programme,

later discovered that the construction of the schools had far less impact than one of the by-

products of their building: the airstrip itself, which made a rapid increase in tourism possible”

(1990, front sleeve). This illustrates the unpredictability of technological change.

It is safe to say that both education and tourism have played a role as modernising agents.
I did fieldwork in one of the schools mentioned by Fisher and we will come back to it.

18

3 Fieldwork in Namche

It is early morning, about 6 o'clock. I have already been to the monastery to see the
monks and their early morning chanting. Now I am sitting in front of Khumbu Cybercafe and

waiting for my informant, Sameer, to come and open it. The mountain air is crisp and clean,

the sun is just about to appear from behind the mountain-tops. A very enjoyable smell of

juniper smoke is hanging in the air of the whole village. It is rising from small altars in front

of the houses here and there. It is a Sherpa custom to burn juniper branches. It pleases the

gods, they say. It certainly pleases me, at least.

The village street is quite empty, I saw one porter carrying some plywood, probably to a
construction site somewhere. And then a dzopkio – a crossbreed of a yak and a cow. These

wander around here on the streets all the time, on their own. I can hear morning village

sounds: cocks crowing and somebody working with a saw somewhere. After ten minutes

Sameer appears. He is happy to see me. He opens the padlock on the cybercafe door and we

go in. Sameer has lots of switches to flip – the lights, all seven computers and monitors, and

some extension cables powering the internet switches and wifi routers.

Half an hour later we are sitting behind a computer and surfing around on Facebook.
Sameer has been upstairs, in the lodge, to eat breakfast. There is a monitor in the kitchen

connected to a CCTV camera in the cybercafe, so he would see if a client appears. But there

has been no clients – it is off-season and there is neither tourists nor locals on the move this

early. So we are sitting and surfing the Facebook for now. Later some clients appear and I go

sit in my usual spot in the corner, take my trusty notebook and start observing.

3.1 Two Months of Yaks, Cables and Cybercafes

To prepare for my project, I contacted an Estonian woman who is doing voluntary work
in an orphanage in Kathmandu. She put me in contact with a hotel-owner in Kathmandu, who

in turn referred me to a lodge-owner in Namche. The fact that just two people are enough to

establish a link between an Estonian student and a Sherpa man in the Himalayas speaks

something about the interconnectedness of our world.

I spent a total of ten weeks in Namche, starting in April with the tourist season in full

19

swing, and ending in June when the rainy season had started, stream of tourists had almost
stopped and a significant part of the population of Namche had done the seasonal migration

back to their home villages. Namche was half-empty at that time.

My lodgeowner, with whom I stayed, told me that the main man about everything to do
with internet here is Nima Gyaltsen Sherpa from Khumbu Lodge: a local business leader,

lodgeowner and internet service provider. He is operating a radio link which provides internet

connection to Namche Bazaar and some surrounding villages. So I set up an interview with

him, and started doing observation at his cybercafe, Khumbu Cyber.

3.2 Khumbu Cyber, Sameer and Rajesh

Khumbu Cyber is where I spent most of my time. It is located in the very center of
Namche, on the ground floor of Khumbu Lodge and is a part of Nima's business operation

consisting of a lodge, restaurant and a cybercafe, as is very usual here. Khumbu Cybercafe

contains seven computers in one room about 10 m x 5 m. There are two small booths, one for

international phone calls (VoIP) and another for standard intra-Nepal calls (NTC landline).

There is also a copy-machine, a printer, a scanner and recharge cards for pre-paid mobile

phones.

Most of my time in Khumbu Cyber I was sitting on a bench in the corner, passively
observing and taking notes. Sometimes I had my camera out on a tripod and would point it

and start recording, if something of interest was happening. People, tourists from different

countries, Sherpas and other Nepali people, came and went, sitting behind computers and

browsing the internet, buying recharge cards for mobile phones, making phone calls. Sameer,

the clerk, helped anyone who needed assistance, and took care of the payments. He came and

talked to me whenever he had a spare moment. I did not understand any of the Nepali

dialogues except place names and numbers, so I would often ask him about what had

happened earlier – he would explain to me who had said what. Of course, a lot of the

information was still lost because of my inability to understand Nepali, but it was during these

conversations I got most of the information I learned.

Sameer was one of my main informants. The other one was Rajesh, the other employee of
Khumbu Cyber. Whereas Sameer sat in the cybercafe and attended to clients, Rajesh was the

technician. He was usually out and about on errands, fixing the cable here and there or taking

20

care of some equipment. Rajesh is Chaudhary, which is a subset of the Tharu ethnic group
(Gautam et al 1994, 328). He himself says that “Tharu is another word for Chaudhary”. His

father is the headmaster of a school in a village halfway between Namche and Lukla. Nima

knew his father and six years ago, when he needed somebody to take care of the technical side

of his internet connection business, he asked around. So Rajesh has been working in Namche

for six years now, intermittently also studying in a college in Kathmandu.

Sameer is a friend of Rajesh. They are both from Lahan, in Tarai region of Nepal. One
year ago Nima asked Rajesh to invite a friend to work at Khumbu Cyber, they needed more

hands. So Sanijv asked Sameer to come.

3.3 Namche Primary School and Dawa

The other important fieldwork arena besides Khumbu Cyber was the village school. The
computer/mathematics teacher there, Dawa Sherpa, became my third informant. He was very

friendly and gave me permission to film and observe his computer lessons. I attended three

5th grade computer lessons (I chose the 5th grade, because it was the oldest at this school). I

also asked the lama teaching at the school for permission to film his lesson, and he agreed. So

I also filmed one of his Tibetan language lessons, for comparison. It is quite usual in Nepal for

schools to be English, and all subjects except Tibetan and Nepali were taught in English,

which of course suited me very well.

3.4 Trips Along the Network

I took two trips with Rajesh, when he was doing his errands. First, it turned out that
Khumbu Cyber was also providing internet connection to the school and he needed to go

check why it is not working. We spent half a day checking the cable, fixing it here and there

and configuring the network to get the connection to work.

On another day we took a hike with Rajesh to the radio link stations. Nima's internet

connection works via a radio link between Namche and Udayapur in South Nepal. This is due

to the fact that Nima and his associates had worked out how to achieve direct line of sight

along a valley all the way from Namche to South-Nepal, where they have subscribed to

internet connection from a Nepali ISP called Worldlink. Direct line-of-sight is required for the

21

radio link to work. The radio link is 120 km long, a fact that Nima is proud of and many
people find it hard to believe according to him. This radio link extends the Worldlink

connection onwards over the mountains into Namche. There were two of these radio link

receiving stations (one for backup) and they were connected to Namche by optical cable. One

was just on Namche border, the other about two hours away. I learned a lot about the technical

aspects of the internet connection on this trip. From the receiving stations here at Namche

another radiolink goes on to Chukkung, another to Imja – remote but popular

trekking/mountaineering destinations – so Nima does not provide internet connection only to

Namche but also to neighbouring villages.

3.5 Note-taking

For note-taking I used the method described in “Writing Ethnographic Fieldnotes” by
Emerson, Fretz and Shaw (1995). First, I made jottings of keywords, names, figures and

mnemonics during conversing/observing or immediately after, which I later converted into

expanded fieldnotes (during a break or in the evenings). I also transcribed video interviews

and dialogues into text.

In addition to fieldnotes I also wrote analytic texts, based on the method of
Developmental Reseach Sequence, described by James P. Spradley in his “Participant

Observation” (1980). This included extracting “terms” – words of cultural significance – and

combining them into domains and taxonomies – categories of meaning. These domains and

taxonomies can then be combined into paradigms by finding out the similarities and

differences between the terms included in them. All this analytical work should continuously

be checked and backed by observations.

As my fieldwork progressed I tried to follow Spradley's DRS method and keep up with
the writing tasks he prescribes. I started out with a lot of enthusiasm which gradually

decreased. It seems to me that DRS is more useful in prolonged or more intensive fieldwork

situations with more material, in my case the organising potential of DRS did not really

become viable, although some of the analytic texts I wrote were useful.

3.6 Video Camera Use

I had the camera with me almost always, but approximately half ot the time I did not take

22

it out of the bag. Taking out the camera seemed to send a powerful message to the participants
that “this now is important” which affected those participants who had not been exposed to

the camera often enough to be “immune” to it.

There were two types of camera work – open observation and planned shots. I observed
situations that I deemed interesting with a camera, without much thinking about what kind of

shots I need, simply pointing the camera's attention where my informants seemed to be

pointing theirs. In the cybercafe I often felt like I am intruding the privacy of the internet

users, however. So I tried to establish some kind of a eye contact or nod-greeting instead of

just starting to shoot a complete stranger (filmmaking is still more about working with people

than working with a camera).

Planned shots formed a small part, maybe a tenth, of the shooting and were mostly scenic
shots not involving important human activities. I kept a list of shots I needed, adding items

into this list in some creative mood sometimes late at night when thinking about my project or

reading something (Hampe 2007 gave me ideas often). Then I would sometimes go out with

the camera specifically to “get that shot”.

The camera gave me the following abilities:

Comprehend unknown languages. Although my informants spoke some English, a lot of
the intricate detail of social situations was being lost due to my lack of Nepali ability. I made a

friend in Namche, a trekking guide named Ramesh, with whom I met in Kathmandu after my

fieldwork period in Namche was over. We watched through my footage and he made me a

rough translation of the Nepali dialogues. So the camera worked as a (delayed, but still)

translation device, helping me reveal many important details about what had happened. While

it would naturally be better for me to understand the language and hence the situations live,

being able to understand foreign language situations is still a wonderful ability afforded to us

by technology.

Intricate details of communication – when I observed the communication between
participants, I was trying to concentrate on the content of what is being said. Watching the

same dialogues from video tape over and over gave me insights about the unspoken

communication – proxemics, body language.

As is typical in ethnographic analysis, or rather any analytic work, I used writing as an
“extension of the mind”, writing out, formulating, phrasing, rephrasing and analysing my

23

thoughts in the text editor. I felt the need for a similar ability with video. A need for the ability
to review my video material on a big screen and doing some preliminary rough form of

editing – which is equivalent to “thinking” in a text editor, only its “thinking” with footage.

Lightweight editing software allows this already quite easily and soon it will probably be a

standard procedure on visual-anthropological fieldwork.

Metje Postma describes two different, to a certain degree conflicting, audivisual styles in
ethnography: description and narrative. The first is concentrated on “descriptive data” and its

authority is determined by its representativeness and the precision of its description in relation

to the “real event” (2006, 321). It is “technical” footage (not raw or unedited!). The other is an

ethnographic documentary, a film with a particularity that lies in cross-cultural representation

of the reality of the members of the other community, based on ethnographic understanding

(2006, 325). That means a film in the “filmic” sense – with a narrative and characters. The

former suits well for depicting cultural actions, the latter for people. Both are beneficial for

written ethnography as well. Trying to find stories, concrete narratives presentable in the film

also helps to order the knowledge about a cultural situation.

Of the text to follow, most of chapter 5 was discovered through working with the footage
for filmmaking purposes, diving the material into scenes and finding narrative elements.

Knowledge about dynamic elements of culture are easier to discover through a dynamic

medium.

24

4 High Context Communication at the School

4.1 Computer Lessons at the School

I start describing my findings with the primary school because that really helped me open
up the reality in Namche. I started my observation there a few weeks into my fieldwork, after

meeting one of the teachers in the library and discovering through casual small-talk that they

teach computers there.

The first thing to catch my attention as I entered the classroom was a poster on the wall,
hand written on a huge red sheet of paper, with a black marker. The poster consisted of the

following text (spelling mistakes in original):

“COMUTER
Definitions of “Computer”

1) The word Computer is taken from the word “Compute” means to

calculate

2) A Computer is an electronic machine which can read, write and

compute data.

3) A Computer is an electronic device which accepts data and

instructions, processes them and gives processed output as

information.

PARTS OF COMPUTER
1)CPU = Central Processing Unit

2)Monitor (VDU = Visual Display Unit)

3)Keyboard

4)Mouse

5)CD-ROM Drive

6)Floppy Disk Drive

7)Printer

8)Volt Guard

25

9)Speaker

More info:
Data = information about something

Instruction= Command, order

Processing= Changing data into useful information

Unit = Component

Produced by: Dawa Sherpa”
This is certainly a very formal approach to the topic of computers. The lesson itself

followed a similar pattern of formality in speech. Here is a transcript of the video taken during

the lesson:

Teacher: What are the capabilities of a computer. You! Tell me number
one.

Pupil A: Storage, reliability... [teacher writing the words on a

whiteboard as the pupil reads them]

Teacher: Accuracy... And number four?

Pupil A: Versatility...

Teacher: Number five?

Pupil A: Diligence and speed.

Teacher: And speed. [turns to others] all things are included or not?

Pupils together: Yes.

Teacher: And what do you mean by accuracy?

Pupil A: Accuracy means accurate. And mathematical...

Teacher: I have shown you a very good example in your computer

yesterday. Bring your chair [sitting down behind a computer, showing,

pupils gather around him] We are going to do mathematical

calculation which gives the accurate results. Now we are going to do

the mathematical problems operations under the addition,

multiplication, subtraction and division in a computer with the help of

a computer. Yes or no? [starts a calculator program in Windows] It is?

26

Calculator! Yes or no? When we are going to write 5 + 5, it equals 10.
It is correct or not? Not correct yes?

Pupil B: Correct.

Teacher: Correct, good. That means accurate. Accurate answer or not?

Pupil B: Yes.

Teacher: So computer, one of the characteristics of a computer is

accuracy. Yes or no?

Pupils together: Yes.

The rest of the lesson followed a similar pattern of learning abstract knowledge about the

topic of computers, not so much about a real concrete computer as a tool or device to be usad

in practice. Here is an excerpt from the textbook1, section “Main Points to Remember” of the

chapter being studied during that lesson:

“A computer is an electronic device that accepts data and instructions,
processes them and gives processed output as information.

Every computer has two types of memory: Primary memory and

secondary memory. RAM and ROM represent primary memory. Hard

disk, floppy disk, CD ROM are examples of secondary memory.”

(Khanal 2009, 14-15)

This was the first computer lesson at the school that I observed. On the same day I also

started observations at one of the cybercafes. Here is an excerpt about the cybercafe for

comparison.

Nima's [the owner's] sister is watching some Hindi music videos from
youtube. The band is called Heartbeat. We are sitting with Sameer and

chatting about his past. He shows me pictures of Dharan [a town he

lived in for a while]. He tells me it is nice and clean, not like

Kathmandu. He shows me pictures of several places in Nepal that he

has a connection to. He googles “[placename]+pictures” to find photos

1 The textbook is printed in 2009 but it is written in 1996, and while it is very thorough about the computer

technology of 1996, it has seen only minor revisions. It still contains information about floppy disks (5¼''

and 3½'' with sizes in Kb), which have been totally obsolete for years. The textbook even contains a separate

chapter on MS-DOS together with a “Practical”, where students learn to navigate around in the folders using

MS-DOS command prompt commands. The teacher surely has freedom to skip the obsolete parts and Dawa

seems to be aware of what is outdated.

27

of the places. Quite often (but not always) he double-clicks internet
links unnecessarily. Never does he pay any attention to web pages

with text. Only photos.

Computer use at the Khumbu Cyber is casual. Nothing about “versatility” and

“diligence”. Just Youtube videos and photographs. I see people, both local and tourists,

reading their e-mail, chatting on Skype and communicating to their friends on Facebook. No

“accuracy” or “speed”. Just interpersonal communication. The computer class and the

cybercafe seem to be two different worlds.

I tried to understand why these two worlds are so different. For one, the education setting
in Namche in general struck me as quite authoritative. The teacher is addressed by the kids as

“sir”, always. Before entering the class, the student asks for permission from the teacher. The

schoolday starts with a lineup of all students, some marching exercises, a headcount and a

singing of the Nepali anthem. All students must wear a school uniform.

Singing of the anthem every morning reminds us of the fact that the school is very
sharply a government setting. It is an establishment conforming to the operational program set

by the Nepali Government.

4.2 It's Government Service and Therefore Useless?

May 31st, we are sitting in Khumbu Cyber. Two young men enter and
bring a device with them, that to me looks like a receiver from a radio

dish antenna. After a brief chat with them, Rajesh explains to me, that

it indeed is the receiver from the NTC mobile phone tower, from the

antenna upholding the radio link south from here. Something is wrong

with the device and they brought it here to fix it. The two guys turn

out to be NTC employees. They chat with Sanijv for about 10

minutes, then leave. The broken device stays here. Rajesh then

explains to me, that the mobile phone tower is not working (I check

my mobile phone and, indeed, there is no coverage). Rajesh tells me

that tomorrow they will fix it. “If this was private company, they

would fix it now. But it is government office, so they go tomorrow.”

This sentiment appears to be widespread: if something is government, then it is reason

28

enough for it to be not good. In an interview with Nima, the owner of Khumbu Cyber, he told
me about the two mobile phone operators in Namche. There is Nepali Telecom or NTC, which

is a “government” service and therefore “worthless”. And then there is Ncell, which is

“private” and “a good service, owned by TeliaSonera, a Swedish company.“

“But it is government office, so they go tomorrow.” This statement seems to legitimise
fixing a problem later rather than sooner. A “government service” and “worthless” are not two

properties that often appear together. Instead, one property is the cause for the other: being

“government” is a cause for being “worthless”.

This generalisation naturally brings to my mind the school. In the previous section we
saw that I got a strong impression of the sharp contrast between the computer class and real-

life at Khumbu Cyber. The school lessons were something that to me appeared to be quite

pointless, as I did not see the kids learning any skills applicable in real-life situations.

Obviously the school must be a completely worthless establishment, I thought.

Unless I am missing something.

It turns out I was missing something indeed, and understanding that took me a while. I
will present my train of thought from this point on to realising how to interpret the school

properly.

During fieldwork I had a talk with Natang, the owner of the lodge where I was staying.
He told me that out of the eight teachers working at Shree Himalaya Primary School three

teachers are paid by the government and five by the school management committee (meaning

donations from the local people and from various international NGOs). The textbooks used in

the computer lessons are standard textbooks used all over Nepal. In other words, the study

program is fixed on state level, although the teachers make a selection out of that (like Dawa

leaving out the outdated parts). According to the foreword of the textbook the computer class

is compulsory only starting from class 9 (Khanal 2009, 3), but Namche school has decided to

start computer education from class 3 already.

So in the field it seemed that the computer class is a mix of government policy from
above and a local initiative (the teacher and the school management committee). I attributed

the “uselessness” of the lessons to the “goverment” part of the education system. This is what

I wrote in my analytic text straight after fieldwork:

29

The computer class at the school is not just another government
service that does not work. It is a mix of a “worthless government

service” and local initiative. The study program is provided by the

government (in the form of a government approved but outdated

textbook), and this is why the content of the lesson is in such a sharp

contrast with real life internet experience at Khumbu Cyber.

But at the same time I remembered that Natang and Nima speak of the school quite

highly and this kept bothering me. Why? Why did they not see it as useless as other

government services? What was I missing?

I was missing a perspective to understand how education in Nepal, and to some extent the
whole Nepalese culture, works. I found this perspective, during post-field analysis, from an

article titled “Understanding Cheating in Nepal” written by a Peace Corps volunteer

Chadwick Fleck (Fleck 2000). He, an American science teacher, was volunteering to teach

English and science in rural Nepal. During exams he was surprised to see his pupils openly

behaving in ways which according to his American perspective was blatant cheating –

children were copying answers from each other and discussing questions among each other.

This was in spite of him having explained it very clearly that he expects all his pupils to work

independently and the children had all seemed to understand and explicitly agreed with that.

Apparently Fleck had problems with correctly interpreting the events at a Nepalese school,

just as I did. But if in my case it might have resulted just in a misinterpretation (and the

writing of a bad master's thesis!), then in his case it resulted in a failure to work. And as so

often in ethnography, we learn more from failure than we would learn from success. If Fleck

had been able to contain his frustrations and continue working somehow, he might not have

come to seeking help with interpretation. But he did seek help, turned to the theory of Edward

Hall, and came to a revelation. Using Hall's notion of high-context communication, which I

described in section 1.5, our American volunteer teacher was able to gain a better

understanding of the Nepalese school and reconcile himself with it:

Textbook knowledge is not as highly or widely revered as it is in the
U.S. Therefore, most people do not see education as valuable in and of

itself; instead they believe that it is a means to an end. Education is

valuable because of the social status a person gains by reaching higher

levels of study. […] More importantly, in Nepal’s hierarchical culture,

30

education is a measure of social rank rather than knowledge. For
example, a girl of the right caste, whose family has a good reputation

and who has herself finished X years of schooling, may be a more

attractive bride than a girl who has not been to school. Why is that so?

Being educated is important not because the girl will become a good

match for a boy intellectually, but because society — via the school —

has recognized her and respects her. Those village girls who have

completed some schooling will earn higher dowries for their families,

too.

(Fleck 2000, 3)

So according to Fleck the school in Nepal is not so much about acquiring explicit

coded knowledge as it is about attending formalities, obtaining social rank, building group ties

and social relations. But of course, education in Nepal should not be regarded as merely

“showing up” at the school. Gregory Bateson (1972) has coined the term “deuterolearning” to

denote a certain type of a byproduct of the learning process – a certain kind of “learning to

learn”. This means acquiring certain kinds of appreciative habits and abstract patterns of

though. And certainly a lot of deuterolearning goes on at Namche primary school and other

Nepal schools: kids are learning about social hierarchy, authority, group values, etc.

One example from Fleck's account strikes me as particularly relevant:

During a school day, the average Nepalese teacher spends all of his or
her class time lecturing to students — even to first graders — and

expects them to sit quietly. Students respond in unison to the teacher’s

rhetorical questions, usually in the affirmative.

Male teacher: Nepal is a mountainous country in South Asia. Yes or

no?

Students: Yes, Sir.

Male teacher: The world's highest peak, Mt. Everest, is in Nepal, isn't

it?

Students: Yes, Sir.

[…] Communication between teachers and students is very limited,

and kids learn to say, "Yes, Sir," regardless of their understanding of a

statement or agreement with it, or disagreement with it. In a high-

31

context culture, the students do not challenge or dispute a teacher’s
point (Hall, p. 111). Questioning a point that a teacher has made is not

seen as inquisitive; rather it is seen as confrontational. Questioning a

teacher’s ideas publicly may be an even greater offense.

[…] Students do ask questions in school, of course, but there are many

unwritten rules for when, where, and how it is appropriate to do so. It

depends on the context.

(Fleck 2000, 4; his reference is to Hall 1976)

Compare this to my account of what happened in the classroom. The similarity is

striking!

4.3 Summary

So, I went to the computer class expecting to find something about how the people
there see, use or teach computers and internet. I did not learn so much about the specific topic

of computers, because the lessons were not implicitly about it. Thus they seemed useless to

me. After interpreting my field data through Hall's concept of high-context communication I

learned the meaning of these lessons plus a valuable lesson about how the Nepali society

works in general: the school lessons seemed useless to me, because I was viewing them from

my low-context point of view. In the context of Nepali society they were completely relevant

and, through a deuterolearning-style mechanism, served their purpose (which was also the

view conveyed to me by my informants): the kids were learning about attending formalities,

obtaining social rank, building group ties and social relations.

32

5 Punctualisation Battle at the Cybercafe

So, during my fieldwork I considered the computer class at the school a somewhat
strange phenomenon, a curiosity, something that did not really function as its was meant to. In

contrast, I considered the goings on at Khumbu Cyber to be “real life”, internet in actual use.

After gaining the insight about LC and HC communication styles, I now have an insight about

how to interpret the situation at Khumbu Cyber as well.

In this chapter I will analyse the situation in Khumbu Cyber, my second observation
arena. Khumbu Cyber is a place of many intersecting interests and influences. Traditional

Namche village life meets the internet, tourists meet locals, Namche people meet people in

other places over the telephone and internet.

5.1 Mediators to the Cyberworld

When some people, especially of the younger generation, generally speak good enough
English and possess the computer skills necessary to function on the internet, then others,

need help in navigating this new and alien terrain.

May 10th, 12:08. A Sherpa girl comes in, talking to Sameer in Nepali.
Sameer opens yahoo.com, types the username as the girl dictates it.

The girl then types in the password, but it's wrong. She then spells it to

Sameer, letter by letter, using English alphabet spelling. Sameer types

it in, still unsuccessful. The girl then tries again herself, this time it

works, Yahoo mail opens. They proceed to read the e-mails: Sameer

reads them to the girl loudly. They proceed through about three e-

mails, all of them automated mail messages from Yahoo about

administrative matters. The girl then pays to Sameer and leaves.

Sameer tells me that she was waiting for a specific letter which had

not arrived.

The above describes a more or less typical account of one of Sameer's main activities at

the cybercafe – helping the Nepalis who come to the cybercafe to use the internet but do not

have the skills for it. Using the internet demands a set of skills – a degree of command of the

33

English language on the one hand, and experience and knowledge on how the websites and
various services work on the other. Sameer acts as an assistant, a mediator for them. There are

many references to this function in my fieldnotes: “Sameer and a young man compiling a

Nepali document in Word” or “Sameer helps a Sherpa girl fill out a PDF form – the Nepali

passport application”. Here is another account:

June 8th. An old Sherpa man stands next to Sameer who is sitting at a
computer. They have the old man's Gmail account open, Sameer has

complied an e-mail with several photos from the old man's digital

camera attached. As Sameer later explained, they tried to send the

photos to somebody in Kathmandu, but the e-mail address was wrong

and the e-mail was not delivered. The old man makes a call from the

STD phone to ask about the address. They try once more and then

give up, the old man leaves. Sameer tells me that probably the first

part of the e-mail address was right (the part that comes before the @

sign), but the latter was incorrect (confused gmail.com up with

yahoo.com or some other).

Not all assistance efforts work out, but nevertheless the effort is there. Here is how

Sameer himself commented on his assisting-mediating function in an interview:

“Nepali people did first not have idea about internet, they are coming
to my cybercafe and they ask how do I send the e-mail. I am here, this

computer in my cybercafe, and I am opening, creating accounts:

Yahoo, Hotmail, Gmail, and so on. And every week they come here

and I give them idea, teach. You can click here, first you can write e-

mail id, and subject, and you can write mail and send. So little is one

by one is using the internet, the Nepalis.”

So Sameer has, according to his own words and my observations as well, a role of a

mediator or an interpreter for the people less skilled in internet use. Although the verb “teach”

was used by Sameer here, when I try to elicit the role of a “teacher” in an interview, I meet

with opposition:

Me: So as part of you work at the cybercafe you also work as a
teacher? You teach the Nepali people?

34

Sameer: No no no, not like that. Only if they have a problem, we...
Me: Yeah that's what I mean.

Sameer: Like we show how to send an e-mail. But we are not teacher

like...

Me: Yes, I do not mean you are officially like a teacher but I mean

teaching is part of your job?

Sameer: No no no we don't.

Rajesh interferes here: There are basic courses sometimes off [the

tourism] season by Prashu. And he is teaching.

My awareness of the difference between HC and LC communication styles already pays

off here: whereas me, in my LC way meant that anybody who “teaches” other people is a

“teacher”, for Sameer the word “teacher” has a totally different connotation, one entailing a

certain status that has to be earned or attained through an elaborate social process. Therefore

he refused to use this term for himself, although he agreed that he does “teach” users at the

cybercafe.

Prashu Tamang, mentioned by Rajesh above, is a former employee of Khumbu Cyber
who started his own cybercafe – Buddha Communication, a few hundred metres away from

Khumbu Cyber – seven years ago. He comes to Khumbu Cyber sometimes and often

participates in running Khumbu Cyber either by taking care of the technical matters or

working as an attendant when either Sameer or Rajesh are away from Namche. He also runs a

basic computer use course for Nepalis (unfortunately, during my time there none took place so

I was unable to witness it). Sameer and Rajesh expressed it very strongly, that all the teaching

of internet use belongs to Prashu. Apparently his status at the establishment was sufficient (he

has been active there for nine years) to bear the title “teacher”.

5.2 Actors and Networks

Now let us come to the approach mentioned above: the actor-network theory. According
to ANT we should consider the social to be made of actors influencing one another. An actor

is something whose influence on other actors leaves a trace and can be seen. Khumbu Cyber

can be considered to be an actor, since its influence on other actors can be seen. It draws

people to itself, makes people talk about it and use its services. It is continually securing a

35

supply of needed resources – people, computers, furniture, electrical energy – for itself.

Another feature of the ANT approach is that a network of actors can be punctualised,
perceived as a singular actor on another level. Khumbu Cybercafe is seen as a punctualised

actor by most tourists – they come in, use the internet and other services provided there, pay

and leave. For many local people (actors more closely integrated into the social networks of

Namche) however, the components of the cybercafe continue to play independent roles,

outside of the punctualised role of the cybercafe. Here is an example from a video transcript

of a scene where a Sherpa man has entered Khumbu Cyber and is awaiting an e-mail from

somebody. Apparently he has pre-arranged to use Khumbu Cybercafe's common e-mail

address and they are checking that e-mail account now.

The Sherpa man and Sameer are sitting behind the computer,
with Sameer operating the computer (meaning he has the keyboard

and mouse). Sameer asks: “What was the name?”

Sherpa man: “Lulen.”

Sameer is scanning the list of names in the Inbox. They go

throught the list of e-mails that have been received, but the awaited

letter is not among them. The Sherpa wants to clarify: “If it comes,

will it be stored here?”

Sameer: “Yes.”

“Thank you,” and the Sherpa gets up and starts to walk

towards the door.

Sameer, while still looking at the computer, says: “You have to

pay for checking e-mails.” Then looks apologetically-smilingly at the

Sherpa: “Just 10 rupees.” [For comparison: a bowl of rice costs

200 rupees].

The Sherpa explains, with a smile and extended arms: “Look,

sometimes I get from you, sometimes you get from me, so just let it

be.”

Sameer explains with a quiet voice mixed with a bit of

uncomfortable laughter: “Earlier we had good income from the tourist

and it was OK not to pay for using the internet for just 5-10 minutes.

But right now there are no tourists and we have to depend on just the

36

Nepali people...”
The Sherpa says now with a friendly-authorative tone: “In my

case it is different, because it wasn't me checking my e-mail. It was

you.” Smiling, he backs away toward the door, about to leave. Sameer

is unsure what to say, just says “Yes...”

Here we have two competing views: on the one hand, the old Sherpa tried to interpret the

situation as simply one person (Sameer) doing a favour to another (him) – one in a long list of

back and forth reciprocations (“sometimes I get from you, sometimes you get from me”).

Sameer, on the other hand, refused this interpretation and instead provided his own version,

where he presented Khumbu Cyber as an establishment that usually lives off of tourists 2, but

was temporarily forced to extend the tourists' role onto the Nepali people (“usually the tourists

provide income, but now it is off-season so we have to rely on Nepali people”). The clever

Sherpa's answer was to show that he did not conform to the role forced onto him (“it was not

me reading my e-mail, it was you”). He used the fact that he did not sit behind the computer

and surf the web and do all the other things that tourists there do, and thus the role does not

apply to him. After all, he was just sitting and watching. He pointed to the context to support

his point. This was an example of HC communication, or in other words, the Sherpa's

behaviour made sense in a HC way of thinking.

I think it is noteworthy that it is a failure that allows us to explore this situation: a black
box is a system that operates as it should. If it does not operate as it should, it will also fail to

be a black box. I witnessed many tourists using the internet, paying for it and leaving. In their

perception (and also mine, at that moment), Khumbu Cyber was punctualised into a black box

– an establishment where one uses the internet and then pays for it. It never occurred to me

that it is in fact an effort, a process. It was only due to the fact that Sameer (representing the

actor-network, Khumbu Cyber) failed to negotiate the terms in its favour this time, that I

noticed this as a significant event, and thus perceived the continuous process, the ongoing

effort of punctualisation on behalf of Khumbu Cyber.

In an interview, Nima the owner, mentions “social responsibility”: they are trying to earn

2 For more about tourists as a source of sustenance, see Fisher 1990. On page 123 he mentions an analogy
used by Sherpas: “...tourists are like so many cattle, representing highly mobile, productive, and prestigious,

but perishable, forms of wealth. Like cattle. tourists give good milk. but only if they are well fed”. The term

“cattle”, used by people with such long pastoral traditions, is devoid of any derogatory meaning here.

37

money from tourists and use it to improve life in Namche. The example above also illustrates
that, when Sameer says to the Sherpa that usually they depend on tourists for income but since

its off season, he has to charge him for reading e-mail. In other words, explanation is required

for charging money for a service offered – this reveals how Khumbu Cyber is still entangled

in pre-money economy contexts.

5.3 Summary

We saw two aspects of the cybercafe's operation in Namche: that many Nepali persons
need mediators to use the internet and that a “punctualisation battle” is continually waged by

Khumbu Cyber in order to continue its existence.

About the mediators – we saw social hierarchy in action, when Sameer and Rajesh
refused to let themselves be called “teachers”. This is a title, dependent of the social context

of the person carrying it, not a job description to be awarded abstractly to anyone who

conforms to the verb “to teach”. As such the title is reserved only for persons higher up the

ladder – like Prashu, the older employee who also had his own cybercafe by now and ran

computer courses for the Namche people. This is an instance of the high-context aspect of the

society.

About the “punctualisation battle” – the actor-network of

Khumbu Cyber has to

withstand forces that are trying to demolish it – for example, other actors who try to use its

components for their own advantage. We saw that the stability of social structures is not a

given, a granted feature. The actor-networks have to continually negotiate their terms of

existence, continually align other actors into favourable positions. Here we also witnessed

something about “lifting the social relation out of the local context” – Khumbu Cyber, in its

attempt to extend the tourist-cybercafe relationship onto a Sherpa man experienced a setback,

a failure. In this case it failed, sometimes it succeeds, and as such is illustrative of the battle of

turning concrete personal relationships between people into contract relationships between a

client and a service establishment, an instance of the “lifting out of social relations from the

local context”. For the tourists this battle has already been fought, more or less, and in their

minds Khumbu Cyber has been black boxed into a service establishment with payment as

input and internet service as output.

38

Nepalis Trekkers, tourists
1. Interpersonal communication:

e-mail, Facebook, Skype.

2. Nepali pop music on Youtube

3. News sites: E-Kantipur, MySansar,

Nepalnews

4. Photo services on Facebook, Flickr, Picasa

5. Calendar conversion websites for

converting

Bikram Sambat to the Gregorian

calendar.

1. Interpersonal communication:

e-mail, Facebook, Skype.

6 The Internet as an Actor-Network

Khumbu Cyber is not, of course, a lone actor trying to align other actors in Namche
Bazaar into a network that suits it. No, it functions only as a part of another, bigger network, a

global community of internet users. As a cybercafe, it is attractive and interesting for people

only if there are all these other people also using internet all over the world. To see how it

functions in relation to this larger actor-network, we will take a look at how internet is used in

Khumbu Cyber.

6.1 What Is It Used For

Based on my time spent in Khumbu Cyber, I compiled a cultural domain according to
Spradley's DRS method:

Functionalities of the Internet in Namche

From an interview with Prashu:

Me: So who are the people who are using internet here?
Prashu: Internet... everyone using it. Especially tourist people... They

want to keep in touch with each other and with family, some people

doing business, with internet. And every people. Really necessary to

39

use internet now, yes.
Me: Would you say local people use internet?

Prashu: They use too, yea. They... since nine years ago quite a few

people were using, but right now everybody is using. We give them

really good knowledge, we teach them, you know, about internet,

about the computers. Right now they can use very well, yea. [...] They

want internet in any way. Like Facebook and things you know. And

keep in touch with family, sending e-mail, getting e-mail, like. Yea. Its

really necessary.

So the interest seems to be strong enough in the people, that they come to learn to use

computers and internet use, it is not something that Prashu and other cybercafe owners have

to advertise. People are willing to pay for the courses which can be just one session or a

longer course of several sessions (Prashu: “Depends on the payment, if they want single

course or more”). Tourists are travelling, so they used internet mostly just for short

communication sessions (e-mail, Facebook). But some Namche people spent longer sessions

online and their activities also seemed to be more varied (especially members of Nima's

household and other related people who did not have to pay for it or had some special deal).

As to with whom they are communicating depended on the person. People who work in the

trekking and guiding business naturally develop friendships to their clients from other

countries in the line of work, and these tourists and trekkers continue to communicate with

their newly acquired Nepali friends after they have returned home. Others have friends and

relatives who have gone to other countries to work. This seemed to be a significant amount,

according to a discussion with Rajesh. Since long distance phone calls are expensive, the

internet provides the only really affordable channel of communication.

Nepali government institutions have also adopted internet for communicating with its
population. Rajesh used a government SMS service to find out the SLC results (School

Leaving Certificate exam or end of elementary school exam results). The results are

announced on a certain day for the whole country, so this is a huge undertaking. Earlier these

results were published in a newspaper, but now there are online options. There is a webpage,

where you type in the SLC number of the pupil and are supposed to get the result, but instead,

somewhat typically for a “worthless government service” an SQL database error is displayed.

So Rajesh uses an SMS service instead – he sends the SLC number and, on the second try,

40

gets the result.

Another example of this is the passport application procedure. In order to apply for a
Nepali passport, a person needs to fill out an application form (a PDF on the Ministry of

Foreign Affairs website), take it to a “government office” who checks it and sends it to

Kathmandu. Then, after a certain wait period, if everything works out, the person should go to

Kathmandu to collect the passport.

I went to Khumbu Cyber at around 14 o'clock. A lot of people were
there. Apparently a government official had come to Namche and for

about one week's time he would be here accepting the passport

applications [I later learned that this was an all-Nepal effort to provide

people with passports]. Many people are coming to Khumbu Cyber to

fill out the form and print it out. Sameer is busy helping them. At the

moment he is working with a 20 year old Sherpa girl Dawa. They are

filling the application both for her and her sister (Dawa provides the

information to fill in for her sister as well). After filling in the blanks

they print it out and then she takes it to the government official.

Notice that Sameer is busy working as a mediator here again.

6.2 Accompanying Effects: Language, Alphabet and Calendar

Nepalis in Namche are using English alphabet to write Nepali words. Typing Nepali
characters on the computer is technically possible but too complicated for most users for

comfortable text input. For short phrases of personal communication (e-mail, text chats and

Facebook) English alphabet works fine. Sometimes Sameer types Nepali documents in for

someone – this is a service for a fee. The client later comes to collect the printed out text or

has it sent to him as a file.

Dawa the computer teacher said there are Sherpa graphic designers in Kathmandu who
even use Tibetan fonts to make Sherpa texts and graphics (Sherpa language is very different

from Nepali and related to Tibetan), so he says it is possible but he has tried and not found a

way to use Tibetan. This is accessible only for professionals, who cannot work without being

able to use Sherpa writing.

41

The onslaught of the English language (and alphabet) is of course a part of a larger
process3. It seems to be prestige language anyway, with or without the internet. An excerpt

from the fieldnotes illustrates this:

I leave from Khumbu Cyber in the evening and go home to eat supper.
My host family is sitting in the common room and watching TV in

silence. I see some screen graphics with the contour of Nepal in it, so

it must be a Nepalese channel. The TV show consists of two beautiful

women, a filmstar and TV show host, walking on a beach somewhere

and discussing movies, filmstars, what is it like to live like a filmstar,

etc. I understand the conversation because it is in English. I eat my dal

bhat and start to realise the function of English here as a prestige

language.

Laura Kunreuther, who has worked extensively in Kathmandu, says that speaking in a

mix of English and Nepali is typical of young educated Nepalis. Her informants said that

“English is the international language” (2006, 331). I heard the same categorisation from

everybody I talked to about this: Nepali is the national language and English is the

international language. Internet is not the only factor enforcing the English language, just one

of many.

Another thing enforced by the internet use is the Gregorian calendar. One morning
Sameer logged into Facebook and got a birthday greeting from a friend. It was not actually his

real birthday, he had just entered a random date when creating his account, because it is

required by Facebook. When this date now arrived, his friends had gotten a notification about

Sameer's birthday and had sent him greetings. This is an example of the black boxed

technology breaking down and revealing something valuable again: the black boxed birthday

notification system on Facebook did not work as intended (and thus failed to be a black box)

and illustrated the calendar issues that I otherwise might not have thought of.

3 I compiled a domain of English words used in Nepali speech, which shows mostly words related to
computers and mobile phones, but that might be due to my working context. The list of words in random

order is: photocopy, recharge (as in a prepaid mobile), charge (as in charge batteries), (tele)phone, network

busy (an error message often received on one's mobile), mp3 (emm-pee-three), mobile, card reader, webcam,

Facebook, hello, sir, solar battery, inverter, tower (used as a synonym for “mobile network signal”). Numbers

are said in English in a phone number context or as a wester calendar year number.

42

So now I noticed that all the websites and software presume the usage of the Gregorian
calendar, which is incomprehensible to someone used to Bikram Sambat, the Hindu calendar

in use in Nepal. Of course they will learn it gradually through computer use. Interestingly,

spelling the month names and date numbers in English is the norm when talking about

Gregorian dates in Nepali, so that “June eleventh” is said as an English expression in the

midst of Nepali speech.

So the larger actor-network of the global internet is aligning the local actors in Namche
into using English alphabet and even some English expressions, plus the Gregorian calendar.

It is mutually reinforcing with other global influences brought by tourists, enforcing English

language and calendar. The internet also provides its mediator actors – date converter websites

for the calendar conversions and cybercafe clerks like Sameer for typing the text.

6.3 Sameer's Facebook Friendship

Now let's see an example of a human relationship in this new medium. About one month
before I started my observations at Khumbu Cyber, Sameer had acquired a friend on

Facebook, a girl named Rose from Indonesia. This previously unknown girl had sent a friend

request to Sameer, indicating her wish to communicate with him. Sameer accepted the request

and they started chatting. I tried to find out about the circumstances of their becoming friends,

but Sameer could not offer me any more explanation than that. She had simply requested

friendship and then they started chatting. This ease with which they started an online

relationship reminds me of Laura Kunreuther's account of spontaneous friendships started

over the phone network in Kathmandu (2006, 336):

During the mid-1990s, youths began using the phone to connect with
otherwise inaccessible acquaintances through what is colloquially

known as a blaf kal (bluff call). The friendships that develop through

these bluff calls are often between two people who have been

introduced by a mutual friend, or they are the result of a misdialed or

randomly dialed number. A 23-year-old daughter of a family I

frequently visited often invited a young man to the house and to

family events. […] One evening I asked him how he and Sarjana had

met. He replied matter of factly, “On the phone.” He had apparently

43

misdialed his friend’s number and reached Sarjana instead. They
began to talk and quickly became regular “phone friends.” Only after

a year or so of this phone relationship did they begin to meet each

other in person.

Kunreuther then refers to Joshua Barker's work from Indonesia. It turns out the bluff call

or similar phenomenon is also known there (Barker 2002, 166). These bluff calls have one

common characteristic both in Indonesia and Nepal: they are used by young people to get

away from the traditional social control of the community. Barker on Indonesia:

The disciplines normally brought to bear on public and domestic
spheres (by way of overhearing and seeing, for example) became far

less effective in controlling communication (Barker 2002, 166).

And Kunreuther on Nepal:

Relationships that develop over the phone in these bluff calls are

powerful because they appear to be unentangled and circumvent the

usual pressures of family and social control. […] The ability to

connect over the phone becomes a context that many young people in

Kathmandu describe in subjective terms as a “freer” and “more real”

emotional attachment (Kunreuther 2006, 336).

Although Kunreuther draws parallels between the bluff call phenomenon and the internet

chats (2006, 349) in that both are characterised by intimate conversations among strangers, we

cannot simply draw a parallel to Sameer's Facebook friendship. Telephones were anonymous

(at least before the caller ID function became ubiquitous on mobile phones), and so were the

internet chat-rooms popular during Kunreuther's research, but Facebook is different because

everything a person says carries his/her name and can be seen by that person's friends (since I

am on Sameer's friend list I gained access to their conversation). So while a Facebook

relationship might be freer and unentangled from usual family and social control, it just as

well might not be. Depends who else is watching. By the time their relationship dwindled to a

stop in July (because Sameer left Namche for a seasonal trip to Kathmandu and did not spend

that much time behind a computer any more), Sameer had acquired six Indonesians from

Rose's friends list and Rose in turn had acquired four Nepalis from Sameer's list. This

indicates that their relationship was in no way private, and was of interest to their friends. Yes,

Facebook users in Nepal are mostly young people, as probably in many places in the world,

44

so even if there are other people watching, the nature of social control can be very different,
but since it remains a very implicit phenomena, it is hard to explore.

We can explore the relationship of communication to context, however. An excerpt from

my fieldnotes:

We are sitting in Khumbu Cyber again with Sameer, passing time on
Facebook. Sameer sent a joke message to Rose about having sent her

a box of candy, he ran this message through Google Translate from

English into Indonesian. Now Rose replied in Indonesian. Google

Translate translates it into something to the effect of “Thanks, next

time send me real ones hahaha”.

This actually is an exception in the sense that usually their conversations proceeded in

English. But here the box of candy, although HC communication, certainly works.

The excerpt continues:

Sameer starts telling me: “I don't like Muslims [referring to the fact
that Indonesia is a Muslim country]. They are naughty, they want to

make their own community. In Gaighat [Sameer's hometown] there is

many of them. They are always on the mic [the call to prayer from the

loudspeakers]. Its a headache for me. They are dirty, always

bargaining.”

So the fact that Indonesians are Muslims was ran through Sameer's local context,

attributing certain characteristics to them. But still he entertains the following thought, and

speaks it in front of my camera:

“She is already married [according to her Facebook profile]. Too bad
for me. I don't want to meet her. Maybe she has a baby.”

While it is possible to communicate with any person from any country, relations on the

internet are still bound by the offline ties – Sameer mostly converses with people he knows

also outside of the internet.

6.4 Monks and Nuns

Another important fact is the relation to an older hierarchical system: that of the Sherpa

45

Buddhist religion. There was a monastery in Namche which was inhabited by monks and nuns
seasonally (during certain events and ceremonies). These monks and nuns would come to

Khumbu Cyber but only to buy recharge cards for their mobile phones. Only once during my

whole fieldwork did I see someone from the religious establishement using the internet.

When monks and nuns did come into the cybercafe, they were being treated a little like
children – spoken to with simple sentences, asked several times the same question, etc. They

seemed to be living in their own world, a parallel system, and the internet apparently had

nothing to offer them, internet has failed to align them, at least for now.

6.5 Chronological View

To understand the situation thoroughly we will now look at the historical development of
internet at Namche as well. Rajesh says in an interview:

At first it was the tourists, coming here and asking where is the
internet. Nepali people then see the tourist, how they use internet, how

to use mail, how to send pictures. So now is good, little by little the

Nepalis is similarly using the internet now.

I interviewed Nima, Sameer and Rajesh about the history of internet in Namche.

According to them it were the tourists who first brought the demand for the internet. Internet

connection was then provided by Sherpa entrepreneurs and lodgeowners to cater to tourists

but also to the Nepalis who had contacts with tourists and became friends with them (this

usually means porters, trekking guides and lodgeowners). Tourists transfer the knowledge of

how to use the internet to these Nepalis. So in a way, tourists bring with them both a need (by

becoming friends with Nepalis and wanting to communicate with them) and the means to

satisfy that need (teaching the computer skills needed to use the internet).

Since the opportunity was then already established, the Nepalis also communicate with
each-other, including Nepalis working in other countries. Nepalis often had another rate than

tourists. (At the time of my research in Khumbu Cyber the “local price” was half of the

“tourist price”). Therefore Nepalis used the internet mainly for interpersonal communication

(Facebook, e-mail), just like the tourists on their travels. During early times internet

connection worked via a satellite link and thus was quite expensive, so tourists did not spend a

long time online. Typical usage was a quick session, quickly going through your e-mail and

46

sending a few “I am okay, its wonderful here!” e-mails to friends. Now the prices have gone
down and tourists take longer sessions, but since they are on the move it is still the locals who

are using internet more extensively and have also developed more elaborate uses for internet

than tourists.

Now as revealed by fieldwork, together with the internet (and tourism) came the adoption
of other things: English alphabet also for communication between the Nepalis on the internet

(as the Nepali alphabet is more difficult to learn and use on a computer), Gregorian calendar

(as all the websites and most tourists use this calendar as opposed to the Bikram Sambat) and

English terms and concepts (memory card, printer, camera, etc) that are working its way into

everyday Nepali language.

Also internet has started to replace other communication channels not originally meant to
be affected: people now avoid making long distance phone calls to friends and relatives

abroad, and instead use internet chat or voice programs. Also newspapers are no longer

carried to Namche since this takes many days due to the physical isolation. People prefer to

read the online versions instead of two days old news on paper.

Recently NTC started offering its cheaper but also less reliable ADSL connection in
Namche, so there is now even competition between the internet connection providers. There is

a large number of cybercafes in Namche. Some of them still rent a part of the radio link

connection from Khumbu Cyber, but some of use the NTC connection now. The bandwidth

that Nima is using for his radio link used to be 3 MB/s, but is now reduced to 2 MB/s

(according to Rajesh). This reflects the decreasing number of clients (dropped from 26 to 15).

Rajesh says this is a result of NTC offering its cheaper, although less reliable (NTC is, after

all, a government owned company) ADSL connection in Namche.

6.6 Discussion

We learned that the demand for internet was brought by tourists, who wanted to use the
internet during their visit, and wanted to communicate to their newly made friends in Namche

after they went back. Then, since the internet was already there, it quickly found other uses:

Nepalis started to use it for communication among each other, and with friends and relatives

abroad. It also came to replace newspapers and to some extent the telephone. The Nepali

government is also using the internet to communicate with its population now. Government is

47

endorsing computer education at the schools. Real life development and use of internet is
happening at cybercafes, though. Some people need help with using internet, and mediating

the cyberworld to these users is also part of the job of cybercafe clerks like Sameer.

This history makes sense. Since actors and networks are mutually constitutive, no
network can form by itself out of thin air. There were actors that were already aligned into

using the internet – tourists, their digital cameras, friends and family back home. Their

existence resulted in a local actor-network – the Khumbu Cyber – being formed out of local

and imported actors (hardware, people, etc.). Khumbu Cyber in turn started affecting other

local actors and aligning them into its network (except some, like the religious establishment,

which is offering resitance). Now there are other actors that are making use of these already

aligned actors – the people of Namche are already used to the internet, thanks to Khumbu

Cyber. NTC has started offering its ADSL connection, Nepali government is making some of

its adminsitrative services available online, etc.

Other effects are being felt as well – the bigger, global actor-network of internet is
aligning the actors in Namche into using English language and Latin alphabet – succeeding

only partially since Nepalis use Latin alphabet but mostly still Nepali language. Gregorian

calendar is enforced on most websites. Mediator actors are used for this – convertor websites

and cybercafe employees.

New kind of human relations develop online, in a different social control environment
disembedded from the village setting – it is different people who are watching, therefore

participants try to conform to different rules. It is possible to talk to people from all over the

world but most conversations naturally happen between people who know each other outside

of the internet as well.

48

7 Conclusion

My aim with this paper was to explore how internet is adapted into an environment
culturally different from the one where it was spawned. For this purpose I borrowed the actor-

network theory taken from science and technology studies, and followed how actor-networks

are created and maintained. I also needed the concept of high-context and low-context

communication in order to make sense of the cultural processes.

Internet used to be seen as a monolithic placeless cyberspace which would make us all
similar to each other. My main finding is that this is not always the case. It is a collection of

different people doing different things while embedded in their social contexts. Here is how I

came to understand that.

First I observed the computer lessons at the Namche primary school, which seemed very
useless to me, children did not seem to actually learn much about computers or their use. At

the cybercafe, an arena of “real life and hands on” computer and internet use, completely

different things were going on. Cybercafe clerks were acting, for clients less skilled in the

internet use, as mediators to the cyber world, as guides to people who did not know how to

behave in this new cyberenvironment, both technically (setting up e-mail accounts, teaching

where to click, etc.) and culturally (with the English language and Gregorian calendar),

creating a new role for themselves in the Namche society. In spite of that they denied their

role as a “teacher”.

The explanation for both these two findings is that the society in Namche works in a
more high-context way than I was used to. A teacher is not simply someone who teaches but

someone who has gone through the necessary social processes and has earned the title of

“teacher”. Similarly, the purpose of attending school is not only to obtain knowledge, but to

learn a lot more through deuterolearning: about formalities, social rank, group ties. The

meaning of the pupils' going to the school is not derived only from the explicit knowledge

they learn at the school, but more from the fact of going to the school itself, and from learning

to behave in certain ways and interacting with certain people. Context is also why Sameer and

Rajesh do not agree to let themselves be referred to as teachers – although they do transfer

knowledge and skills to clients in the cybercafe they lack the necessary context that a person

49

with the title of “a teacher” needs to have. They are simply cybercafe clerks who help their
clients. Prashu, on the other hand, has the necessary “level” to be honoured with this title.

With my awareness honed to this high-context style, I turned to the cybercafe. I found

that it is not simply a business establishment in a low context sense – its meaning is not

simply to provide a service and charge a fee for that. It had to continually fight “a

punctualisation battle” in order to exist as an actor-network, and not be demolished into

component actors.

The cybercafe is, of course, not a lone actor, but is in turn a part of a larger actor-network,
the global internet, which on the one hand gives meaning to the cybercafe and on the other

hand enforces certain effects – English language, Latin alphabet and Gregorian calendar.

Networks do not form out of thin air – they form there where actors are already present
and trying to do something. Nima established Khumbu Cybercafe because there were tourists

already present. Nima and his radio link connection have accustomed the people of Namche

to the internet, and now other actors are coming in to take advantage of this. Another service

provider is entering Namche to take its share of the client base. And the Nepali government is

also using the internet to communicate to its population.

These shifting alignments and alliances between actors bring about new social hierarchies
and roles. Sameer, Rajeesh and Prashu have the role of mediators or gatekeepers to the

cyberworld. It is them – relatively young men, teaching old men, a somewhat of a reversal of

usual social roles. This new cultural practise brings along a cultural power shift, arise of a

new powerful skillset: proficiency in English plus skills of computer usage.

50

8 References

Films

Conquest of Everest, UK 1953, Dir George Lowe (available on www.youtube.com/movie?
v=Kj9OFJsyXio)

Literature

Ahola, Alphonse Ndem. 2005. Cyber Dreams. Online and Offline Dealings in Cyber Cafes in
Ngaoundere (Cameroon). Master Thesis, University of Tromsø.

Bateson, Gregory. 1972. Social Planning and the Concept of Deuterolearning. In Steps to an

Ecology of Mind. Collected Essays in Anthropology, Psychiatry, Evolution, and

Epistemology. Gregory Bateson, 127-138. San Francisco: Chandler Publishing.

Barker, Joshua. 2002. Telephony at the Limits of State Control: “Discourse Networks” in

Indonesia. In Local Cultures and the “New Asia”. ed. C. J. Wan-Ling Wee, 158-183.

Singapore: Institute of Southeast Asian Studies.

Callon, Michel. 1986. Some elements of a sociology of translation: domestication of the

scallops and the fishermen of St Brieuc Bay. In Power, action and belief: a new

sociology of knowledge? ed. John Law, 196-223. London: Routledge.

Callon, Michel. 1991. Techno-Economic Networks and Irreversibility. In A Sociology of

Monsters: Essays on Power, Technology and Domination. ed. John Law. 132-165.

New York: Routledge.

Castells, Manuel. 1996. The Rise of the Network Society. Oxford: Blackwell.

Emerson, Robert M., Rachel I. Fretz, Linda L. Shaw. 1995. Writing Ethnographic Fieldnotes.

University of Chicago Press.

Eriksen, Thomas Hylland. 2007. Globalization. The Key Concepts. Oxford: Berg Publishers.

Fischer, James F. 1990. Sherpas: Reflections on Change in Himalayan Nepal. Berkeley:

University of California Press.

Fleck, Chadwick. 2000. Understanding Cheating in Nepal. Electronic Magazine of

Multicultural Education. Vol. 2, No. 1. http://www.eastern.edu/publications/emme

(accessed March 8, 2012)

51

http://www.youtube.com/movie?v=Kj9OFJsyXio�
http://www.youtube.com/movie?v=Kj9OFJsyXio�
http://www.youtube.com/movie?v=Kj9OFJsyXio�
http://www.eastern.edu/publications/emme�

von Fürer-Haimendorf, Christoph. 1964. The Sherpas of Nepal. Buddhist Highlanders.
University of California Press.

von Fürer-Haimendorf, Christoph. 1975. Himalayan traders: Life in Highland Nepal. London:

John Murray.

von Fürer-Haimendorf, Christoph. 1984. The Sherpas Transformed. Social change in a

Buddhist society of Nepal. New York: Sterling Publishers.

Gautam, Rajesh and Asoke K. Thapa-Magar 1994. Tribal Ethnography of Nepal. Volume I.

Delhi: Book Faith India.

Gibson, William. 1984. Neuromancer. New York: Ace Science Fiction Books.

Giddens, Anthony. 1990. The Consequences of Modernity. Cambridge: Polity Press.

Hall, Edward Twitchell. 1976. Beyond Culture. New York: Anchor Books.

Hampe, Barry 2007. Making Documentary Films and Videos. 2 edition. New York: Holt

Paperbacks.

Khanal, R. C. 2009. Computer Concept for Class V. Ekta Books, Kathmandu, Nepal.

Kunreuther, Laura. 2006. Technologies of the Voice: FM Radio, Telephone, and the Nepali

Diaspora in Kathmandu. Cultural Anthropology 21 (3): 323-353.

Latour, Bruno. 1987. Science in Action: How to Follow Scientists and Engineers Through

Society. Cambridge, MA: Harvard University Press.

Latour, Bruno. 1992. Where are the Missing Masses? The Sociology of a Few Mundane

Artifacts. In Shaping Technology / Building Society. Studies in Sociotechnical

Change. ed. Wiebe. E. Bijker, John Law. 225-259. Cambridge, MA: MIT Press.

Latour, Bruno. 1993. We Have Never Been Modern. Cambridge, MA: Harvard University

Press.

Latour, Bruno. 2005. Reassembling the Social. New York: Oxford University Press.

Law, John. 1992. Notes on the Theory of the Actor Network: Ordering, Strategy and

Heterogeneity. Lancaster: Centre for Science Studies, Lancaster University.

http://www.comp.lancs.ac.uk/sociology/papers/Law-Notes-on-ANT.pdf (accessed

April 26, 2012)

Law, John and John Hassard. 1999. Actor Network Theory and After. Sociological Review

Monographs). Oxford: Blackwell Publishers.

MacKenzie, Donald and Judy Wajcman. 1999. Introductory Essay. In The Social Shaping of

Technology, Second Edition. ed. MacKenzie, Donald and Judy Wajcman. 3-28.

52

http://www.comp.lancs.ac.uk/sociology/papers/Law-Notes-on-ANT.pdf�

Buckingham: Open University Press.
Meeker, Mary. 2011. Internet Trends: presentation at Web 2.0 Summit, San Francisco,

October 18, 2011. http://kpcb.com/insights/internet-trends-2011

2011.

 accessed at 9th Nov,

Miller, Daniel and Don Slater. 2000. Internet: An Ethnographic Approach. Oxford: Berg

Publishers.

Miniwatts Marketing Group. N. d. Internet World Stats. www.internetworldstats.com

(accessed May 14, 2012).

Ortner, Sherry B. 1978. Sherpas Through Their Rituals. Cambridge University Press.

Ortner, Sherry B. 1989. High Religion: A Cultural and Political History of Sherpa Buddhism.

Princeton: Princeton University Press.

Ortner, Sherry B. 1999. Life and Death on Mt. Everest: Sherpas and Himalayan

Mountaineering. Princeton University Press.

Postma, Metje. 2006. From description to narrative: what’s left of ethnography? In Reflecting

Visual Ethnography: Using the Camera in Anthropological Research. ed. Metje

Postma, Peter I. Crawford, 319-357. Leiden: CNWS Publications.

Spradley, James P. 1980. Participant Observation. San Diego: Holt, Rinehart and Winston.

Stevens, Stanley F. 1993. Claiming the High Ground: Sherpas, Subsistence, and

Environmental Change in the Highest Himalaya. Berkeley: University of California

Press. Available online at: http://ark.cdlib.org/ark:/13030/ft8b69p1t6/

Wiener, Norbert. 1948. Cybernetics: or Control and Communication in the Animal and the

Machine. Cambridge, MA: MIT Press.

Winner, Langdon. 1980. Do artifacts have politics? Daedalus, 109: 121-136.

53

http://www.internetworldstats.com/�
http://ark.cdlib.org/ark:/13030/ft8b69p1t6/�

Voice Over IP Overview: Services,
Architectures, Ordering, and Billing

Ming Lai
Order and Service Management Systems
732-699-2626
mlai@telcordia.com

May 19, 2003
An SAIC Company

VoIP Sea and Islands

VoIP Net

Island 1

IP
Continent

VoIP Net

Island 2

PSTN
Continent

2

Introduction

VoIP is here now and is growing rapidly.
The regulatory issues are being addressed. The benefits from VoIP
technology of efficient use of networks and new enabled services are
much greater than the cost cutting via circumventing regulatory charges
Retail VoIP service ordering and billing solutions for different VoIP
architectures are being developed with different maturity.
Interconnection and wholesale/resell business processes and data
exchange among VoIP related service providers lack industry wide
coordination.
OBF can play an important role to connect existing and emerging VoIP
islands cost-effectively in ordering and billing.

VoIP

OBF:

EMI, MECAB, SECAB, LSOG,
ASOG, IP based Record, ……

3

Outline

What and Why VoIP

VoIP Services

VoIP Market and Evolution

VoIP Technology Overview

State of VoIP Technology Adoption

VoIP End Point Connection Types

Key Differences of VoIP Ordering and Provisioning from
Circuit Switch Voice Services

Key Differences of VoIP Billing from Circuit Switched Voice
Services

Issues: Regulatory, Business, Standards

4

What is Voice over IP (VoIP) ?

Voice over IP is the technology to transmit voice over IP networks
and the associated services enabled by the technology

VoIP Services

Telephony Services

Other IP Voice Applications

Unified Communication Services

5

VoIP Services

Telephony Services
– POTS/Class/Voice Mail Services (Internet/IP Telephony)

PC to PC
PC to Phone
Phone to Phone
Phone Card (Pre-Paid or Post-Paid)

– Centrex/PBX Services (IP Centrex/PBX)
– IN Services

Toll Free, Time-of-Day Routing, Voice VPN, Area Code Selection, Voice Dialing, SCP-
enabled services, ….

Unified Communication Services
– Multimedia/Mixed Media Communication

Instant Messaging, On-demand Conferencing, Presence Management, Collaboration, Media
Streaming, Unified Messaging, Caller Image/Info Delivery, ….

– Web/Data/Voice Integration
Click to Talk from Web or E-Mail, Directory Dialing, ENUM (E.164+DN), Real-Time Feature
Parameter Changes, Call Control and Logging, Automated Attendant, ….

IP Voice Applications
– Enterprise Applications

Distance Training/Learning, IP Contact Center, Voice Portal, Voice Enabled Transaction and
Content Services, Voice Web Advertisement, Tele-medicine

– Personal Applications
Multi-Modal Navigation/Map, Voice Enabled Information Services, Gaming with Voice and
Data

6

Why VoIP

1. Cost Savings
·
·
·

·

·

Efficient Use of Network Bandwidth for Voice and Other Traffic
Enabling Customer Self Service to Cut Down CSR Costs
Leveraging the Maturity of IP Technology, Competition of IP
Equipment, and Broadband Internet Access
Enabling Business Customers to Reduce Telecom Management
Costs of Voice and Data
Lowering the Toll Costs for Customers Thru IP Network

2. New Services
·
·

·

New and High-Margin Telecom Service Revenues for Carriers
Satisfying Customer’s Needs for More Convenience and
Unified Communications
Enabling Disaster Recovery and Remote Operations for
Business Customers

7

VoIP Service Market

1. IP telephony service providers handle about 1.12 B calls/month (1/2002);
6.8 B calls in 2001; $1.7 B revenue from intl. calls - about 5% of total
International minutes

2. Other VoIP services reach about $25B in 2008, growing from < $2B
in 2003

Sources:
(1) iLOCUS, 2002
(2) Telcordia Technologies analysis from industry sources: IDC, Frost and Sullivan, Yankee Group, EletroniCast, CyberEdge Information Systems
(3) IDC, U.S. Contact Center Consulting and Implementation Service Forecast and Analysis, 2002-2006, April 2002.

8

Voice over IP Evolution - End User View

1G/2G
Cell Voice

PBX/Key

2.5G
Voice &

Data

IP PBX

3G+
Voice & Data

(cell/PDA)

POTS
Services

Intelligent
Network
Services

VoIP Gateway

IP Centrex/Soft Switch
Phone to Phone

IP Telephony

PC-to-phone Telephony

PC-to-phone Telephony

PC-to-PC Telephony

Real-time

Internet

LAN

Netmeeting
Web

Instant Messaging

WI-FI

IP/Soft Phone

WI-FI
Phone

Person to Person
Communication

Satellite Air Phone

Satellite Internet

VoIP over

Cable

Satellite/Iridium Phone

DSL

Access

Cable Internet

Access
DSL Internet

Access

Satellite

Packet Cable

Voice over

DSL

9

Business Relationships Among Carrier Types –
Ordering and Billing

Wireline Voice Service Provider

IP Service Provider

ILEC

ISP/DLEC

IP Trunk
Provider

IXC

CLEC

Mobile/
Satellite
Carrier

Cable

VoHI-FI

VoDSL

Packet

Carrier

Service
Provider

Service
Provider

ITSP Cable
Provider

Hotspot

VoIP Service Provider

Service
Provider

Content/

Application
Provider

10

VoIP Technology Overview

VoIP Architectures
– Class 4 Internet Telephony Gateway
– Class 4 Packet Tandem
– H.323 Gateway/Gatekeeper
– SIP Server
– Class 5 Soft Switch*
– IP-Centrex with Circuit Switch
– Packet Cable

VoIP Architecture Components
– Access Transport Medium (DSL, Cable, LAN, WI-FI, Satellite)
– Voice Terminal (POTS phone, cell/smart phone, PDA, IP phone, PC+USB phone, PC,

WI-FI phone)
– Network Protocols (ITU H.323. H.248, BICC, IETF SIP, MGCP, SIGTRAN, IEEE

802.11e, 3GPP 3G-324M, Cable Lab NCS)
– Network Systems (Soft Switch; Gatekeeper; Gateway

Analog, GSM; Residential Gateway-IAD, MTA, Loop Start;
 -Trunk, Signaling, CAS, PRI,

 SIP Server; Service Server
Feature, Conference, Packet Voice Mail, Media, Announcement, Wiretap, IVR Server)

 -

11

Class 4 Internet Telephony Gateway VoIP Architecture
Terminating CO/

Internet

CORE NETWORK

Softswitch

SS7 Network

Cust premise

Offload
Wholesale Interconnection

of VoIP Traffic to PSTN

MGCP/H.248/SIP

SIGTRAN

SG

Managed IP Network
IP Network

RTP/IP Transport
Trunk Gateway

PSTN

ISPs,
Broadband CLECs,
Wireless Carriers

OSS EMS Class 4
switch

Class 5
switch

Signaling

SG = Signaling Gateway

12
.

Class 4 Packet Tandem VoIP Architecture
Cust Premise/ Terminating CO/
Access CO CORE NETWORK Cust premise

Softswitch
SS7 Network

SS7 Network

SIGTRAN
SIGTRAN

MGCP/H.248/SIP

PSTN

Class 5
switch

SG

Trunk Gateway

Managed IP Network

RTP/IP Transport

Trunk Gateway

SG

PSTN

OSS EMS Class 4
switch

Class 5
switch

Signaling

SG = Signaling Gateway

13

H.323 Gateway/Gatekeeper VoIP Architecture

H.323 Gatekeepers

H.323 Multi-Point
Control Unit (MCU)

IP Network
IP Network

RTP/IP Transport
H.323 Gateway PC

with
H.323

H.323
IP
Phone

PC with
H.323

OSS

EMS

PSTN
(POTS &
ISDN)

Protocol

POTS
Phone,
FAX

14

.

SIP VoIP Architecture

SIP

SIP Proxy (User
Redirect Server Terminal

(Contain
Agent Client Location Server SIP Proxy UAC)
+Server)

LAN

SIP

LAN

IP Network

SIP-T

PSTN-SIP Gateway/

PSTN

SIP Bridging
Phone,
Terminal

PC, PDA
with SIP

OSS EMS
protocol

3G
Wireless

3G-SIP Gateway/

15

.

Class 5 Soft Switch VoIP Architecture

LNP

OSSs
· Order
· Provisioning

Network

DBs

Call Name
800 DB
AIN SCP

ISUP/TCAP

SIG-T

Primary Metro Area

Soft Switch

HT

T

P

CO

RB

A

· Configuration
· Fault
· Performance

CCS Network Feature/
Conference
Server

SNMP

Signaling & Control Only

Bearer Only

Both Signaling & Bearer

Data

Signaling Gateway

SIP

Core

SIP

AM
AD

/O

r

Billing

IAD

Law
Enforcem

Wiretap

SNMP

adius

Router

GCP

Firewall

CP

Consumer or

ent
Agencies

Q931

Server
Q931/I

TP

M

G

CP

Access
Router S

IP

Local
IP Net

SME

Access Gateway Enterprise
PRI PBX

TCAP

TDM

(ISUP

)

Trunk Gateway

Managed
IP Network

PRI PBX

Legacy
Voice Mail PSTN

Transport
Network

TDM

(ISUP & MF)

MGCP

Core

Access Gateway
MGC

Local

IAD
P

Consumer or SME

Circuit

Trunk Gateway

Other Metro

Router

Areas

Firewall

IP Net

SIP

Enterprise

16

Switch

IP Centrex with Circuit Switch VoIP Architecture
OSSs
· Order

LNP
Call Name

· Provisioning
· Configuration

Network
DBs

800 DB
AIN SCP

CCS Network

ISUP/TCAP

Circuit Switch

HT

T

P

CO

RB A · Fault
· Performance

SNMP

TCAP

Digital
Loop

Carrier

IP Centrex

AM

AD

Billing

Legacy

Voice Mail

PSTN
Transport
Network

Interface
(TR08 or TR303)

Network Gateway

Access
Router

IP Centrex
Customer
Gateway

Analog, ISDN
Phone, Fax

Managed IP

or ATM
Network

XDS

L Local

Ethernet

Analog, ISDN
Phone, Fax

VoIP Phone,
Computer

Internet

Core
Router

17

OSS
Servers

Packet Cable VoIP Architecture

Call Management Server

Call Agent,
Gate Controller,
Announcement

Media Server

Announcement

Player

DOSSIS

Cable Modem
Termination System

Controller
Network
Control

Signaling

DOCSIS

(CMTS)

Managed IP Network

RTP/IP Transport

MG

SG

MGC

SS7 Network

Cable Modem (CM)

RKS,DNS,DHCP,SNMP,

PSTN

Gateway

PSTN

Standalone/Embedded
Multimedia Terminal
Adapter (MTA) Client

TFTP or HTTP,
SYSLOG, TGS

RKS: Record Keeping Server

SG: Signaling Gateway
MG: Media Gateway
MGC: MG Controller

Class 4
switch

Class 5
switch

TGS: Ticket Granting Server (Kerberos)

18
.

State of VoIP Technology Adoption

Internet Telephony Service Providers (since 1996, H.323 mainly)

LEC/IXC (Class 4 and 5 Soft Switches, Gateway, IP Centrex – H.323, MGCP,
Megaco, SIP)

Cable Carriers (Packet Cable)

Satellite Carriers (H.323, SIP)

Wireless Carriers (mainly in IP trunking, 3G-324M, SIP later)

Hot Spot Providers (early stage, SIP)

Internet Service Providers (early stage, SIP based)

Application Service Providers (IP Contact Center, H.323, SIP)

Broadband CLECs (early stage)

Enterprise Companies (H.323 mainly)

System Integrator/Outsourcing Firms (IP Centrex/PBX)

19

Voice over WI-FI over IP Pipes

20

VoIP End Point Connection Types

POTS Phone – PSTN*

PSTN – POTS Phone

Cell Phone

-- RAN

RAN

-- Cell Phone

POTS Phone – BAN**

IP Phone Device -- IP

BAN

IP

– POTS Phone

-- IP Phone Device

WIFI Phone -- WLAN

WLAN -- WI-FI Phone

* Include ISDN
** Include DSL and Cable

21

22

17

VoIP Initial Provisioning Process Example – No Service Server for
VoDSL and Packet Cable in Class 5 Soft Switch Architecture

BML/SML

Customer

Billing

2,6

1

Customer Care

MAC, # of lines, Svc

Record

Service
Avail

27

3b

Policy Server

26

3a

Order Entry

25
4

5

7

Order Mgnt

9

Dispatch Mgnt

8
10

E-Bond

Gateway

FQDN Mgnt

LNP, 911,
Directory,
Service

Requests

In: TN; out: FQDN,

23

TN Mgnt

24

11 TN; MAC, FQDN, SW Addr, Svc

SW Addr

NML

Network

FQDN, TN, SW Addr, Svc 13

Network
Config.

12

FQDN, MAC, SW Addr, Port

Inventory
Mgnt

FQDN, TN, SW Addr, Svc 19

IP Config. Mgnt

21

Mgnt

14 FQDN

18

DSL/Cable
Config. Mgnt

15 Confiig, File

EML

Softswitch/CMS

EMS

20

DNS Server

DHCP Server

16

IAD/MTS

EMS

DSLAM/CMTS

EMS

DSL/Cable

Modem EMS

NEL

IP Address

*derived from a Cable Lab OSS figure

22

Key Differences VoIP Ordering and Provisioning From
Circuit Switched Voice Services

Provisioning and Ordering for Various VoIP Architecture and
Components
Varieties of IP Transport Network Infrastructure and QoS (e.g.
MPLS, IP with DiffServ, ATM, DWDM, …..)
Provisioning Mechanisms for Diversity of CPE (e.g. IAD, MTA,
Residential Gateway, IP Phone -- subscribe/notify scheme*)
Interaction of Existing LAN Devices with VoIP CPE
Multiple VoIP Protocols
Assignment of FQDN Besides Phone Numbers
Use of DNS/DHCP Servers for Static and Dynamic IP Address
New/Change/Cancel Orders (Port Numbers, Features)
Customer Self Provisioning and Personal Call Control for Ports
and Features from PC/PDA/Phones

* Notify using SNMP, SIP/Notify while Subscribe using TFTP, HTTP

23

VoIP Billing and Accounting Process Example – Post-Paid for
VoDSL and Packet Cable in Class 5 Soft Switch Architecture

Billing issue
BML/SML resolution

Billing 8 update
Processing

7 flat rate info
6

11

10

bill remittance
& collection

bill printing

Customer
Record

5

Rating

E-Bond

Other Service

Providers

NML

customer rate info Gateway
4a formatted billing record

12 settlement message

Fraud
Management

4b

Usage
Processing

Settlement

3 Settlement Info

Pre-Paid
Process

2b 2c

EML

Softswitch/CMS

EMS

2a

collected raw usage

Media

Gateway
EMS

IAD/MTS

EMS

DSLAM/CMTS

EMS

DSL/Cable

Modem EMS

NEL

1a

individual NE billing events

1b

1c

*derived from a Cable Lab OSS figure

24

Key Differences VoIP Billing From Circuit Switched
Voice Services

Besides AMA and proprietary CDR, Radius Billing is used in IP telephony services,
which mainly measure call duration based on location if not flat fee.
IPDR can be used for VoIP services beyond IP telephony, which may need to count
packets, messages of different types, QoS, variable parameters for content and
applications
Access charges apply only when a call is originated or terminated from PSTN. Today
internet access (for voice or data) is taxed, but not metered.
No settlement charges for international calls when transmission is carried in IP
Billing VoIP services in legacy billing systems needs mediation with a Charging
Gateway that collects packet counts from non-store-and-forward service nodes and
performs a policing function for flat rate and excess usage charge tariffs
VoIP usage recording is done in a more distributed fashion than circuit switch voice –
uses Universal Coordinated Time (UTC) in soft switch and time zone info for usage
record – BAF Table 866 and Module 611
VoIP calls do not involve the dedicated use of the network circuits – elapsed time is
computed from connect/disconnect timestamp

–
–
–
–

soft switch needs to do notification of clock adjustments
handles elapsed timing adjustment for internal system delay (circuit switch = 0.5 sec in GR508)
timing irregularities in a VoIP usage record from multiple usage measurement
long duration call records are produced based on Connect and Disconnect usage
measurements besides connection status reports (for in-progress call) from soft switch.

25

NGN Accounting Management Generic
Requirements (GR-3058-CORE, Issue 2, 12/2001)

* Also use BAF Sensor Type and Recording Office Type to identify a usage record is generated
from a VoIP system

26

Issues: Regulatory -- Worldwide

VoIP is not treated uniformly around the world
As long as voice services are not resold, no regulations are applied in
many jurisdictions
No FCC or PSC regulations on the toll aggregation over VoIP networks
ITU IP Telephony Workshop: service centric, technology neutral
regulatory treatment – similar services are treated in the same way.
Independent of underlying network or technology
EU: Voice quality of many VoIP services is poor (e.g. > 250 ms avg. round
trip delay or < 99% call success rate) to be classified as “ licensed” real-
time voice communications service like PSTN or Mobile
US House of Representatives amended HR 1291 bill in 5/02 to stipulate
that “ Internet telephony service, irrespective of the type of CPE used” is
no longer exempt from FCC-imposed per minute charge for the Universal
Services Fund. U.S. Internet community fiercely opposes HR 1291 bill.
FCC pending VoIP related proceedings: AT&T (interstate VoIP exempt
from access charges), pulver.com (VoIP, SIP based, is an info service)
National. Assoc. of Regulatory Utility Commissioners (“ NARUC”) issued a
resolution calling for FCC to declare phone-to-phone calls over IP
networks are telecom services
Gartner Group: Tax based on carrier’s total revenue, not by minutes, for
retail and wholesale

27

Issues: Regulatory -- U.S. States

Ohio PUC initiated an inquiry in 4/2003 on how “ telecom service with an
Internet protocol and/or voice over the Internet component” are being
provided; invited comments on if a VoIP provider is “ transmitting
telephonic messages”
Virginia State Corp. Commission (SCC) considers opening a formal
inquiry to determine if VoIP providers are subject to SCC jurisdiction.
Florida PSC has a pending legislation to declare VoIP to be unregulated,
but would leave open if VoIP providers are liable for access charges to
local phone companies when they offer end users services
NY PSC determined in 2002 that a carrier utilizing IP telephony to carry
voice traffic over part of its network is subject to intrastate access
charges
Colorado PUC ruled in 2000 that a carrier utilizing VoIP to deliver long
distance traffic should not be subject to intrastate charges
South Carolina, Nebraska state commissions opened similar
proceedings, but terminated without rulings

28

Issues: Regulatory -- General

FCC notice on “ bill and keep” (carriers recoup all of the costs
of VoIP originating and terminating traffic from their own
customers, rather than from other carriers) eliminates
interconnection charge

Parity rules for VoIP carriers that also operate PSTN networks

Demarcation points for VoIP services between carriers for
service fulfillment and assurance

Life line support may not be supported by some VoIP service
providers

29

Issues: Business

Diversified VoIP Resell Types
– Retail Services from VoIP Carrier(s)

Retail Long Distance Call Center; Outbound Contact Center; Internet Café; HotSpot Facility
Providers

– Prepaid Calling Card Business
Minutes reselling (low margin except for routes to countries with emerging economy promise
or de-regulation changes); Niche local markets by offering native language calling card

– Virtual ITSP Business
Private labeling; Direct account resell

– ISP Reselling VoIP Services
May bundle services, e.g. long distance with Internet access, in near term; Opportunity exists
in integrating services for future differentiated services

– Multiple ITSP Wholesale Business
Use least cost routing utilizing available ITSP networks; Fail over to backup ITSP networks

– Value Added Resell Business
Provide value-added services; May sell its own specially designed CPE and service servers

Multiple Wholesale Support Types
– VoIP Network Facilities and Equipment (including soft switch, broadband access)
– U.S./Canada/Intl. PSTN VoIP Termination (e.g. charging 1.5 cents/minute with volume

discount)
– U.S. Toll Free PSTN Orig. VoIP Termination (VoIP gateway anywhere in the world)
– VoIP Service Servers (e.g. Conference, Auto Attendant, …..)
– Web Sales, Account, and AAA Support
– Network Configuration and Monitoring
– Billing, Trouble, Reporting, and OSS Support via EDI, XML, E-mail, Web

30

Issues: Business (Continued)

Bilateral agreements between carriers to get compensation for
VoIP traffic across carrier network boundary increase the
complexity of billing and ordering

ISPs may sell integrated services with VoIP free of charge

IP v6 migration when VoIP devices need a static address
– 128 Address Bit vs. 32 Bit in IP v4

Currently most IP trunking service providers charge monthly
fee with QoS for data packets, not for voice call quality.

31

Issues: Standards

Interconnection Among Different Types of VoIP Networks and PSTN
– ITU: Bearer Independent Call Control (extend ISUP used in PSTN and

ISDN for signaling in ATM AAL 1 and 2, IP voice transport), H.248, H.323,
IP SCP

– IETF: SIP, MGCP, SIGTRAN
– IEEE: 802.11p (Guaranteed QoS LAN), 802.11e (Real-Time QoS WLAN)
– Cable Lab: NCS
– 3GPP: 3G-324M
– H.323 and SIP just adds supplement services
– SIP and PSTN interworking standard is being finalized

End-to-End Service Quality Assurance
– QoS Policy Server, DiffServ Code Point, MPLS, RSVP, over-provisioning,

dedicated facility, G.113 ICPIF, trouble
NAT/Firewall interworking with H.323 and SIP
End-to-End Order and Provisioning
USOC and FID Extension

32

Issues: Standards (Continued)

End-to-End Billing

– Signaling messages in interconnecting VoIP networks for off-net calls (PTSN
– using SS7 Exit Message to signal egress trunk group ID)

– Signaling needed when usage recording for a call occurs in multiple soft
switches or network elements (use Network Call Correlation Identifier in BISUP or
Global Call Reference in BICC CS2; ITU-T/ATIS T1S1.3 Inter-Nodal Traffic Group
Identifier in BICC message to support special routing services like 911)

– Procedure to support billing for custom calling, IN, and value added
services beyond basic calls, LNP, and toll free in GR-3058-CORE (may need
to involve gateways; need to fil l Service Feature Code in BAF Table 12)

– Billing with interconnecting carriers
– Billing with reselling service providers

33

Acronyms

AAA: Authentication, Authorization, and Accounting
AAL: ATM Adaptive Layer
AMA: Automatic Message Accounting
BAF: Billing AMA Format
BAN: Broadband Access Network
BISUP: Broadband ISDN User Part
CDR: Call Detail Record
CMS: Call Management System
CMTS: Cable Modem Termination System
CS2: Capability Set 2
DHCP: Dynamic Host Configuration Protocol
DNS: Directory Name Server
DSL: Digital Subscriber Loop
DSLAM: Digital Subscriber Line Access Multiplexer
FID: Field IDentifier
FQDN: Fully Qualified Domain Name
HTTP: Hypertext Transfer Protocol
IAD: Integrated Access Device
ICPIF: Calculated Planning Impairment Factor
IN: Intelligent Network
ISP: Internet Service Provider
ITSP: Internet (or IP) Telephony Service Provider
LAN: Local Area Network
MEGACO: MEdia GAteway COntrol

MGCP: Media Gateway Control Protocol
MPLS: Multi-Protocol Label Switching
MTA: Multimedia Terminal Adapter
NAT: Network Address Translation
NCS: Network Control Signal
PSTN: Public Switched Telephone Network
QoS: Quality of Service
RADIUS: Remote Access DIal Up Service
RAN: Radio Access Network
RTCP: Real Time Control Protocol
RTP: Real Time Protocol
SALT: Speech Application Language Tag
SCP: Signal Control Point
SCTP: Stream Control Transmission Protocol
SIGTRAN: Signal Transport
SIP: Session Initiation Protocol
SIP-T: Session Initiation Protocol for Telephony
SNMP: Simple Network Management Protocol
TFTP: Trivial File Transfer Protocol
TN: Telephone Number
USOC: Universal Service Ordering Code
VoIP: Voice over IP
VPN: Virtual Private Network
WI-FI: Wireless Fidelity
WLAN: Wireless Local Area Network

34

	1 Intro
	10 graph
	11 geometric
	12 NPComplete
	2 mathbg
	3 recurrences(1)
	3 recurrences
	4 datastru
	5 sorting
	6 dividenconquer
	7 sortrevisit
	8 greedy
	9 dynamic
	convergence
	Mores-Aires_Daniel
	thesis
	voip

