
Chapter 1

Prepared by: Er. Bipul Kr. Yadav

Chapter-1

Data:
Data are the raw facts that can be obtained after some experiments or observations. Raw data

is of no use until and unless we process it to find some useful information form it.

Database:
A database is the collection of related persistent data and contains information relevant to an

enterprise. The database is also called the repository or container for a collection of data files.
For example, university database for maintaining information about students, courses and
grades in university

Database Management System:
Management of data involves a way to store data and also provides a mechanism for

manipulation of that data. Database management systems are basically designed to manage large
volume of information.

A database system is basically just a computerized record-keeping system. A database
system involves four major components: data, hardware, software, and users. The database
management system (DBMS) is the software that handles all access to the database. It is
defined as the collection of interrelated data and a set of programs to access those data.

The primary goal of DBMS is to store and retrieve data in both convenient (easy method)
and efficient (capable of performing well) manner. Some of the examples of DBMS are Oracle,
SQL-Server, MySQL, MS Access etc.

Applications of DBMS:
• Banking:

To store information about customers, their account number, balance etc.
• Airlines:

For reservations and schedule information.
• Telecommunication:

To keep records of customers, call made, balance left, generating monthly bills
etc.

• Universities:
To keep records of students, courses, marks of students etc.

• Sales:
To keep information of customers, products list, purchase information etc.

• Manufacturing:
To store orders, tracking production of items etc.

• Human Resources:
To keep records of employee, their salary, bonus etc.

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

Characteristics of database approach:
 The main characteristics of database approach are discussed below:

1. Self describing nature of database system:
The fundamental characteristic of the database approach is that the database

system contains not only the database itself but also complete definition or description of
the database structure. This definition is stored in the DBMS catalog which contains the
information such as the structure of each file, the type and storage format of each data
item. Eg.

2. Insulation between programs and data :

In traditional file processing system, the structure of data file is embedded in the
application program. Hence if we have to make any changes in the format of the data, the
whole application program will also have to be changed.

But in the case of DBMS, database and the application program are separately
situated. The structure of data files is stored in the DBMS catalog separately from the
access programs. Hence in most cases DBMS access programs do not need such changes.
We call this property as program-data independence.

For example, a file access program may be written in such a way that it can just
access the name of a customer of any company but if we want to add another field, say,
address of the customer, then in such a case this program will no longer be useful. But in
the case of the DBMS, we just have to add the new field “address” in the catalog and the
next time DBMS refers to the catalog, the new structure of the records will be accessed
and hence we do not have to make change in the program.

3. Support of multiple view of the data:

Let us consider an example of student information system of a college, where all
the data of student, courses, information of college etc are stored in a database. It is

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

obvious that there is more than one user of this system and also their interest is different.
i.e. student are generally interested in finding out the marks obtained, whereas teachers
are able to put marks, view information about students, similarly, visitors are able to find
the information of the college.

A database typically has many users, and their perspective of viewing the database is
different. In the example given above, every user is accessing data from the same
database but what they see and can access is different. A view may be subset of the
database or it may contain virtual data that is derived from the database files but is not
stored explicitly.

4. Sharing of data and multi user transaction processing:

Database system should allow multiple users to access same database at the same
time. For example, in online air ticket reservation system many users are accessing the
same site at the same time. Hence for every seat, DBMS should ensure that only one user
should be given access to reserve the seat.

Hence to ensure the correctness of this type of transaction DBMS must include
concurrency control software to ensure that several users trying to update same data do so
in a controlled manner so that the result of the updates is correct. In order to do so,
DBMS uses lock based protocol and time stamp based protocol.

Purpose of Database System:
Traditionally, file processing system was used to manage information. It stores data in

various files of different application programs to extract or insert data to appropriate file. File
processing system has several drawbacks due to which database management system is required.
Database management system removes problems found in file processing system. Some of the
major problems of file processing systems are:

1. Data redundancy and inconsistency:
In file processing system, different programmer creates files and writes

application programs to access it. After a long period of time files may exist with
different formats and application programs may be written in many different
programming languages. Moreover, same information may be duplicated in several files.
We have to pay for higher storage and access cost for such redundancy. It may leads
database in inconsistent state because update made may be reflected in one file but it may
not be reflected in another files where same information exist in another files.

2. Difficulty in accessing data:

In file processing system, we can not easily access required data stored in
particular file.

For each new task we have to write a new application program. File processing
system can not allow data to be retrieve in convenient and efficient manner.

3. Integrity problem:

In database, we required to enforce certain type consistency constraints to ensure
the database correctness or to enforce certain business rules. It is in fact called integrity
constraints (e.g. account balance > 0), integrity of database need not to be violated. In file
processing system, integrity constraint becomes the part of application program.

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

Programmer need to write appropriate code to enforce it. When new constraints are
required to add or change existing one, it is difficult to change program to enforce it.

4. Atomicity problem:

Failures may lead database in an inconsistent state with partial updates. For
example, failure occurs while transferring fund from account A to B. There would be the
case that certain amount from account A is retrieved and it is updated but failure occurs
just before it is deposited to account B, such case may lead database in inconsistent state.

5. Concurrent access problem:

Concurrent accessed increase the overall performance of system providing fast
response time but uncontrolled concurrent accesses can lead inconsistencies in system.
File processing system allow concurrent access but it is unable to coordinate different
application programs so database may lead in inconsistent state. E.g. two people reading
a balance and updating it at the same time.

6. Security problem:

Since file processing system consist large no. of application programs and it is
added in ad hoc manner. So it is difficult to enforce security to each application to allow
accessing only part of data/database for individual database users.

Data Abstraction:
 Data abstraction is the technique of hiding the complexity of the database to its users.
There are three levels of data abstraction which are discussed below.

• Physical Level or Internal Level:
It is the lowest level of abstraction and describes how the data in the database are actually
stored. This level describes complex low-level data structures in detail and is concerned
with the way the data is physically stored. Data only exists at physical level.

• Logical Level or Conceptual Level:
This is the next higher level of abstraction and describes what data are stored in the
database, and what relationships exist among those data. It describes the structure of
whole database and hides details of physical storage structure. It concentrates on
describing entities, data types, relationships, attributes and constraints. All of the views
must be derivable from this conceptual schema.

• View Level or External Level:
It is the highest level of abstraction and is concerned with the way the data is seen by
individual users. This level simplifies the users’ interaction with the system. It includes a
number of user views and hence is guided by the end user requirement. It describes only
those part of the database in which the users are interested and hides rest of all from
those users. Each user group refers to its own external schema.

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

Example:
view level

• View result
• View student information

logical level: entire database schema
• Courses (CourseNo,CourseName,Credits,Dept)
• Student (StudentID,Lname,Fname,Level,Major)
• Grade (StudentID,CourseNo,mark)

physical level:
• how these tables are stored, how many bytes it required etc.

The DBMS must transform a request specified on an external schema into a request against the
conceptual schema, and then into a request on the internal schema for processing over the
database. The process of transforming requests and results between levels is called mapping.

Fig : Data abstraction level

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

Instances and Schemas:
• Instances:

Databases change over time as information is inserted and deleted. The collection
of information stored in the database at a particular moment is called an instance of the
database. It is also known as database state.

• Schema:

The overall design of the database which is not expected to change frequently is
called the database schema. There are three schemas, partitioned according to the levels
of abstraction. The physical schema describes the database design at physical level. The
logical schema describes the database design at the logical level. The schema at the view
level is sometimes called subschema and describes the view of the database. A database
may have several subschemas.

Data Models:
The basic structure or design of the database is the data model. A data model is a

collection of conceptual tools for describing data, data relationships, data semantics, and
consistency constraints. Some data models are given below:

Entity-Relationship Model:
Entity-relationship (E-R) model is a high level data model based on a perception of a

real world that consists of collection of basic objects, called entities, and of relationships among
these entities. An entity is a thing or object in the real world that is distinguishable from other
objects. Entities are described in a database by a set of attributes. A relationship is an
association among several entities. The set of all entities of the same type is called an entity set
and the set of all relationships of the same type is called a relationship set. Overall logical
structure of a database can be expressed graphically by E-R diagram. The basic components of
this diagram are:

o Rectangles (represent entity sets)
o Ellipses (represent attributes)
o Diamonds (represent relationship sets among entity sets)
o Lines (link attributes to entity sets and entity sets to relationship sets)

The figure shown above is an example of E-R diagram.

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

Relational Model:
 It is the current favorite model. The relational model is a lower level model that uses a
collection of tables to represent both data and relationships among those data. Each table has
multiple columns, and each column has a unique name. Each table corresponds to an entity set or
relationship set, and each row represents an instance of that entity set or relationship set.
Relationships link rows from two tables by embedding row identifiers (keys) from one table as
attribute values in the other table. Structured query language (SQL) is used to manipulate data
stored in tables.

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

The relational data model is the most widely used data model, and a vast majority of current
database systems are based on the relational model. The relational model is at a lower level of
abstraction than the E-R model. Database designs are often carried out in the E-R model, and
then translated to the relational model.

Other Data Models:

Object-based data models (Object-oriented and Object-relational):
 Object oriented data model is extension to E-R model with the notion of encapsulation,
methods (functions) and object identity. It is based on collection of objects, like the E-R
model. An object contains values stored in instance variables within the object.

Network model:

In network model, data are represented by the set of records and relationships among data
are represented by links.

Hierarchical model:

Hierarchical model also represents data by a set of records but records are organized in
hierarchical or order structure and database is a collection of such disjoint trees. The nodes of
the tree represent record types. Hierarchical tree consists one root record type along with zero
more occurrences of its dependent subtree and each dependent subtree is again hierarchical.

Database Languages:

Definition Language (DDL)

Data definition language used to specify database scheme. For example, following DDL
statement in SQL defines account relation.

create table account
(
 account_no char(2),
 balance integer
)

The execution of above DDL statement creates table account. Moreover, it updates special set of
tables called data dictionary or data directory. Data dictionary contains meta data, that is data
about data. For example table containing tables’ information like table name, owner, created
date, modified date etc refers data dictionary and contain information are example of meta data.
Data definition language also allows defining storage structure and access methods for database
system, such special set of DDL statement called data storage and definition language.

Data Manipulation Language (DML)
 Data manipulation language allow database user to access (query) and manipulate data. That is,
DML is responsible for

• Create new information in the database

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

• Read information from the database
• Update information in the database
• Delete information in the database

DML established communication between user and database.

There are two types of DML
(a) Procedural DML: user required to specify what data are needed and how they get those data.
(b) Nonprocedural (Declarative) DML: user only required to what data needed without
specifying how to get those data.
 Declarative DMLs are usually easier to learn and use than procedural DMLs. However, since a
user does not have to specify how to get data, the database system has to figure out an efficient
means of accessing data. The DML component of SQL is nonprocedural. A query is statement
requesting the retrieval of information. Special set of DML which only use to retrieve
information from database called query language.
Example:
Select customer_name
 from customer
where customer.customer_id=’c001’
This query retrieves those rows from table customer where the customer_id=c01.

Query Processing:
The steps of query processing are:

• Parsing and translation
• Optimization
• Evaluation

The first step that must be taken in query processing is to translate a given query into its

internal form. In generating the internal form of the query, the parser checks the syntax of the
users query, verifies that the relation names appearing in the query are names of the relations in
the database. The system constructs the parse tree and then generates the relational algebra
expression.

The given query can be computed in various ways. For example:
Select balance from account
 Where balance<4000
This query can be translated into either of the following relational-algebra expressions.

• Πbalance(σbalance<4000(account))
• σbalance<4000(Πbalance(account))

the same query can be executed with different algorithms. The sequence of primitive operations
that can be used to evaluate query is a query execution or query evaluation plan. Optimizer
evaluates all the query plan and then finds out the cost of each query evaluation plan and selects
the appropriate plan. Finally evaluation engine executes the plan and gives the output. The figure
below shows the query processing steps.

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

Fig: query processing steps

Database Users:
The various users of the database are discussed below:

1. naïve users:
Naïve users are the simple users who just uses the application that have been built

previously. For example, a customer who uses ATM simply invokes the program which
checks his username, password and balance: and finally allows to withdraw certain
amount from his account.

2. application programmer:

These are the computer professionals who write application programs. They build
user interfaces to interact with the database and hence it makes naïve users easy.
Application programmers uses many application development tools for the quick
development of the application.

3. sophisticated users:
Sophisticated users do not interact with the database through the application

programmers since the interest of such users in vast and hence they generate their own
query in a database query language. Analyst who submit queries to explore data in the
database fall in this category.

4. specialized users:
Specialized users are the sophisticated users. These are highly advanced users and

write specialized database applications. Scientists, researchers fall in this category.

Database Administrators:
The person who has control over both data and the program that accesses those data are

called database administrator(DBA). The functions of database administrator are:
• schema definition:

The DBA creates the original structure of the database by using DDL.
• schema and physical organization modification:

Downloaded from: http://www.bsccsit.com/

Chapter 1

Prepared by: Er. Bipul Kr. Yadav

The changes needed in any organization is analyzed and then appropriate change is made
in the database schema by the DBA.

• granting of authorization:
By granting different types of the authorization, DBA can regulate which part of the
database various users can access. The authorization information is kept in a special
system structure that the database system consults whenever someone attempts to access
the data in the system.

• runtime maintenance:
DBA periodically backup the database, ensures that enough free disk space is available
for normal operations.

Downloaded from: http://www.bsccsit.com/

1.0 Introduction

© T. Paneru 1

1.0 Database Management System
Data are the raw facts that can be found after some experiment, observation or experience.
Data itself do not provide any meaning but after processing it becomes information. The
collection of related data organized in some specific manner is known as database. The
database, its processing methods and the set of rules and conditions to be followed; collectively
known as database management system (DBMS). Here, related data refers logically consistent
facts of the real world. Random collection of data can not consider database. The primary goal
of DBMS is to store and manage data both conveniently and efficiently. Database systems are
generally designed to manage large volume of information. Management of data involves
defining structure for storage of information and providing mechanisms for manipulation of
information.

DBMS can also define as a general purpose software system that enables user to create,
maintain and manipulate database. It provides fast and convenient access to information from
data stored in database. DBMS interfaces with application programs so data contained in
database can be accessed by multiple applications and users. Some popular DBMS softwares
are: Oracle, SQL – Server, IBM-DB2, MySQL, MS Access, Sybase etc.
Some application areas of database system are:

• Banking: customer and their account info
• Airlines: reservations and schedules info
• Universities: student info, grades etc.
• Credit card transactions: for purchases on credit cards and generation of statements.
• Telecommunications: record of calls made
• Finance: for storing information about holding, sales and purchases etc.
• Sales: for customer, product and purchase information.
• Manufacturing: for management of supply chain.
• Human resources: for information about employee

1.2 Purpose of Database System
Traditionally, file processing system was used to manage information. It stores data in various
files of different application programs to extract or insert data to appropriate file.
 File processing system has several drawbacks due to which database management system is
required. Database management system removes problems found in file processing system.
Some major problems of file processing systems are:

1. Data redundancy and inconsistency
In file processing system, different programmer creates files and writes application programs to
access it. After a long period of time files may exist with different formats and application
programs may written in many different programming languages. Moreover, same information
may be duplicated in several files. We have to pay for higher storage and access cost for such
redundancy. It may leads database in inconsistent state because update made in one file may
reflected in one file but it may not reflected in another files where same information exist in
another files.

2. Difficulty in accessing data
In file processing system, we can not easily access required data stored in particular file. For
each new task we have to write a new application program. File processing system can not
allow data to be retrieve in convenient and efficient manner.

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 2

3. Data isolation
Since data are scatter in different files and data may stored in different format, so it is difficult
to write program to retrieve appropriate data.

4. Integrity problem
In database, we required to enforce certain type consistency constraints to ensure the database
correctness or to enforce certain business rules. It is in fact called integrity constraints (e.g.
account balance > 0), integrity of database need not to be violated. In file processing system,
integrity constraint becomes the part of application program. Programmer need to write
appropriate code to enforce it. When new constraints are required to add or change existing
one, it is difficult to change program to enforce it.

5. Atomicity problem
Failures may lead database in an inconsistent state with partial updates. For example, failure
occurs while transferring fund from account A to B. There would be the case that certain
amount from account A is retrieved and it is updated but failure occurs just before it is
deposited to account B, such case may lead database in inconsistent state.

6. Concurrent access problem
Concurrent accessed increase the overall performance of system providing fast response time
but uncontrolled concurrent accesses can lead inconsistencies in system. File processing system
allow concurrent access but it is unable to coordinate different application programs so
database may lead in inconsistent state. E.g. two people reading a balance and updating it at
the same time

7. Security problems
Since file processing system consist large no. of application programs and it is added in ad hoc
manner. So it is difficult to enforce security to each application to allow accessing only part of
data/database for individual database users.

1.3 Data Abstraction

Data abstraction in database system is a mechanism to hide complexity of database. It allow
database system to provides abstract view to database user. It hides how data are actually
stored and maintain in database. Data abstraction simplifies users’ interactions with the
system.
Three are three level of abstraction

Physical level
It is a lowest level of abstraction. It describes how data are actually stored in database. It
describes complex low level data structures in detail.

Logical Level
This is a next highest level of abstraction. It describes what data are stored in database and
what relationship exists among them. It describes entire database relatively in a simple
structure. The user in logical level needs not to aware the complexity of physical level
structure.

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 3

View Level
It is the highest level of abstraction. It describes only part of the entire database. It simplifies
interaction with the system. It allows database system to provide many views for the same
database. That is it allows each user/application to get different perspective of the database.

Figure1.3 Three level of abstraction

Example:

view level

• CS Majors
• Math Majors

logical level: entire database schema
• Courses (CourseNo,CourseName,Credits,Dept)
• Student (StudentID,Lname,Fname,Level,Major)
• Grade (StudentID,CourseNo,mark)

physical level:
• how these tables are stored, how many bytes it required etc.

1.4 Data Models

Data models describe the underlying structure of database. It is a conceptual tool for describing
data, relationship among data, data semantics and consistency constraints. There are several
data models which can be group into three categories.

(a) Object-based Logical Models.
(b) Record-based Logical Models.
(c) Physical Data Models.

1.4.1 Object-based Logical Models

Object based logical model describe data at the logical and view levels. It has flexible
structuring capabilities. It allows to specify data constraints explicitly. Under object-based
logical model there are sever data models

• Entity-relationship model
• Object-oriented model

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 4

1.4.1.1 Entity Relationship Model

E-R model describes the design of database in terms of entities and relationship among them.
An entity is a “thing” or “object” in real world that are distinguishable from other objects. An
entity is describes by a set of attributes.

For example

• Attributes account_number and balance may describe entity “account”.
• Attributes customer_id, customer_name, customer_city may describe entity “customer”.

A relationship is an association among several entities. For example, a depositor relationship
associates a customer with each account he or she has.

The set of all entities of same type called entity set and similarly set of all relationship of the
same type called relationship set.

E-R model graphically express overall logical structure of a database by an E-R diagram.
Components of E-R diagram are as follows

rectangles: represent entity sets
ellipses: represent attributes
diamonds: represent relationships among entity sets
lines: link attributes to entity sets and entity sets to relationships

Example:

Figure 1.4.1.1.1 Sample E-R Diagram

Beside entities and relationship among them, E-R model has a capability to enforce constraints,
mapping cardinalities which tell no. of entities to which another entity can be associated via
relationship set. If each account must belong to only one customer, E-R model can express it.
We discuss mapping cardinalities in detail in next chapter.

1.4.1.2 Object oriented model

Object oriented data model is extension to E-R model with the notion of encapsulation, methods
(functions) and object identity. It is based on collection of objects, like the E-R model. An
object contains values stored in instance variables within the object. These values are
themselves objects. That is, objects can contain objects to an arbitrarily deep level of nesting.
An object also contains bodies of code that operate on the object. These bodies of code are

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 5

called methods. Objects that contain the same types of values and the same methods are
grouped into classes.
The only way in which one object can access the data of another object is by invoking the
method of that other object. This is called sending a message to the object. Internal parts of
the object, the instance variables and method code, are not visible externally.

Example:
Consider an object representing a bank account.

• The object may contain instance variables account_number and balance.
• The object may contain a method pay-interest which adds interest to the balance.

Unlike entities in the E-R model, each object has its own unique identity. It is independent to
the values it contains. Two objects containing the same values are distinct. Distinction is
maintained in physical level by assigning distinct object identifier.

1.4.2 Record-based Logical Models

As object based base logical model, record-based logical model also describes data at logical
and view level. But it describes logical structure of database in more detail for implementation
point of view. It describes database structure in terms of fixed-format records of different
types. Each table contains records of a particular type. And each record type defines fixed
number of fields or attributes. Each field is usually of a fixed length.

There are several languages which are used to express database queries and updates.

The three most widely-accepted models under record-based logical models are:

• Relational model
• Network model
• Hierarchical

1.4.2.1 The Relational Model

Relational model describes database design by a collection of tables (relations). It represents
both data and their relationships among those data. Each table consist number of columns
(attributes) with unique names. It is a most widely used data model. Relational model is lower
level abstraction than E-R model. Database model are often carried out in E-R model and then
translated into relational mode.

Example:
Previous describe E-R model can be express in relational model as follows

customer_id customer_name customer_city

C01 X A
C02 Y B
C03 Z A
C04 X A

 (a) Customer relation

customer_id accoun umber t_n
C01 A1
C02 A2
C03 A3

C04 A4
account_number balance

A1 200
A2 300

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 6

A3 500
A4 500

 (b) Account relation (c) Depositor relation

Figure 1.4.2.1.1 Sample Relational database

1.4.2.2 The Network Model

In network model, data are represented by the set of records and relationships among data are
represented by links.

Example:
The above relational model can be express in network model as follows

Figure 1.4.2.2.1 Sample Network Model

1.4.2.3 Hierarchical Model

Hierarchical model is also represents data by a set of records but records are organized in
hierarchical or order structure and database is a collection of such disjoint trees. The nodes of
the tree represent record types. Hierarchical tree consists one root record type along with zero
more occurrences of its dependent subtree and each dependent subtree is again hierarchical. In
hierarchical model, no dependent record can occur without its parent record. Furthermore, no
dependent record may be connected to more than one parent record.

Example:

The above network model can express in hierarchical model as follows

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 7

Figure 1.4.2.3.1 Sample Hierarchical Model

1.4.3 Physical Data Models

Physical data models are used to describe data at the lowest level. Unifying model and frame
memory are follows under physical data model. Here in this section we are not cover physical
data model.

1.5 Instance and Schemas

Database change over time as information is inserted, deleted and updated. The collection of
information stored in database at a particular moment called an instance of the database. The
overall design of the database is called database schema. Schemas are change infrequently, if
at all.

According to the level of abstraction schema are divided into physical schema, logical schema
and subschemas. The physical schema describes the database design at the physical level.
Logical schema describes database design at the logical level. Database system may have
several schemas at the view level, it is called sunschemas (can be query), it describes different
views of database.

Logical schema is more important for the development of application programs. Programmer
constructs applications by using logical schema. The physical schema is hidden under the
logical schema and it can change without affecting application programs.

1.6 Data Independence

Data independence is an ability to modify a schema definition in one level without affecting
scheme definition in higher level. There are two types of data independence.

Physical data independence
It is an ability to modify the physical scheme without causing application programs to be
rewritten
Modification at this level usually required for performance improvement reason.

Logical data independence
It is an ability to modify the conceptual/logical scheme without causing application programs to
be rewritten. Logical scheme needs to modify if we required to modify logical structure of
database. Logical data independence is harder to achieve since application programs are usually
dependent on logical structure of the data.

1.7 Database Languages

Database system provides two languages
(a) Data Definition Language and
(b) Data Manipulation Language

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 8

But in practice, data definition language and data manipulation language are not separate
languages.

1.7.1 Data Definition Language (DDL)

Data definition language used to specify database scheme. For example, following DDL
statement in SQL defines account relation.

create table account
(
 account_no char(2),
 balance integer
)

The execution of above DDL statement creates table account. Moreover, it updates special set
of tables called data dictionary or data directory. Data dictionary contains meta data, that is
data about data. For example table containing tables’ information like table name, owner,
created date, modified date etc refers data dictionary and contain information are example of
meta data.

Data definition language also allows to define storage structure and access methods for
database system, such special set of DDL statement called data storage and definition
language.

1.7.2 Data Manipulation Language (DML)

Data manipulation language allow database user to access (query) and manipulate data. That
is, DML is responsible for

• retrieval of information from the database
• insertion of new information into the database
• deletion of information in the database
• modification of information in the database

DML established communication between user and database.

There are two types of DML

(a) Procedural DML: user required to specify what data are needed and how they get those
data.

(b) Nonprocedural (Declarative) DML: user only required to what data needed without
specifying how to get those data.

Declarative DMLs are usually easier to learn and use than procedural DMLs. However, since a
user does not have to specify how to get data, the database system has to figure out an
efficient means of accessing data. The DML component of SQL is nonprocedural.

A query is statement requesting the retrieval of information. Special set of DML which only use
to retrieve information from database called query language.
Example:
Select customer_name
 from customer
where customer.customer_id=’c001’

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 9

This query retrieves those rows from table customer where the customer_id=c01.

1.8 Database Manager

The database manager is a program module which provides the interface between the low-level
data stored in the database and the application programs and queries submitted to the system.
Since database required lots of storage space so it must be stored on disks. Data need to
moved between disk and main memory as needed.

Since the goal of database system is to simplify and facilitate access to data providing optimal
performance as far as possible. So the database manager module is responsible for

• Interaction with the file manager: responsible to translate DML statements into low-level
file system commands for storing, retrieving and updating data in the database.

• Integrity enforcement: responsible to check any updates in the database do not violate
consistency constraints.(e.g. no bank account balance below $25).

• Security enforcement: responsible to ensure that users only have access to information
they are permitted to see.

• Backup and recovery: Detecting failures due to power failure, disk crash, software
errors, etc., and restoring the database to its state before the failure.

• Concurrency control: responsible to preserving data consistency when there are
concurrent users.

1.9 Database Administrator

The database administrator is a person having central control over data and programs
accessing that data. Database administrator has the following responsibility:

• Schema definition: responsible for the creation of original database schema. So DBA is
responsible to write data definition statements in DDL.

• Storage structure and access method definition: DBA is responsible to write a set of
definitions to define storage and access method using storage and access.

• Schema and physical organization modification: DBA is responsible for modification of
schema and to reflect the changes in schema or to improve the performance physical
organization may need to be change.

• Granting authorization for data access: DBA is responsible to grant different types of
authorization for data access to various users.

• Routine maintenance:
o Periodically backing up the database ensuring enough free disk space available

for normal operations and upgrading disk space as required.
o Monitoring jobs running on the database and ensuring that performance is not

degraded too much.

1.10 Database Users

There are four different types of database users, they are differentiated according to their
interaction with the system. Moreover, there are different types of user interfaces for different
types of users.

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 10

(a) Naïve Users:
Naïve users are unsophisticated users who interact with the system by invoking
one of the application programs that are already written. For example, banks
teller who needs to transfer fund from one account to another invoking a
program called transfer. This program asks the teller for the amount of money to
be transferred, and account to which the money is to be transferred.

The typical user interface for the native user is a form interface, where user can
fill appropriate fields of the form. Native users may also simply read reports
generated from the database.

(b) application programmers:
Application programmers are computer professional who write
application programs. Application programmers may choose any
programming tool to develop user interfaces. They can also used RAD
tools that enable an application programmer to construct forms and
reports without writing the program. There are also special type of
programming languages that combine imperative control structures
(e.g. for loops, while loops and if-then-else statements) with the
statements of data manipulation language. These languages are
sometimes called fourth generation languages. It often includes special
features to facilitate the generation of forms and display data on the
screen. Most major commercial database system includes a fourth
generation language.

(c) sophisticated users:
Sophisticated user interact with system without writing programs but they
requests by writing queries in database using DML query language. This
query goes to query processor and it converted into instructions for the
database manager module.

(d) Specialized users:
Specialized users are responsible to write special database application
programs it could be computer-aided design systems, knowledge based and
expert systems that store data with complex data types (e.g. graphics data,
audio/video data).

1.11 Overall System Structure

The functional component of the database system is divided into storage manager and query
processor component.

1.11.1 Storage Manager

Storage manager is a program module that provides interface between the low level data
stored in the database and the application programs and queries submitted to the system. The
storage manager is responsible for the interaction with the file manager. The storage manager
various DML statements into low level file system command. And it is responsible for storing,
retrieving, and updating data in the database.

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 11

Storage manager consist following components:

Authorization and integrity manager: responsible to ensure integrity constraint does not violate
and checks the authority of users to access data.

Transaction Manager: responsible to ensure database remain inconsistent state even system
failure occurs. It is also responsible to manage concurrent transactions so that they could not
conflict, which also helps to ensure consistency of database.

File Manager: responsible to manage the allocation of space on disk storage and the data
structures used to represent information stored on disk.

Buffer Manager: responsible for fetching data from disk storage into main memory, and decides
what data to cache in main memory.
The storage manager implements several data structure for physical system implementation:

Data files: stores database itself,
Data dictionary: stores meta data about structure of database, in particular schema of
database.
Indices: provides fast access to data items that holds particular values.

1.11.2 Query processor

The query processor is responsible to simplify and facilitate access data. It is responsible to
translate updates and queries written in nonprocedural language at the logical level, into an
efficient sequence of operations at the physical level.

The query processor component includes the following components:

DDL interpreter: responsible to interprets DDL statements and records the definitions in the
data dictionary.

DML Compiler: responsible to translate DML statements in a query language into low level
instructions that query evaluation engine understands. Query is generally translated into no. of
alternative evaluation plans that produce the same result. It is also responsible for query
optimization; it required to select the lowest cost evaluation plan among the alternatives

Query evaluation: responsible to execute low level instruction generated by DML compiler.

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 12

Figure 1.11.1 Overall database system structure

1.12 Advantages and disadvantages of DBMS

1.12.1 Advantages of DBMS

Data independence: DBMS provides abstract view of data. Application programs are
independent from details of data representation and storage.

Efficient data access: DBMS provides verity of sophisticated techniques to store and retrieve
data efficiently.

Data integrity and security: DBMS allow to enforce integrity constraints on data. For example
before inserting salary information for an employee, DBMS can enforce integrity constraint to

Downloaded from: www.csitsansar.com

1.0 Introduction

© T. Paneru 13

check salary is not exceeded department budget. DBMS can also enforce access controls, what
data is visible to what class of users.

Data administration: DBMS provides centralized administration of data. It is appropriate when
several no. of database user shares data. It improves the overall performance of database
system.

Concurrent access and crash recovery: DBMS has a capability manage concurrent access. It
schedules concurrent access to the data in such a manner that user fell data is being accessed
by only one user at a time. Moreover, DBMS protects users from the effects of system failures.

Reduced application development time: since DBMS supports many important functions that are
common to many applications accessing data stored in database. It provides high level
interface to data and facilitates quick development of applications.

1.12.2 Disadvantage of DBMS

• Complex architecture of DBMS software
• DBMS software cost
• Since DBMS is optimized certain kind of workloads (e.g. answering complex queries or

handling many concurrent requests) its performance may not appropriate for certain
specialized applications.

• Abstract view of data presented by DBMS may not match for certain applications. For
example, relational databases does not supports flexible analysis of text data

• If specialized performance or data manipulation requirements are central to an
application, DBMS is not appropriate for such application. The added benefits of a DBMS
(e.g. flexible querying, security, concurrent access and crash recovery) may not require
for applications.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 1

2. Entity-Relationship Model

Entity-relationship model describes data involves in real world in terms of object and their
relationships. It is widely used for initial database design. It describes overall structure of
database. E-R model is in fact, semantic data model which describes the meaning of data. It
has a capability to map the meanings and interactions of real world objects on to the
conceptual schema.

2.1 Entity and Entity Sets
An entity is a “thing” or “object” in the real world that is distinguishable from another object.
For example:

• Specific customer , Particular course in university
Entities can be described by a set of properties called attributes. For example: customer_id,
customer_name, customer_address are attributes for entity customer. Similarly, course_id,
course_name are attributes for entity course.

An entity set is a set of entities of the same type that share the same properties. Entities of an
entity set has same set of attributes.
For example

• Set of all customer
• Set of all courses in an university

 Figure 2.1.1 instance of customer entity set

2.2 Attributes

In simple, attribute is descriptive property of entity set. Set of attributes describes entity set.
For example

customer = (customer-id, customer-name, customer-city)
account=(account_number, balance)
loan = (loan_number, amount)

The set of permitted values for an attribute called domain of that attribute.
For example

• set of all text strings of certain length for customer_name is domain of that attribute.
• set of all strings like “A-n” where n is a positive integer for account_number is domain of

that attribute.
Formally, an attribute is a function which maps an entity set into a domain. Every entity is
described by a set of (attribute, data value) pairs. There is one pair for each attribute of the
entity set. For example: particular customer entity in customer entity set can describe by the
set of pairs (customer_id, c01), (customer_name, x) and, (customer_city,Kathmandu).

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 2

2.2.1 Types of Attributes

Simple and Composite attribute

Attribute which can not be divide into subparts (i.e. into other attributes) called simple
attribute. For example, customer_id in customer entity set is simple attribute, since it can not
divide into sub attributes.

Attribute that can further divide into subparts called composite attribute. For example,
customer_name in customer entity set is composite attribute since it can be divided into sub
attributes: customer_fname, customer_mname and customer_lname. Composite attributes
helps to group related attributes, which makes modeling clearer.

Single-valued and Multivalued attributes

Attribute that can take only one value in every entry called singled-valued attribute. For
example, attribute customer_name in customer entity set is single-valued attribute since it can
not contain more than one customer name in any entry. An attribute that can take more than
one values in any entry called multivalued attribute. For example, in a customer entity set
attribute customer_phonenumber is multivalued attribute since customer may have zero or one
or several phone number.

Stored and Derived attribute

Attribute whose values can be derived from the values of other related attributes or entities
called derived attribute. For example, in customer entity set, attribute age is derived attribute if
customer entity set has attribute date_of_birth. We can derive age of customer from
date_of_birth and current_date. Here the attribute date_of_birth is stored attribute and the
attribute age is derived attribute. The value of derived attribute is not stored, it is computed
when required.

2.3 Relationships and Relationship Sets
A relationship is an association among two or more entities. A relationship set is a set of
relationship of same type.

Formally, if E1, E2, . . ,En (n≥2) are entity sets then a relationship set R is a subset of
 {(e1,e2, . . ,en)│e1∈E1,e2 ∈E2, . . en ∈En}
where (e1,e2, . . ,en) is relationship.
Example: For two entity sets customer and account, we can define relationship set depositor
which associates each customer to their corresponding account he/she has.

 C01 X Kathmandu

 C02 Y Lalitpur

 A1 X

 A2 Y

 A3 Z C03 Z Kathmandu

Figure: instance of depositor relationship set

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 3

The relationship set may have descriptive attributes, which generally used to record information
about the relationship. For example: in depositor relationship with entity sets customer and
account we can associate attribute access_date to the relationship set depositor to specify the
most recent date on which a customer accessed an account.

Recursive relationship set

The function that an entity plays in relationship called that entity’s role. In relationship set,
usually roles of entity’s are not specified but it is useful if meaning of relationship need to clear.
In such case, same entity may participate in relationship set more than once with different
roles. This type of relationship set called recursive relationship set.
Example:
Let us consider entity set employee that records information about all employees of bank. We
may have relationship set “work-for” as recursive relationship set because same employee may
plays worker as well as manager.

Binary and ternary relationship set

Relationship set that involves only two entity sets known as binary-relationship set. For
example: depositor relationship set is a binary relationship set where relationship set involves
only two entity set “customer” and “account”.

Most relationship sets in database system are binary. However relationship set may involves in
more than two entity sets. Relationship set that involves three entity sets known as ternary
relationship. For example: the relationship set “work-on” among employee, branch and job is
example of ternary relationship.

The no. of entity sets that participate in relationship set refers degree of relationship set. Here
degree of ternary relationship is 3.

2.4 Constraints in E-R Model

E-R model has a capability to enforce constraints. Two most important type of constraints in E-
R model are-
 Mapping Cardinalities (Cardinality ratio), Participation Constraints

Mapping Cardinalities

Mapping Cardinalities describes no. of entities to which another entity can be associated via
relationship set. Mapping cardinalities are most useful in describing binary relationship sets but
it can also describe relationship sets that involve more than two entity sets. For binary
relationship set between entity set A and B mapping cardinality must one of the following.

One to one: An entity in A is associated with at most one entity in B and entity in B is
associated with at most one entity in A.

One to many: An entity in A is associated with zero or more entities in B but entity in B
can be associated with at most one entity in A.

Many to one: An entity in A is associated with at most one entity in B but an entity in B
can be associated with zero or more entities in A.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 4

Many to many: An entity in A is associated with zero or more entities in B, and an
entity in b is associated with zero or more entities in A.

Figure: Mapping Cardinalities

The appropriate mapping cardinality for a particular relationship set depend upon real world
situation that the relationship set is going to modeling. For example: in borrower relationship
set, if loan can belong to any one customer and customer can have several loan then
relationship set from customer to loan is one to many. If a loan can belong to several customer
(loans taken jointly by several customers) then relationship set is many to many.

Participation Constraints

The participation of an entity set E in a relationship set R is said to be total if every entities in E
participates in at least one relationship in R. If only some entities in E participate in relationship
in R, then participation of entity set E in relationship set R is said to be partial. The participation
of loan in the relationship set borrower is total but customer entity set in borrower relationship
set is partial since not all customers necessarily take loan from bank, customer may also those
who are only account holder. Such participation constraint can be express by E-R model. We
will discuss it in later section.

2.5 Keys

The concept of key is important to distinguish one entity from another and one relationship
from another relationship. In fact, values of attributes distinguish one entity from another
entity. To distinguish one entity from another entity in entity set there must exist attribute/s
whose values must not duplicate in entity set. It ensures no two entities in an entity set can
exist with same values for all attributes.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 5

Super key
A super key is a set of one or more attributes which uniquely identifies an entity in entity set.
For example: in customer relation single attribute customer_id is sufficient to uniquely identify
one customer entity to another. So customer_id is a superkey in a customer relation. Since
combination of customer_id and customer_name can also uniquely identifies one customer
entity to another. So combination of attributes {customer_id,customer_name} is also superkey
in relation customer. But single attribute customer_name can not superkey in relation customer
because customer name only can not uniquely identify one customer entity to another, there
would be number of customers having same name.

The above example of supekey shows that superkey may contains extraneous attributes. That
is, if K is superkey then any superset of K is superkey.

Candidate key
The minimal superkey called candidate key. That is, candidate key is a superkey but its proper
subset is not superkey. For example: customer_id is a candidate key in customer relation.
Similarly account_id is a candidate key in account relation.

Primary key
In a relation, it is possible that we can choose distinct set of attributes as a candidate key. For
example: in customer we can choose single attribute {custome_id} or set attributes
{customer_name, customer_city} as candidate key. Candidate key chosen by database
designer for particular relation known as primary key.

2.6 Primary Keys for Relationship Sets

Suppose R is a relationship set involving entity sets E1, E2, . . .En. Lets consider primary-key(Ei)
is a set of attributes that form primary key in each entity sets Ei. (i=0,1, ..n). Then set of
attributes
 Primary-key (E1) U primary-key (E2) . . . primary-key (EU U n)
describes individual relationship in relationship set R.

Since relationship set may also consist another attributes (e.g. descriptive attributes) so
assume relationship set consist attributes {a1,a2, . . .an} then set of attributes
 Primary-key (E1) primary-key (EU 2) . . . primary-key (EU U n) {aU 1,a2, . .
an}
also describes individual relationship in relationship set R.

In both of the above case, the set of attributes
 Primary-key (E1) primary-key (EU 2) . . . primary-key (EU U n)
form super key in relationship set R.

This indicates that primary keys of entity sets those involves in relationship set form super key
in relationship set. For example: in relationship set depositor, {customer_id, account_number}
are attributes and each attribute customer_id and account_number are primary key in relation
customer and account respectively. If relationship set consist declarative attribute say
access_date then it can also consider as attributes of relationship set depositor.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 6

The selection of primary key in relationship set depends up on mapping cardinality of that
relationship set. To illustrate this, let us consider entity sets customer and account, and
relationship set depositor with declarative attribute access_date. Suppose that relationship set
is many to many. Then primary key of depositor relationship set is combination of primary keys
of customer and account. If customer can have only one account, that is, if relationship set is
many to one from customer to account the primary key of depositor is simply primary key of
customer (i.e customer_id). Similarly, if each account is own by at most one customer, that is,
relationship set is many to one from account to customer then primary key of depositor is
simply the primary key of account (i.e. account_id). If relationship set is one to one then we
can choose either customer_id or account_id as primary key.

For non-binary relationship set where no cardinality constraints are define then superkey is only
one possible candidate key. So it needs to be chosen as a primary key.

2.7 Entity Relationship Diagram (ERD)
We already discuss that E-R Diagram has a capability to describes overall logical structure of
database graphically in brief. In this section we discuss E-R diagram capabilities in detail

Major components of E-R diagram are:

Rectangles: representing entity sets.
Ellipses: representing attributes.
Diamonds: representing relationship sets.
Lines: linking attributes to entity sets and entity sets to relationship sets.
Double ellipses: represents multivalued attributes.
Dashed ellipses: represents derived attributes
Double lines: represents total participation of entity in relationship sets
Double rectangles: represents weak entity sets (discuss in later section)
Underline: indicates primary key attributes

Representation of relationship set in E-R Diagram

The relationship set borrower having two entity sets customer and loan can be express as

Figure: borrower relationship set in E-R Diagram

Representation of mapping cardinalities of relationship set in E-R Diagram

The directed lines in E-R diagram are used to specify mapping cardinalities of relationship sets.
The directed line (→) tells “one,” and an undirected line (—) tells “many” between the
relationship set and the entity set.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 7

One-to-one relationship representation

Figure: one to one relationship set in E-R Diagram
This indicates a customer is associated with at most one loan via the relationship borrower and
a loan is associated with at most one customer via borrower.

One to many relationship representation

Figure: one to many relationship set in E-R Diagram

This indicates a loan is associated with at most one customer via borrower and a customer is
associated with several (including 0) loans via borrower.

Many to one representation

Figure: many to one relationship set in E-R Diagram

This indicates that a loan is associated with several (including 0) customers via borrower but a
customer is associated with at most one loan via borrower.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 8

Many to many relationship representation

Figure: many to many relationship set in E-R Diagram

This indicates a customer is associated with several (including 0) loans via borrower and a loan
is associated with several (including 0) customers via borrower

Representation of Composite, Multivalued, and Derived Attributes in E-R Diagram

Figure: E-R Diagram with Composite, Multivalued, and Derived Attributes

Here attribute “name” is composite attribute, “phone_number” is multivalued attribute and
“age” is derived attribute.

Representation of roles (recursive relationship set) in E-R Diagram

Roles in E-R diagrams are indicated by labeling the lines that connect diamonds to rectangles.
Role labels are optional, and are used to clarify semantics of the relationship

Figure: Roles in E-R Diagram

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 9

Here relationship set “work-for” is recursive relationship set and the labels “manager” and
“worker” are roles.
The function that an entity plays in a relationship

Representation of non binary relationship Set in E-R Diagram

Figure: ternary relationship set in E-R Diagram
In ternary (or higher degree) relationship set there are one arrow to indicate a cardinality
constraint. For example: an arrow from works-on to job indicates each employee works on at
most one job at any branch. If there is more than one arrow, there are two ways of defining the
meaning. Suppose a ternary relationship R between A, B and C with arrows to B and C this can
be interoperate as

• each entity in A is associated with a unique entity in B and C or
• each pair of entities (A, B) is associated with a unique entity in C, and each pair of

entities (A, C) is associated with a unique entity in B.

Representation of participation constraints of entity set in relationship set

In E-R diagram total participation of entity set in relationship set indicated by double line
between that relationship set and entity set, single line indicates partial participation.

Figure: participation constraints in E-R Diagram

This indicates participation of loan in borrower relationship is total and participation of customer
in borrower relationship is partial. That is, every loan must have a customer associated to it via
borrower but all customers may not associate to loan.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 10

E-R diagram can also specify more complex constraints. It can specify cardinality limits. That is,
it can specify how many no. of times each entity may participates in relationships in
relationship set. An edge between an entity set and binary relationship can have an associated
minimum and maximum cardinality in the form l..h, where l is the minimum and h is the
maximum cardinality. A minimum value 1 indicates total participation of the entity set in the
relationship set. A maximum value 1 indicates that the entity participates in at most one
relationship, while maximum value * indicates no limit. That is label 1..* on an edge is
equivalent to double line.

Example:

Figure: Cardinality limits on relationship sets

Here, edge between loan and borrower has cardinality limit 1..1. This indicates loan must have
exactly one associated customer. The cardinality limit 0..* on the edge from customer to
borrower indicates that customer can have zero or more loans. Thus the relationship borrower
is one to many from customer to loan and further the participation of loan in borrower is total.

2.8. Weak Entity Sets and their representation in E-R Diagram

Entity set that does not have primary key known as weak entity set and entity set that has a
primary key known as strong entity set.

Let us consider entity set

 Payment= (payment_number,payment_date,payment_amount)

Here, payment numbers are typically sequence of numbers, starting from 1 and generated for
each loan. Thus although each payment entry is distinct, payments for different loan may share
the same payment number. Thus, this entity set does not have a primary key; it is a weak
entity set

For weak entity set to be meaningful, it must be associated with another entity set called
identifying or owner entity set. The relationship between weak entity set and identifying set
known as identifying relationship. The identifying relationship is many to one from the weak
entity set to identifying entity set, and participation of weak entity set in relationship is total.

In our example, identifying entity set for weak entity set payment is loan, and a relationship
loan-payment associates payment entities with their corresponding loan entities in identifying
relationship.

Although, a weak entity set does not have a primary key, it contains attribute or set of
attributes that distinguishes all entities of a weak entity set called discriminator of weak entity

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 11

set or partial key. In payment weak entity set payment_number is a discriminator since for
each loan, payment number uniquely identifies one single payment for that loan.

The primary key of weak entity set can be compose by combining primary key of identifying
entity set and the weak entity set’s discriminator. For weak entity set payment primary key is
{loan_number,paymenr_number}, where loan_number is primary key of identifying entity set
loan, and payment_number is discriminator of weak entity set payment.

In E-R diagram, weak entity set represented by double rectangles. The discriminator of a weak
entity set is represent by underline attribute with a dashed line and double outlined diamond
represents identifying relationship.

Figure: E-R diagram with weak entity set.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 12

2.9 Extended E-R Features

2.9.1 Specialization
Specialization follows top down design approach. Entity sets are subgroups in distinct entity
sets. For example entity set person with attributes name, street and city can further subgroup
into two entities sets customer and employee. Each of these person types can describes by set
of attributes that includes all the attributes of entity set person plus all possible attributes of
itself. For example, customer entity set can further described by set of attributes: customer_id,
enroll_date etc. Similarly entity attributes can further describes by set of attributes:
emplouee_id, salary etc. The process of sub groupings within an entity set is called
specialization. We can apply specialization repeatedly to refine a design schema. For instance
bank employees may be further classified into officer, teller or secretary.

In E-R diagram, specialization can be represented by a triangle component labeled ISA. The
label ISA stands for “is a “. For example customer is a person, officer is an employee etc. The
ISA relationship also called super class-subclass relationship.

2.9.2 Generalization
Generalization follows bottom-up approach in which multiple entity sets are synthesized into
higher-level entity set on the basis of common features. For example, the database designer
may have first identified a customer entity set with the attributes: name,street, city and
customer_id and employee entity set with the attributes name, street, city, employee_id and
salary. In both entities some attributes are common. These similarities between these two
entities can be express by generalization.

During the course of database design or E-R schema for enterprise database designer may use
both specialization and generalization process. Specialization and generalization in E-R diagram
represent by a same way. The terms specialization and generalization are used
interchangeably.

Figure: Specialization and generalization.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 13

2.9.3 Constraints on Generalization and Specialization

Database designer can enforce certain constraints in generalization and specialization. These
constraints are as follows

(a) Constraint on which entities can be member of a given lower level entity set

Membership of lower-level entity can be express one of the following way
Condition defined:

Database designer can define condition to lower level entity set that must
follows entities in higher level for member of lower level entity set. Suppose
account is a higher level entity set with attribute account_type. Assume that
saving_account and checking_account are two lower level entity set. To specify
which entities in account belongs which lower level entity set database designer
can specify condition for each lower level entity set. For saving_account entity
set, database designer can enforce membership condition
account_type=’saving account’ and for checking_account entity set, database
designer can enforce membership condition account_type=’checking account’.
This type of specialization/generalization known as attribute defined.

User defined:
It does not enforce any membership condition in lower-level entity set.
Database user itself assigns entities into other entity set. For instance, we can
assume that after 3 month of employment, bank employees are assign in one
of the available workgroups.

(b) Constraint on whether or not entities may belong to more than one lower-level entity set

within a single generalization.

To indicate this constraint lower level entity set may one of the following
Disjoint:

Disjointness constraints enforce an entity can belong to only one lower level
entity set. In previous account example, entities in account can either belong to
saving_account or checking_account, can not both. In E-R diagram it can be
express by writing disjoint next to the ISA triangle.

Overlapping
In overlapping generalization/specialization, same entity may belong to more
than one lower-level entity set. For example: employee may involve in more
than one workgroups. Same people may customer as well as employee. Lower
level entity overlap is default case.

(c) Completeness constraint: specifies whether or not an entity in the higher-level entity set

must belong to at least one of the lower-level entity sets within a
generalization/specialization.

This constraint may specify as follows

Total generalization/specialization: tells each higher level entities must belong to one of
the lower-level entity sets. In E-R diagram total generalization/specialization specifies by using
a double line to connect the box representing higher level entity set to the triangle symbol.

Partial generalization/specialization: tell not all entities in higher level need to belong to
one of the lower-level entity sets. Partial generalization is default.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 14

2.10 Aggregation
E-R model can not express relationship among relationship. To illustrate this, let us consider
quaternary relationship manages among employee, branch, job and manager. Its main job is to
record managers who manages particular job/task perform by particular employee at particular
branch.

E-R diagram with redundant relationships.

This quaternary relationship is required since binary relationship between manager and
employee can not represent required information. This E-R diagram is able to represent the
required information but information are redundant since every employee, branch and job exist
both relationship set “work-on” and “manages”. Here aggregation is better to represent such
information.
Aggregation is in fact an abstraction it treats relationships as higher level entities. In our
example, it treats relationship set work-on (including entity set employee, branch and job) as
entity set. So now we can create binary relationship set “manages” between work-on and
manager. This removes redundant information.

E-R Diagram with aggregation

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 15

2.11 Design of an E-R Database Schema

E-R data model provides much flexibility in designing database schema. Database designer can
select wide range of alternatives. Database designer must make following decisions:

• Whether to use an attribute or entity set to represent an object.
• Whether a real-world concept is best to express by an entity set or a relationship set
• Whether to use a ternary relationship or pair of binary relationship.
• Whether to use strong or weak entity set.
• Whether to use generalization or specialization. Generalization/Specialization provides

modularity in the design.
• Whether aggregation is better to use or not.

2.11.1 Database Design Phase

(a) user specification requirements

In the initial phase of database design, database designer need to characterize what data
needs for database users and how the database is structured to fulfill these requirements.
Database designer needs to interact with domain experts and users to carry out this task.

(b) Conceptual design

In this phase, database designer need to choose appropriate data model to translate the
requirement into conceptual schema of the database. The conceptual design describes detail
overview of enterprise. E-R model can be use to develop conceptual schema. In terms of E-
R model, conceptual schema specifies all entity sets, relationship sets, attributes, and
mapping constraints. Conceptual schema is also able to describe functional requirements of
the enterprise. In functional requirements user can describes kind of operations that will be
perform on data.

(c) Logical design phase:

In this phase database designer need to maps the high level conceptual schema onto the
implementation data model of the database system.

(d) Physical design phase

In this phase, database designer specifies physical features of the database. These features
include form of file organization and storage structure.

2.12 Reduction of an E-R Schema to Tables

We can represent the E-R database schema by a set of tables. Each entity sets and each
relationship sets in E-R schema can be represents by their corresponding tables. Each attributes
of entity sets and relationship sets are map as columns of their corresponding tables. Similarly
constraints specified in E-R diagram such as primary key, cardinality constraints etc are
mapped to tables generated from E-R diagram. In fact, representing E-R schema into tables is
converting E-R model of database into relational model.

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 16

2.12.1 Tabular representation of Strong Entity Sets

Strong entity set represent by a table with all attributes of its. Let E be a strong entity set with
attributes a1, a2, . . ,an then it represent by a table E with n distinct columns, each of which
correspond to one of the attributes of strong entity set E. Each row in this table corresponds to
entity of entity set E.

For example: entity set account with account_number and balance can be represented by table
“account” as

 account_number balance

A1 200
A2 300
A3 500
A4 500

Figure: The account table

Suppose D1 denotes the set of all account numbers, and D2 denotes all balances. Each row of
the account table contains 2-tuple (v1,v2), where v1 is loan number (i.e. v1 is in set D1) and v2 is
balance (i.e. v2 is in set D2). In general, we can say that account table contains only a subset of
all possible rows. We can refer set of all possible rows of account table as Cartesian product of
D1 and D2, denoted by D1× D2.

In general, table contains n columns, then set of all possible rows in that table can express by
Cartesian product of D1,D2, . . ,Dn, denoted by D1× D2× . . . ×Dn-1× Dn.

2.12.2 Tabular representation of Weak Entity Sets

Let A be a weak entity set with attributes a1,a2, . . am. Let B be a strong entity set on which A
depend on. Let primary key of B consist attributes b1,b2, . .,bn. Now weak entity set A can be
represent by table A with attributes {a1, a2, . . am } {bU 1,b2, . .,bn}.

Example: Let us consider weak entity set payment with attributes; payment_number,
payment_date, and payment_amount. Consider loan is a strong entity set on which weak entity
set payment depends on and suppose that loan_number is a primary key of loan entity set.
Now weak entity set payment can be represent with attributes: loan_number,
payment_number,payment_date, and payment_amount.

 loan_number Payment_number Payment_date balance

L12 5 02-04-2005 100
L15 7 12-04-2005 250
L15 8 15-04-2005 150
L19 9 03-05-2005 500

Figure: The payment table

Downloaded from: www.csitsansar.com

2. Entity-Relationship Model

© T. Paneru 17

2.12.3 Tabular representation of Relationship Sets

Let R be a relationship set with set of attributes a1,a2, . . am formed by union of primary keys of
each entity sets that participates in R. Assume that R consist descriptive attributes b1,b2, . .,bn.
Now, relationship set R represent by table R with attributes { a1, a2, . . am } {bU 1,b2, . .,bn}.

Example; consider a relationship set borrower that involves two entity sets

• customer with primary key customer_id
• loan with primary key loan_number

Since relationship set does not consist any descriptive attribute, relationship set borrower can
represent by table borrower with attributes customer_id and loan_number.

 customer_id loan_

number
C1 L1
C2 L2
C3 L3
C4 L4

Figure: The borrower relationship set

Downloaded from: www.csitsansar.com

3.0 Relational Model

© T. Paneru 1

3.0 Relational Model
Relational database model is a primary data model for commercial data-processing
applications. It is popular because of its simplicity; it provides simple but powerful way of
representing data. It also supports complex query. Database in a relational model is simply
a collection of one or more relations, where each relation is represented by table with rows
and columns. It allows simple high level languages to query data.

3.1 Structure of Relational Databases
In relational model, table is a major construct for representing data. Relational database
consist set of tables. A row in a table represents a relationship among set of values. So
table can be refers as a collection of such relationship.

3.1.1 Basic Construct

 To illustrate the basic structure of database, let us consider a table “account”

account_number branch_name balance
A-1 Kathmandu 500
A-2 Lalitpur 300
A-3 Kathmandu 700
A-4 Bhaktpur 600

 Figure: The account table

The columns of table “account” are: account_number, brance_name and balance refer
attributes. The set of permitted values for each attribute known as domain of that attribute.
For example: set of all accounts numbers is a domain of attribute account_number.

Let D1 denotes set of all account number, D2 denotes set of all branch names and D3
denotes set of all balances. Any row of table “account” must consist 3-tuple (v1, v2, v3),
where v1 is account number (i.e. v1 is a domain of D1), v2 is branch name (i.e. v2 is a
domain of D2), and v3 is account balance (i.e. v3 is a domain of D3). In general, we can
express table “account” will contain only subset of all possible rows. That is, “account” is a
subset of
 D1×D2×D3

In general, a table of n attributes must be subset of

D1×D2×D3×. . ×Dn-1×Dn

This implies that definition of table is almost similar to the definition of relation in
mathematics. In mathematics, relationship is a subset of Cartesian product of a list of
domains. Therefore, in relational model, table can be refer as a relation and row of table can
be refers as tuple. We can define tuple variable to represent a tuple. The above account
relation consist seven tuples. Assume that tuple variable t represents first tuple of the
relation. Then, the notation t[account_number] indicates value of t on account_number
attribute. That is, t[account_number]=”A-1”. Similarly t[branch]=”Kathmandu”, and
t[balance]=500. We can also represent it as follow: t[1] where 1 indicated first attribute of
relation; that is “account_number”. Therefore, t[1]=”A-1”. In relational model, we can also
express relation as a set of tuples. So definitely, t∈r.

3.0 Relational Model

© T. Paneru 2

For each relations r, domains of all attributes of r must be atomic. The domain is said to be
atomic if elements of domain is indivisible unit. Domains of multivalued and composite
attributes are nonatomic.

Several attributes may have same domain. Suppose we have two relation customer with
customer_name as one of its attribute and employee is another relation with one of its
attribute as employee_name. It is possible that attribute customer_name and
employee_name may have same domain. If we look attributes: customer_name and
branch_name of relations customer and account respectively, at physical level, their domain
may be same, both are defined by set of character string. But at logical level,
customer_name and branch_name must have distinct domain. Null value is a member of
any possible domain. It signifies value is unknown or does not exist. Domain for
customer_phoneno of customer entity set may null, meaning is that particular customer
does not have any phone number or phone no. is not available.

3.1.2 Database Schema

A relation schema is a list of attributes and their corresponding domains. For example, the
relation schema for relation customer is express as

 Customer-schema = (customer_id, customer_name, customer_city)

We may also specify domains of attributes as

 Customer-schema = (customer_id: integer, customer_name: string,
customer_city:string)

We may state customer is a relation on Customer-schema by

 customer(Customer-schema)

Values or data contain in relation change when it is updated. Relation instance is a snapshot
of data in relation at particular time. But, in general, we simply say relation even it is
actually relation instance.

In terms of relation, relational database is a collection of relations and relational database
schema is a collection of schemas for relations in database. It describes logical design of
database. The instance of relational database is collection of relation instances. It is actually
a snapshot of data in database at a particular time.

Database schemas for banking enterprise

Branch-schema = (branch_name,branch_city,assets)
Account_schema = (account_number,branch_name,balance)
Customer-schema = (customer_id,customer_name,customer_street,customer_city)
Depositor-schema = (customer_id,account_number)
Loan-schema = (loan_number,branch_name,amount)
Borrower-schema = (customer_id,loan_no)

3.1.3 Keys
In relational model, keys (superkey, candidate key and primary key) play important roles.
For example: in Branch-schema, {branch_name} and {branch_name, branch_city} are
superkey. Since {branch_name} itself is a superkey, {branch_name, branch_city} can not

3.0 Relational Model

© T. Paneru 3

candidate key in Branch-schema. In Branch-schema, {branch_name} is a single candidate
key so ultimately it is a primary key of Branch-schema.

Let R be a relation schema and K R. If K is superkey for R then it restricts relations r(R) in
which no two distinct tuples have same values on all attribute in K. That is, if t

⊆
1 and t2 are in

r and t1≠ t2 then t1[K]≠ t2[K].

Relational database schema can be derive from an E-R schema where primary key for
relation schema is primary key of entity or relationship set from which relation schema is
derived. If relation is derive from strong entity set then primary key for relation is primary
key of that strong entity set. Similarly, if relation is derived from weak entity set then
primary key for relation is union of primary key of strong entity set and discriminator of
weak entity set. And the relation consist

• all attributes of weak entity set
• primary key of the strong entity set on which weak entity set depends

In relational model, relationship set is also represented by a relation. Its primary key is
depends up on mapping cardinalities of relationship set. If relationship is many to many
then primary key of relation representing relationship set is a union of primary keys of
related entity sets. If relationship is one to one then primary key of relation representing
relationship set is primary key of any one related entity set. Similarly, if relationship is
many to one then primary key of relation representing relationship set is the primary key of
the “many” entity set.

In relational model, one relational schema may contain primary key of another relation
schema. If relation schema r1.contains primary key of another relation schema r2 then this
attribute (i.e. PK in r2) in r1 called foreign key. The relation r1 called referencing relation
(detail table) of the foreign key dependency and r2 called referenced relation (master table).

Example:
In Branch-schema, branch_name is a primary key. In Account-schema, branch_name is a
foreign key referencing Branch-schema. This implies, in any database instance, any tuple ta
in account relation, there must be some tuple, tb in branch relation such that the value of
the branch_name attribute of ta is same as the values of the primary key, branch_name of
tb..

3.1.4 Schema Diagram
Schema diagram is a graphical representation of database schema along with primary key
and foreign key dependencies.
In schema diagram, each relation is represented by box where attributes are listed inside
box and relation name is specified above it. Primary key in relation is place above the
horizontal line that crosses the box. Foreign key in schema diagram appear as arrow from
the foreign key attributes of the referencing relation to the primary key of the referenced
relation.

 Figure: Schema diagram

3.0 Relational Model

© T. Paneru 4

Note: The difference between E-R diagram and schema diagram is, E-R diagram do not
shows the foreign key but schema diagram shows it explicitly.

3.1.5 Query Languages
Query language is a language through which user request information from database. Query
languages can be categories in procedural and non procedural. In procedural query
language, user required to specify sequence of operations to system to compute desired
information where as in nonprocedural query language, user need to specify required
information without specifying special procedure for obtaining that information.

Most commercial relational database system offers query language, both procedural and
non procedural. SQL is most popular nonprocedural query language.

In this section we discuss pure query language: relational algebra, tuple relational calculus
and domain relational calculus. These query languages can not commercially use by people
but it describes fundamental techniques for extracting data from database and provides
basis for commercial query language.

3.2 Relational algebra
The relational algebra is a procedural query language. It consist set of operation that takes
one or more relations as inputs and produce a new relation as output. The fundamental
operations in relational algebra are selection, projection, union, set difference, Cartesian
product, and rename. Set intersection, natural join, division and assignments other
operations of relational algebra which can be define in terms of fundamental operations.

3.2.1 Fundamental Operations
The fundamental operations selection, projection and rename on one relation so they called
unary operations. Others operations union, set difference and Cartesian product operates on
pairs of relations and so called binary operations.

The Selection Operation
The Select Operation selects tuples that satisfy a given predicate. Select is denoted by a
lowercase Greek letter sigma (σ), with the predicate appearing as a subscript. The relation
is specifying within parentheses afterσ . That is, general structure of selection is

σ p(r)
where p is selection predicate.

Formally, selection operation define as

σ p(r) = {t|t∈r and p(t)}
where p is formula in propositional calculus consisting terms connected by connectives: ^
(and), (or), ¬ (not). Each term is in the format ∨
 <attribute>op<attribute>or <constant>
where op is one of the comparison operators: =,≠ ,<,≤ ,>, ≥

Examples:

1. Select those tuples of loan relation where the branch is Kathmandu.

 σ branch_name=”Kathmandu”(loan)

 output = {t | t[branch_name] = Kathmandu }

3.0 Relational Model

© T. Paneru 5

2. Find all tuples in loan relation in which amount loan is more than 5000

 σ amount>5000(loan)

3. Find all tuples in loan relation where amount is more than 5000 and branch is

Kathmandu.

 σ branch_name=”Kathmandu” ^ amount>5000(loan)

The projection Operation

The projection operation retrieves tuples for specified attributes of relation. It eliminates
duplicate tuples in relation. The projection is denoted by uppercase Greak letter pi (∏). We
need to specify attributes that we wish to appear in the result as a subscript to ∏.

The general structure of projection is

 ∏A1,A2, . . ,Ak (r)
where A1, A2, . .Ak are attributes of relation r.

Example:Find account number and their balance from account relation

 ∏account_number,balance(account)

 output== {t | t[account_number, balance]}

Composition of relational operations

Relational algebra operations can be composed together into relational-algebra expression.
This required for complicated query.

Example: Find those customers who say in Kathmandu.

∏customer_name(σ customer_city=”Kathmandu”(customer))

Union Operation

Let r and s are two relations then their union defines as

rU s ={t | t∈r or t∈s}

For r s to be valid, it must hold U

• r,s must have same arity (same number of attributes)
• The attribute domain must be compatible (e.g. domain of ith column of r must deals

with same type of domain of ith column of s)

Example: Find all customers with either account or loan.

∏customer_name(depositor) U ∏customer_name(borrower)

Set difference Operation
The set difference allows us to find tuples that are in one relation but not in another
relation. The expression r-s produces a relation containing those tuples in r but not in s.

3.0 Relational Model

© T. Paneru 6

Formally, let r and s are two relations then their difference r-s define as
r-s=={t | t∈r and t∉s}

The set difference must be taken between compatible relations. For r-s to be valid, it must
hold

• R and s must have the same arity
• Attribute domains of r and s must be compatible

Example: Find all customer of the bank who have account but not loan

∏customer_name(depositor) - ∏customer_name(borrower)

Cartesian Product Operation

The Cartesian product operation denoted by cross (×). It allows us to combine information
from any two relations. Cartesian product of two relations r and s, denoted by r×s returns a
relation instance whose schema contains all the fields of r (in same order as they appear in
r(followed all field of s (in the same order as they appear in s). The result of r×s contains
one tuples <r,s> (concatenation of tuples of r and s) for each pair tuples t∈r, q∈s.
Formally,

 r×s={<t,q>|t∈r and q∈s}

Example 1:
 C D E

α 10 a
β 10 a

β 20 b
γ 10 b

 A B

α 1
β 2

 Relation r Relation s

r×s: A B C D E

α 1 α 10 a
α 1 β 10 a

α 1 β 20 b

α 1 γ 10 b
β 2 α 10 a

β 2 β 10 a

β 2 β 20 b

β 2 γ 10 b

σ A=α(r×s):

A B C D E
 α α 1 10 a

α 1 β 10 a

α 1 β 20 b

α 1 γ 10 b

3.0 Relational Model

© T. Paneru 7

Example 2:

customer_name loan_number
X L01
Y L02

 Relation borrower

loan_number branch_name amount
L01 B1 5000
L02 B2 6000

 Relation loan

Query: Find all customer who taken loan from branch “B1”.

∏customer_name(σ borrower.loan_number=loan.loan_number(σ branch_name=”B1” (borrower×loan)))

Process:

 borrower×loan

customer_name borrower.loan_number loan.loan_number branch_name amount
X L01 L01 B1 5000
X L01 L02 B2 6000
Y L02 L01 B1 5000
Y L02 L02 B2 6000

 σ branch_name=”B1” (borrower×loan)

customer_name borrower.loan_number loan.loan_number branch_name amount
X L01 L01 B1 5000
Y L02 L01 B1 5000

 σ borrower.loan_number=loan.loan_number(σ branch_name=”B1” (borrower×loan))

customer_name borrower.loan_number loan.loan_number branch_name amount
X L01 L01 B1 5000

∏customer_name(σ borrower.loan_number=loan.loan_number(σ branch_name=”B1” (borrower×loan)))

customer_name

X

3.0 Relational Model

© T. Paneru 8

The Rename Operation

The result of relational-algebra expression does not have a name to refer it. It is better to
give name to result relation. The rename operator is denoted by lower case Greek letter rho
(ρ). Rename operation in relation-algebra expressed as
 ρ x(E)
where E is a relational algebra expression and x is name for result relation. It returns the
result of expression E under the name x.

Since a relation r is itself a relational-algebra expression thus, the rename operation can
also apply to rename the relation r (i.e. to get same relation under a new name). Rename
operation can also used to rename attributes of relation. Assume a relational algebra
expression E has arity n. Then expression
 ρ x(A1,A2, . . ,An)(E)
returns the result of expression E under the name x and it renames attributes to A1,A2, .
.,An.

Example 1: Find the largest account balance in the bank.

∏balance(account) -∏account.balance(σ account.balance<d.balance(account× ρ d(account)))

Process:

account_number balance
A1 500
A2 600
A3 700

 Relation account

Account_number balance
A1 500
A2 600
A3 700

 Relation d

 account×ρ d(account)

account.account_number account.balance d.balance
A1 500 500
A1 500 600
A1 500 700
A2 600 500
A2 600 600
A2 600 700
A3 700 500
A3 700 600
A3 700 700

 ∏account.balance(σ account.balance<d.balance(account× ρ d(account))

Account.balance

3.0 Relational Model

© T. Paneru 9

500
600

 ∏balance(account) -∏account.balance(σ account.balance<d.balance(account× ρ d(account)))

account.balance
500
600

balance
500
600
700

 Output:

balance
700

Example 2: Find the names of all customers who live on the same street and in the same
city as smith.

∏customer.customer(σ customer.customer_street=smith_add.street^customer.customer_city=smith-add.city

 (customer× ρ smith_add(street,city) (∏customer_street,customer_city(σ customer_name=”smith”(customer)))))

3.2.2 Formal Definition of Relational Algebra

Basic expressions in relational algebra are

• Relation in a database
• A constant relation

o A constant relation is expression by listing its tuples
o {(A01,”B1”,500)(A02, “B2”,600)

From the basic expression we can construct other expression. Let E1 and E2 be relational
algebra expression, then following are also relational-algebra expression.
E1U E2

E1-E2

E1×E2

σ p (E1), p is a predicate on attributes in E1.
∏ s(E1), s is a list of some attributes in E1

ρ x(E1), x is the new name for the result of E1

3.2.3 Additional Operations

The fundamental operations of the relational algebra are sufficient to express any relational
algebra query. But for complex query it is difficult. Additional operations (set intersection,
natural join, division, assignment) simplify the common queries.

Set-intersection operation

Let r and s are two relation having same arity and attributes of r and s are compatible then
their intersection r∩ s define as

 r∩ s={t|t∈r and t∈s}

In terms of fundamental operation of relational algebra it can express as

3.0 Relational Model

© T. Paneru 10

 r∩ s=r-(r-s)

Example 1:

A B
α 2
β 3

A B
α 1
α 2
β 1

 Relation r relation s

 r∩ s: A B

α 2

Example 2: Find all customer who have both loan and account

 ∏customer_name(borrower) ∩∏ customer_name (depositor)

The natural join operation

The natural join operation generally needs to simplify queries that required a Cartesian
product. The natural join allow to combine certain selections and a Cartesian product into
one operation. It is denoted by symbol

.
The natural join operation forms a Cartesian product of its two arguments, performs a
selection forcing equality on those attributes that appear in both relation schema and finally
removes duplicate attributes.

Formally, let r and s are two relations on schema R and S respectively then r s is a
relation on schema R s. That is, U

r s =∏ R S∪ (σ r.A1=s.A1^r.A2=s.A2^ . .^r.An=s.An(r×s)

where {A1,A2, . .,An} are common attributes in R and S.

Example 1:
Let

R=(A,B,C,D)
S=(E,B,D)

Now,

Result schema=(A,B,C,D,E)
r s is define as
 ∏ r.A,r.B,r.C,r.D,s.E(σ r.B=s.B^r.D=s.D(r×s))

3.0 Relational Model

© T. Paneru 11

Suppose r and s are two relation as follow

B D E
1 a α
3 a β

1 a γ

2 b δ
3 b ∈

A B C D
α 1 α a
β 2 γ a
γ 4 β b

α 1 γ a
δ 2 β b

 Relation r relation s

r s:

A B C D E
α 1 α a α

1 α a γ α
1 γ a α α
1 γ a γ α

δ δ β b 2

Example 2: Find the names of all customer who have a loan at the bank

 ∏ customer_name(borrower loan)

Same query is express by fundamental operation as follow

∏customer_name(σ borrower.loan_number=loan.loan_number((borrower×loan))

Example 3: Find names of all branches with customer who have account in the bank and
who live in Kathmandu.

 ∏customer_name(σ customer_city=”Kathmandu” customer account depositor))

Example 4: Find all customers who have both loan and account at the bank.

∏ customer_name(borrower depositor)

In the set intersection form this can be express as

∏ customer_name(borrower) ∏ I customer_name(depositor)

Note 1: Let r(R) and s(S) e relations without any attributes in common. That is RI S=Φ
then

r s=r×s

Note 2: Theta Join

The theta join is an extension to the natural join operations that allow us to combine a
selection and a Cartesian product into a single operation with predicate on attributes.

Let relation r® and s(S), and be a predicate on attributes in the schema RU S then theta

join operation r

Θ
Θ s is defined as

3.0 Relational Model

© T. Paneru 12

r Θ s=σ Θ (r×s)

Example: Find all customers who have loan and stay in Kathmandu.

∏ customer_name(borrower customer_city=”Kathmandu” loan)

Division Operation

Let r and s be the relations on schemas R and S respectively where S R (i.e. every
attributes of schema S is also in schema R) then r

⊆
÷ s is a relation on schema (R-S), define

as

r s={t|t∈∏ ÷ R-S(r) ^ u∈s(tu∀ ∈r)}

Example:

A B
α 1
 α 2
α 3
β 1
γ 1
δ 1

δ 3

δ 4 B
∈ 6 1
∈ 1
β

2
2

 Relation r Relation s
r s : ÷

Example 2:

A
α
β

A B C D E
α a α a 1
α a γ a 1
α a γ b 1
β a γ a 1

β a γ b 3
γ a γ a 1
γ a γ b 1
γ a

 Relation r Relation s
Example: Find all customers who have an account at all the branches located in Kathmandu.

β b 1

D E
a 1
b 1

3.0 Relational Model

© T. Paneru 13

We can obtain all branches in Kathmandu by expression
r1=∏branch_name(σ cbranch_city=”Kathmandu”(branch))

We can obtain all (customer_name, branch_name) pair for the customer who have account.

r2=∏customer_name, branch_name(depositor account)

The required customer can obtain from

r2 r1 ÷
That is,

∏customer_name,

branch_name(depositor account)÷ ∏branch_name(σ cbranch_city=”Kathmandu”(branch))

The assignment operations

The assignment operation provides convenient way to express complex query. The
assignment operation denoted by ←, works like assignment in programming language. The
evaluation of an assignment does not result any relation being displayed to the user. But
the result of the expression to the right of the ← is assigned to the relation variable. This
relation variable may used in subsequent expressions. With the assignment expression, a
query can be written as a sequential program consisting a series of assignments followed by
an expression whose value is displayed as the result of the query.

Example: Find all customer who taken loan from bank as well as he/she has bank account.

Temp1←∏customer_name(borrower)

Temp2←∏customer_name(depositor)
result← Temp1 temp2 I

3.2.4 Extended Relational-Algebra operations

Generalized projection, outer join and aggregation function are extension on basic relational
algebra operation.

Generalized Projection

Generalized projection operation allows arithmetic functions in the projection list. The
general structure is
 ∏F1,F2, . .Fn(E)
where E is any relational algebra expression. Each F1,F2, . .Fn are arithmetic expression
involving constraints and attributes in the schema of E.

Example 1:

Suppose a relation
 credit_info(customer_name, credit_limit,credit_balance)

Query: Find how much more each person can spend.
 ∏customer_name, credit_limit - credit_balance(credit_info)

3.0 Relational Model

© T. Paneru 14

The resulting attribute from credit_limit – credit_balance does not have name; its name can
be specify as below
 ∏customer_name, credit_limit - credit_balance as credit_available(credit_info)

Example 2:

Suppose relation
 employee(employee_id,ename,salary)

Find employee and their corresponding bonus, assume that bonus for each employee is
10% of his/her salary.
 ∏ ename,salary*1.10 as bonus(employee)

Aggregate function and operations

Aggregate function takes a collection of values and return as a single value as a result.
Some aggregate functions are

• AVG: average value
• MIN: minimum value
• SUM: sum of values
• Count: number of values

The aggregate operation in relational algebra denoted by the symbol (i.e. is the letter
G in calligraphic font). The general structure is

 G1,G2, . . ,Gn F1(A1),F2(A2), . .,Fn(An)(E)

where E is any relational algebra expression.

• G1,G2, . .,Gn is a list of attributes on which to group (it could be empty)
• Each Fi is aggregate function.
• Each Ai is an attribute name

Example:

A B C
α α 7
α β 7

α β 3

β β 10

 Relation r

sum(C)(r):
Sum-C
27

Example 2: Find the balance to each branch.

 branch_name sum(blance) as sum-blance(account)

Example 3: Find no. of account in each branch

3.0 Relational Model

© T. Paneru 15

 branch_name count(account_number) (account)

Outer join

The outer-join operation is extension to natural join. It has a capability to deal with missing
information. There are three form of outer-join operation

(a) Left outer-join ()
• Takes all tuples in the left relation. If there are any tuples in right relation

that does not match with tuple in left relation, simply pad these right relation
tuples with null.

• Add them to the result of the left outer-join.
(b) Right outer-join()

• Takes all tuples in the right relation. If there are any tuples in the left relation
that does not match with tuple in right relation, simply pad left relation tuples
with null.

• Add them to the result of the left outer-join.
(c) Full outer-join ()

• Pad tuples from the left relation that that did not match any from the right
relation

• Pad tuples from the right relation that that did not match any from the left
relation

• Add them to the result of full outer-join.

Example:

Consider relations

loan_number branch_name amount
L01 B1 500
L02 B2 600
L05 B1 700

 Relation loan

customer_name loan_number
X L01
Y L02
Z L07

 Relation borrower

Natural join (Inner join)

 Loan borrower

loan_number branch_name amount customer_name
L01 B1 500 X
L02 B2 600 Y

3.0 Relational Model

© T. Paneru 16

Left outer-join

 loan borrower

loan_number branch_name amount customer_name
L01 B1 500 X
L02 B2 600 Y
L05 B1 700 null

Right outer-join

 Loan borrower

loan_number branch_name amount customer_name
L01 B1 500 X
L02 B2 600 Y
L07 null null Z

Full outer-join

 Loan borrower

loan_number branch_name amount customer_name
L01 B1 500 X
L02 B2 600 Y
L05 B1 700 null
L07 null null Z

3.2.5 Null Values

Tuples may not have any values for some of the attributes. At that time the attribute is said
to have null value and is denoted by null. It simplifies an unknown value or a value does not
exist. The result of any arithmetic or comparison involving null is null. There are often more
than one possible way of dealing with null values, as a result our definition can sometimes
be arbitrary. Therefore arithmetic operations and comparison on null values should avoid if
possible.

Comparison involving nulls may occur inside Boolean expression: AND, OR and NOT
operations. Boolean operation deal with null value is as follow.

AND: (true and null)=null
 (false and null)=false
 (null and null)=null

OR: (null or true)=true
 (null or false)=null
 (null or null)=null

NOT: (not null)=null

3.0 Relational Model

© T. Paneru 17

How different relation operations deal with null values ?
Select
The select operation evaluates predicate p in σ p(E) on each tuple t in E. If predicate returns
true value then t is added to the result. Otherwise predicate returns null or false and t is not
added to the result.
Join
In natural join, r s, if two tuples tr∈r and ts∈s, both have a null values in common
attributes then tuples do not match.
Projection
The projection treats null just like any other value when eliminating duplicates. If two tuples
in the projection result are exactly the same, and both have nulls in the same fields, they
are treated as duplicated. For example

A B C
α γ null

γ α null

Here, projection assumes these two tuples are duplicates.

This is arbitrary decision since without knowing the actual value, we can not tell two
instances of null are duplicates or not.

Union, intersection and difference
These operation also treats null value as any other values when eliminating duplicates.
These operations treat tuples that have same values on all fields as duplicates even if some
of the fields have null values in both tuples. This decision is arbitrary, especially in the case
of intersection and difference since the actual values (if any) represented by nulls are same.

Generalized projection
It treats null value same as projection.

Outer join
Outer join operation behaves null value just like natural join operation. In outer join, tuples
that do not occur in the natural join result may be added to the result of outer join padded
with nulls.

3.2.6 Modification of the database
Insertion, deletion and updating operations are responsible for database modification.

Deletion
 A delete request is expressed similarity to the query, except instead of displaying tuples,
the selected tuples are removed from the databases. Delete request can delete only whole
tuples, can not delete values on only particular attributes. Deletion is expressed as
 r←r-E
where r is a relation and E is a relational algebra query.

Example 1: Delete all account in the “B1” branch.
 account ←account - σ branch_name=”B1”(account)

Example 2: Delete all records with account in the range of 0 to 5.
 loan←loan - σ amount>0 and amount≤ 50(loan)

insertion

3.0 Relational Model

© T. Paneru 18

to insert data into relation we can either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. In relational-algebra, an insertion is express
by
 r←r∪ E
where r is a relation and E is a relational algebra expression.

Example: insert information in the database specifying customer “X” has 5000 in account
A1 at the kathmandu city.

account←account {(A1,”kathmandu”,5000)} ∪
depositor←depositor {(“x”,A1)} ∪

Updating
Updating allow to change a value in a tuple without changing all values in tuple. In
relational algebra, updating express by
 r←∏ F1,F2, . . ,Fn(r)
where each Fi is either

• ith attributes of r, if the ith attribute is not updated or
• expression involving only constant and attributes of r, if the attribute is to be

updated. It gives the new value for the attribute.

Example 1: increase balance by 5% to all branches.
 account←∏ account_number,branch_name,balance*1.05(account)

Example 2: Increase the balance by 6% for those account which balance is over 5000 and
for the rest of account increase balance by 5%.

account←∏ account_number,branch_name,balance*1.06(σ balance>5000(account))
 ∏ U account_number,branch_name,balance*1.05(σ balance≤5000(account))

3.2.7 Views
For a security reason, it is not desirable for all users to see the entire logical model of
database (i.e. all actual relations stored in database). We may required certain data to be
hidden from users. We may wish to create a personalized collection of relations that is
better matched to certain user’s intuition than whole database. For example, an employee
in advertising department might to see a relation consisting of the customers who have
either an account or loan at the bank and the branches with which they do business. In
relational algebra it is express by

∏ branch_name,customer_name(depositor account) ∏ U

branch_name,customer_name(borrower loan)

Any relation that is not the part of the logical model, but it is made visible to a user as a
virtual relation called a view. There would no. of views for any given set of actual relations.

3.2.8 View Definition
View is defined by using the create view statement. The general structure is

Create view <view name> as <query expression>
where <query expression> is any legal relational-algebra query expression. Once a view is
defined, it can refer by its virtual name, called view name.

Example: Create a view “all-customer” consisting branches and their customers.
 Create view all-customer as

3.0 Relational Model

© T. Paneru 19

 ∏ branch_name,customer_name(depositor account) ∏ U

branch_name,customer_name(borrower loan)

We can query on this view as in other relation. For example,

Query: find all customer of “B1” branch.

 ∏ customer_name(σ branch_name=”B1”(all-customer))

View definition is not same as creating a new relation evaluating the query express. It is
actually substitution to query expression from which it is defined. If the view is stored, it
may become out of date. If the relations used to be define it are modified. To avoid this,
database system stores the definition of view itself, rather than the result of evaluation of
relational-algebra expression that defines the view. Whenever we evaluate the query, the
view relation is recomputed.

Certain database system stores result of evaluation of the relational algebra expression that
defines view. If the actual relation used in the view definition change, the view need to kept
up to date; such view called materialized view. The process of keeping the view up to date
called view maintenance.

3.2.9 Updates through view and null values

Although views are useful tool for queries, it gives serious problem if we allow insertion,
deletion and updates from view. Any modification made by view must be translated to
actual relations in database. It is difficult task. In some case, it is not possible Let us
consider example to illustrate this.
Consider a view loan-branch which is provided to clerk to see all loan data in loan relation,
except loan amount.

Create view loan-branch as
 ∏ loan_number,branch_name(loan)

Assume that clerk try to insert loan information and write
 loan-branch←loan-branch {(L01,”B1”)} U
In fact, this insertion must made to the relation loan. However to insert a tuple into loan,
we must have value for account. To deal with this problem we may choose to options

• Reject insertion and return an error message to the user
• Insert tuple (L01,”B1”,null) into a loan relation.

Let us consider another view to illustrate another problem with modification of the database
through view.
Consider a view loan-info providing loan amount for each loan of customer

Create view loan-info as
 ∏ customer_name,amount(borrower loan)

Assume that following insertion is perform to view

loan-info←loan-info {(“X”,5000)} U

Since view loan-info is created from multiple relation (i.e customer_nae is taken from
borrower, account is taken from loan). So we have to insert tuple (“X”,null) into borrower
and (null,null,5000) into loan. This insertion may leads several complication, loan can be
taken with out loan number so it is impossible to map loan and their corresponding
customer in actual relation.If loan_number is define as primary key in loan relation then
this insertion is not possible. Because of these problems, modification on view is not
permitted generally.

3.0 Relational Model

© T. Paneru 20

3.2.10 Tuple relational calculus
Tuple relational calculus is nonprocedural query language. It describes desired information
without specifying procedure for obtaining that information. The general structure of query
in relational calculus is express as

{t|p(t)}
read as; set of all tuples t such that predicate p is true for t.

General notation

• t is a tuple variables.
• T[A] denotes the value of tuple ton attribute A.
• t∈r denotes the tuple t in relation r.
• p is a formula similar to the predicate calculus. Predicate calculus formula consist

o set of attributes and constant
o set of comparison operator (e.g. <,≤,=,≠,>,≥)
o set of connectives: and (^), or (), not (∨ ¬)
o implication (): X⇒Y (i.e. if X is true, then Y is true) ⇒
o set of quantifiers

 t∈r(Q(t)) : “there exist” a tuple t in relation r such that predicate
Q(t) is true.
∃

 t∈r(Q(t)) : Q is true “for all” tuples t in relation r ∀ ∃
Example queries
1. Find the loan number, branch name and amount for loan of over 5000

{t|t∈loan ^ t[amount]>5000}
2. Find the loan number for each loan of account greater than 1200.

{t| s∈loan(t[loan_number]=s[loan_number]^s[amount]>1200)} ∃
3. Find the names of all customer having a loan, an account or n=both at the bank.
 {t| s∈borrower(t[customer_name]=s[customer_name] ∨ ∃
 ∃ u∈depositor(t[customer_name]=u[customer_name])
4. Find the names of all customers who have a loan and account at the bank.

{t| s∈borrower(t[customer_name]=s[customer_name] ∃ ∧
∃ u∈depositor(t[customer_name]=u[customer_name])

5. Find the names of all customers having a loan at the “B1’ branch.
{t| s∈borrower(t[customer_name]=s[customer_name] ∃

 u∈loan(u[branch_name]=”B1” ∧ ∃ ∧u[loan_number]=s[loan_numnber]))}
6. Find the names of all customers who have a loan at the “B1” branch, bt no. amount at

any branch of the bank.
{t| s∈borrower(t[customer_name]=s[customer_name] ∃
∃ u∈loan(u[branch_name]=”B1” ∧u[loan_number]=s[loan_numnber]

 not v∈depositor(v[customer_name]t[customer])} ∧ ∃
7. Find the names of all customer and their city they stay having a loan from the branch

“b1”
{t| s∈loan(s[branch_name]=”B1” ∃

 u∈borrower(u[loan_number]=s[loan_number]
t[customer_name]=u[customer_name])

∧ ∃
∧

 v∈customer(u[customer_name]=v[customer_name] ∧ ∃
 t[customer_city]=v[customer_city]=v[customer_city])))} ∧

8. Find the names of all customers who have an account at all branch located in
“Kathmandu”.
{t| c∈customer(t[customer_name]=c[customer_name] ∃

 s∈branch(s[branch_city]=”Kathmandu”
u∈account(s[branch_name]=u[branch_name]

∧ ∀ ⇒
∃
 s∈depositor(t[customer_name]=s[customer_name] ∧ ∃
 s[account_number]=u[account_number])))} ∧

4.0 Structure Query Language (SQL)

© T. Paneru 1

4.0 Structure Query Language (SQL)
SQL was developed in 1970’s in an IBM laboratory “San Jose Research Laboratory”
(now the Amaden Research center). SQL is derived from the SEQUEL one of the
database language popular during 1970’s. SQL established itself as the standard
relational database language. Two standard organization (ANSI) and International
standards organization (ISO) currently promote SQL standards to industry.
In 1986 ANSI & ISO published an SQL standard called SQL-86. In 1987, IBM
published its own corporate SQL standard, the system application Architecture
Database Interface (SAA-SQL). In 1989, ANSI published extended standard for SQL
called, SQL-89. The next version was SQL-92, and the recent version is SQL: 1999.

4.1 Basic Term and Terminology
Query: is a statement requesting the retrieval of information.
Query language: language through which user request information from database.
These languages are generally higher level language than programming language.

 The two types of query language are:

(i) Procedural language

• User instructs the system to perform sequence of operation on the
database to compete the desired result. Example : relational algebra

 ii) Non- procedural language

• User describes the desired information without giving a specific procedure
for obtaining that desired information.

• Examples: tuple relational calculus and domain relational calculus.

4.2 Database Languages
Two types of database language
1. Data Definition Language (DDL)
2. Data Manipulation Language (DML)

Data Definition Language

• Specifies the database schema.
• For e.g.: The following statement in SQL defines relation named `student’.

CREATE TABLE student
(
 student_id VARCHAR2(3),
 address VARCHAR(30)
);

The execution of this DDL statement creates the `student’ table. It also updates a
special set of tables called data dictionary or data directory. A data dictionary
contains metadata, that is data about data. The schema of table is an example of
metadata. A database system consults data dictionary or data directory.

Through the set of special type of DDL, called data storage definition language, we
may specify the storage structure (like size of database, size of table etc) and access
methods.

4.0 Structure Query Language (SQL)

© T. Paneru 2

The DDL allow to enforce constrains in the database. For example: student_id
should begin with `S’, address could not be null etc.

CREATE TABLE STUDENT
(
 student_id VARCHAR2 (3),
 address VARCHAR2 NOT NULL,
 CONSTRAINT ch_student_id CHECK (student_id LIKE `S%’)
);

 The database systems check these constraints every time the database is updated.

Data Manipulation Language:
• A data manipulation language is a language that enables users to access or

manipulate the data in database. The data manipulation means :
o Retrieval of information stored in database.
o The insertion of new information into database.
o Deletion of information from database.
o Modification of data in database.

Two types of data manipulation languages are:
• Procedural DML: User need to specify what data are needed to retrieve (modify)

and how to retrieve those data.
• Non Procedural (Declarative DML) : User requires to specify what data are

needed to retrieve without specifying how to get (retrieve) those data.
o Non procedural DML are easier to understand and use than procedural

DML, since user does not have to specify now to get data from database.
o The DML component of SQL is non procedural language.

Example: Consider a simple relational database.

The customer table The account table

 The depositor table

4.0 Structure Query Language (SQL)

© T. Paneru 3

 Some queries and their equivalent SQL statement

Query: Find the name of customer whose customer_id C001.

 SELECT customer. customer_name FROM customer
 WHERE customer.customer_id = ` C001’;
 OR
SELECT customer_name FROM customer
 WHERE customer_id = ` C001’;

Note: We don’t need to specify the table name while referencing column_name if we
are taking column from only one table.

Query: Find the name and balance of the customer.

SELECT customer.customer_name,account.balance
 FROM customer,account.balance
 WHERE customer.customer_id= depositor.customer_id
 AND depositor.acount_no = account.account_no;

Problem : Insert record to customer table.
 customer_id : C005
 customer_name : MICHAEL
 address : KATHMANDU

INSERT INTO customer (customer_id, customer_name, address)
 VALUES (`C005’ , `MICHAEL’ , `KATHMANDU’) ;

OR
INSERT INTO Customer values (`C005’ , `MICHAEL’ , `KATHMANDU’);

Note: Column name need not to specify if we are going to insert values for all
columns of table.

Query: Delete record from depositor whose customer_id is `C004’.
:
 DELETE FROM depositor WHERE Customer_id = `C004’;

What happen if we execute DELETE statement as below?

DELETE FROM depositor;

• Deletes all records from the table `depositor’

Problem: If you attempt to delete all records of customer from customer
table, what happen ?

• You cannot delete all records, only when “account” and “deposit” tables are
empty or only when these table contains records that are not related to the
customer.

Query: Increase the balance by 5% in account table whose account no is
`A101’ or current balance is only 200.

 UPDATE account
 SET balance = balance + (balance + 0.05)
 WHERE account_no = `A1001’ OR balance = 200;

4.0 Structure Query Language (SQL)

© T. Paneru 4

Note:
 Sometimes database languages are also categorized with Data Control
Language.
 That is

1. Data Definition Language (DDL)
2. Data Control Language (DCL)
3. Data Manipulation (DML)

 Data Control language is a language that controls the behavior of database.

 In SQL, COMMIT, ROLLBACK, commands go under Data Control Language.

• COMMIT: Saves the changes made to database.
• ROLLBACK: Undo changes to database from the current state database to last

commit state.

Question: Why we need query language, even we have formal languages?
 (formal languages, relational algebra, relational calculus)

• The formal languages provides concise notation for representing query.
But commercial database system requires more user friendly query
language. This is a main reason for why we need query languages, even
we have formal languages.

• The formal languages form the basis for data manipulation language of
DBMS only but DBMS/commercial DBMS also supports data definition
capabilities as well as data manipulation capabilities.

• SQL is a most popular and powerful query language. It can do much more
than just query database. It ca define structure of data, modify data in
database and allow to specify security constraints.

• SQL is a truly non procedural language. It has all features of relational
algebra, relational calculus as well as its own powerful features.

4.3 Different parts of SQL Language

1. Data Definition Language (DDL):

SQL DDL provides commands for defining relation schemas, deleting schema,
deleting relations and modifying relational schemas.

Example:
 CREATE, ALTER, DROP

CREATE TABLE dept
(
 dept no NUMBER(2) PRIMARY KEY,
 dname VARCHAR2(20) NOT NULL
);

CREATE TABLE emp
(
 empno NUMBER(5) PRIMARY KEY,
 deptno NUMBER(3),
 ename VARCHAR2(10) NOT NULL,
 sal NUMBER(5) NOT NULL,
 CONSTRAINT fk_emp_dept FOREIGN KEY(deptno) REFERENCES dept

4.0 Structure Query Language (SQL)

© T. Paneru 5

);

ALTER TABLE dept ADD (loc VARCHAR2(10));
ALTER TABLE emp MODIFY (empno NUMBER(10));
ALTER TABLE emp ADD UNIQUE (ename);
DROP TABLE emp;
DROP constraint fk_emp_dept;

2. Data Manipulation Language (DML):

The SQL DML includes query language based on relational algebra and relational
calculus. It includes commands for insert tuples, delete tuples and modify tuples in
database.

Example: INSERT, DELETE, UPDATE, SELECT etc. statements.

3. View Definition:
The SQL DDL includes for defining views e.g.
 Syntax:

 CREATE VIEW <view name> AS
 (<query expression>);

4. Transaction Control: (Data Control Language):
SQL includes commands for specifying integrity constraints that the data stored in
database must satisfy.

5. Embedded SQL and dynamic SQL:
Embedded SQL & dynamic SQL dynamic SQL is that SQL with general purpose
programming language; such as C, C++, JAVA, COBAL, PASCAL, FORTRAN.

6. Integrity:
SQL DDL includes commands for specifying integrity constraints that the data stored
in database must satisfy.

7. Authorization:
SQL DDL commands used for specifying access right to relation relations and views.

4.4 General overview of SQL:
Though SQL user / programmer / DBA can perform the following task:

• Create database.
• Modify a database structure.
• Add user permissions to database or tables.
• Changes system security.
• Query a database for a retrieval of information.
• Updates the contents of information.

Note: Commands in SQL are not necessarily a question, request to the database. It
could be a command to do one of the following.

• Build or delete a table.
• Insert, Modify or delete rows or fields.
• Search several tables for specific information and returns the result in specific

order.
• Modify security information.

4.0 Structure Query Language (SQL)

© T. Paneru 6

Note: Commands in SQL are not case-sensitive. But generally conversation is write
a keywords as a capital and other should be in small letter.

Data Manipulation Language in SQL:

SQL provides the following basic data manipulation statements: SELECT, UPDATE,
DELETE and INSERT.
The select statements:
- The SELECT statement is most commonly used SQL statement. It is only a data

retrieval statement in SQL.
- The basic syntax for select statement is

 SELECT [DISTINCT / ALL] <attributes> 1
 FROM <relations> 2
 [WHERE <predicate>] 3

1. <attribute> -> columns name
2. <relations> -> tables name
3. <predicated> -> conditions

• SELECT, FROM are necessary clause.
• WHERE is optional clause.
• DISTINCT / ALL are optional clause.
• SELECT clause used to list the attributes that required in the result in query.
• FROM clause list the relation/s from where specified attributes are to be selected.
• WHERE clause are used to specify the condition/s while we require retrieving

particular data. One or more condition can be specified using where clause by
using SQL logical connectives can be any comparison operators <, <=, >, >=, =
and < >. SQL also includes BETWEEN comparisons.

• DISTINCT key word is used to eliminate duplicate value.
• ALL key word is used to explicitly allow duplicates.

Example: Assumed simple relational database is as follows.

The customer table The account table The depositor table

a. Find all customer names.
 SELECT customer_name FROM customer;

b. Find the different customer address (location).
SELECT DISTINCT customer_address FROM customer;

c. Find all address of customer.
SELECT ALL customer_address FROM customer;

d. Find customer_id and its corresponding customer name.
SELECT customer_id, customer_name FROM customer;

4.0 Structure Query Language (SQL)

© T. Paneru 7

e. Find customer detail.
SELECT *FROM customer (* indicates all attributes)

f. List name and address of customer who stay in “KATHMANDU”.
SELECT customer_name, customer_address, FROM customer
 WHERE customer_address = “KATHMANDU”;

g. List all customer whose name should be “smith” and address should be
“Kathmandu”.
SELECT customer_name FROM customer
 WHERE customer_name = ‘smith’
 OR customer_ address = ‘Kathmandu’

h. What would be the output if statement like
SELECT customer_name FROM customer
 WHERE customer_name FROM customer
 OR customer_ address = ‘Kathmandu’

i. List account no, balance whose balance is between 200 to 700.
 SELECT account_no, balance FROM account
 WHERE balance BETWEEN 200 AND 700;

j. What happen if we execute the statement?
 SELECT account_no, balance FROM account
 WHERE balance NOT BETWEEN 200 AND 700;

k. Write SQL statement for (i) using only AND logical connectives and
comparison operatives.
 SELECT account_no, balance FROM account
 WHERE balance <= 700 AND balance >= 200;

Note: We can retrieve the information from multiple tables; there should be a
common attribute between two tables. i.e., table should be related and we require to
join condition.

l. List the customer_id, account_id and balance whose balance is more than
300.

SELECT depositor. customer_id, depositor. account_no, account. balance
 FROM depositor, account
 WHERE depositor.account_no = account.account_no
 AND account.balance > 300;

m. List all customers and corresponding balance.

SELECT c.customer_name, a.balance
 FROM customer c, account a, depositor d
 WHERE d.account_no =a.account_no
 AND d.customer_id =c.customer_id;

Renaming attribute and relations:
• In previous example relations customer, account, depositor are renamed

respectively c, a and d.

4.0 Structure Query Language (SQL)

© T. Paneru 8

• We can also rename attributes, it is required when we are taking attribute from
multiple column or we need arithmetic operations in the statement or when we
need to give appropriate name for (column name) attribute name.

• To rename attribute SQL provides as clause or we can simply rename attribute
or relation without as clause.

Examples:

a. SELECT account_no as account number FROM account;
 OR
SELECT account_no “Account number” FROM account;

b. SELECT account_no, balance, balance+ (balance*0.05) as Account

Number, Balance,
 Increase salary FROM account;

 OR
 SELECT account_no “Account number”, balance “Balance:,
 Balance+(balance*0.05) “Increased salary” FROM account;

c. SELECT c. customer_name, a. balance
 FROM customer c, account a, depositor d
 WHERE d. account_no = a. account_no

 AND d.customer_id = c.customer_id;
 OR
 SELECT c. customer_name, a. balance
 FROM customer as c, account as a, depositor as d
 WHERE d.account_no = a.account_no
 AND d.customer_id = c.customer_id;

String operations:
String pattern matching operation on SQL can be performed by `like’ operator and
we can describe the patterns by two spherical character.

1. Percent (%) : matches any substrings.
2. underscore (_): matches any characters.

Example:
 `I%’ matches any string beginning with I.
 IVAN -> valid / match.
 INDIA -> valid / match
 NEPALI -> invalid / does not match.

` % VAN% match any string containing `VAN’ as substring.
IVAN, Mr IVAN, DEVAN, DEVANGAR are all valid.
`---‘ matches any strings of exactly three character.
`---%’ matches any string of atleast three character.

Moreover,

Like `ab\%cd%’ matches all string beginning with “ab%cd”.
Like `ab\\cd%’ matches all string beginning with “ab\cd”.

Problems:

4.0 Structure Query Language (SQL)

© T. Paneru 9

List those customers whose name begin with character `S’

SELECT customer_name FROM customer.
 WHERE customer_name LIKE `S%’;
Note:

customer_name like `S%H’

• List all customer name whose name begin with `S’ and end with `H’
customer_name like`----‘%N’

• List all customer name whose name must contain at least five
character and end with character `N’

Ascending and descending records in SQL:

• ORDER BY clause used for ascending or descending records(or list
items).

• To specify sort order we may specify desc for descending order or asc
ascending orders. By default order by clause list item in ascending
order.

• Moreover, ordering can be performed on multiple attributes.

Example: 1

SELECT distinct customer_name FROM customer ORDER BY customer_name;

• Lists name of customer in alphabetic order by customer name.

Example: 2

SELECT DISTINCT customer_name FROM customer ORDER BY customer_name
DESC;

• Lists name of customer in descending alphabetic order.

Note: select from customer order by 2;

Here 2 indicates second column in table “customer”. This SQL statement is
equivalent to first example’s SQL statement.

Example: 3
Suppose want list account information in descending order by balance but if say
some balance are same and in such case if we want to order account information by
order_no in ascending order then we have order record by performing ordering on
multiple attributes. The SQL statement likes,
 SELECT *FROM account
 ORDER BY balance DESC, account ASC;

Set operation

• basic set operation are union(u), intersection(n) and difference(_). These
operation also can be performed by using union, intersection and minus
(except) clause respectively.

4.0 Structure Query Language (SQL)

© T. Paneru 10

The union operation
• the union operation can be perform by using union clause.

 Example: consider two reactions

 The table client The table supplier
List the id and name of the client and supplier who stay in city ‘Kathmandu’.

Select supplier_id “ID”, name “Name” from supplier
 where city = ‘Kathmandu’
UNION
SELECT client_id “ID”, name “Name” from client
 where city = ‘Kathmandu’

- Proceed as follow:

Output from 1st SQL statement

ID Name
S001 Ashok
S002 Manoj

Output from 2nd SQL statement

ID Name
C001 Ammit
C002 Ammit

Hence, the resulting output is

ID Name
C001 Ammit
C002 Ammit
C003 Ashok
C004 Manoj

Note: if we retrieve only one column say name without duplicate name then

corresponding statement like
 Select name from supplier where city = ‘Kathmandu’
 UNION
 Select name from client where city = ‘Kathmandu’;

o this is unlike select clause, union operation automatically eliminates

duplicates. If we want to retain all duplicates, we must replace union
all.

4.0 Structure Query Language (SQL)

© T. Paneru 11

Example:
 select name from supplier where city = ‘Kathmandu’.

The output would be
 Name

Ammit
Ammit
Ashok
Manoj

The intersection operation
- the intersection operation can be performed by using INTERSECT clause
- consider relation as follow:

 SALESMAN

salesman_id name city
S001 Manish Kathmandu
S002 Manoj Lalitpur
S003 Ammit Bhaktapur
S004 Rabin Kathmandu

order_no Order_date salesman_id
0001 10-JAN-98 S001
0002 12-FEB-98 S002
0003 13-FEB-98 S001
0004 18-MAR-98 S001
0005 19-MAR-98 S002

 The salesman table The
sales_order table

Retrieve salesman name who stay in Kathmandu and who must sales at least order.
 SELECT salesman_id, name

salesman_id name
S001 Manish
S004 Rabin

 from salesman
 where city = ‘Kathmandu’

 INTERSECT

salesman_id name
S001 Manish
S002 Manoj
S001 Manish
S002 Manoj

 SELECT salesman. salesman_id
 from salesman, sales_order
 Where salesman_id =
sales_order. salesman_id;

The resulting output is

salesman_id name
S001 Manish

• The INTERSECT operation also automatically eliminates duplicates. So, here

only one record is delayed in output. If we want to retain all duplicates we
must replace INTERSECT by INTERSECT ALL.

 SELECT salesman_id, name from SELECT salesman
 where city = ‘Kathmandu’
 INTERSECT ALL
 SELECT salesman. salesman_id, salesman name
 from salesman, sales_order
 WHERE salesman. salesman_id = sales_order salesman_id;

4.0 Structure Query Language (SQL)

© T. Paneru 12

The difference operation

The difference operation can be perform in SQL by using except or minus clause.

 Example: in previous example, find the salesman_id, name who stay in Kathmandu
but they do not sales any order.

 SELECT salesman_id, name from salesman
 where city = ‘Kathmandu’
 EXCEPT
 SELECT salesman. salesman_id, salesman name
 from salesman, sales_order
 Where salesman. salesman_id = sales_order. salesman_id;
 OR
 SELECT salesman_id, name from salesman
 where city = ‘Kathmandu’
 MINUS
 SELECT salesman. salesman_id, salesman name
 FROM salesman, sales_order
 Where salesman salesman_id = sales_order salesman_id;

 The output is

salesman_id name
S004 Rabin

NOTE: Except operation also automatically eliminates duplicates so it want to return
all duplicates, we must write EXCEPT ALL instead of EXCEPT.

Problem: consider a relation schema as follow

branch(#branch_name, branch_city, assets)
account(#account_number, branch_name, balance)
customer(#customer_name, customer_street, customer_city)
depositor(customer_name, account_number)
loan(#loan_number, branch_name, amount)
brrower(customer_name, loan_number)

 1. Find all customer who have a loan, account or both at the bank .
 SELECT customer nameFrom depositor
 UNION
 SELECT customer name From borrower;

2. Find all customers who have both loan and account at the bank.
 SELECT DISTINCT customer name from depositor
 INTERSECT
 SELECT DISTINCT customer name from borrower;

3. Find all customers who have account but no loan at the bank.

 SELECT DISTINCT customer name from depositor
 EXCEPT
 SELECT customer name from borrower;

4.0 Structure Query Language (SQL)

© T. Paneru 13

Aggregate Function

Aggregate functions are those functions that take a set of values as input and return
a single value. SQL consist many built in aggregate function. Some are:

 1. AVERGE: AVG
 2. MAXIMUM: MAX
 3. MINIMUM: MIN
 4. TOTAL: SUM
 5. COUNT: COUNT

The input to AVG and SUM must be a set of numbers and other aggregate function
can be operate by non numeric data types, it may be strings, not necessary
numbers.

AVG:

 Syntax: AVG (<DISTINCT\ALL>; n)

• returns average of n, ignoring null values.

Example: find the average balance in Kathmandu branch.
 SELECT AVG (balance) From account
 WHERE branch_name = ‘KATHMANDU’;

There would be a situation that we may have to use aggregate function not only a
single set of tuples we may have to use with group of set of tuples, we can specify
this by using GROUP BY clause in SQL. That is, group by clause specifies group rows
based on distinct values that exist in specified column when we use GROUP BY
clause we can not use WHERE clause to specify condition, we must have to use
HAVING clause to specify the condition. That is, GROUP BY and HAVING clause. But
GROUP BY or HAVING clause act on record sets rather than individual records.

Example: find the average account balance at each branch
 SELECT branch_name , avg (balance)
 FROM account
 GROUP BY branch_name;

MIN:
 Syntax: MIN (<DISTINCT\ALL>; n)

• returns minimum value of n.

Example: find the minimum balance of each branch.
 SELECT branch_name, min (balance) “Minimum Balance”
 FROM account
 GROUP BY branch_name;

MAX:
 Syntax: MAX (<DISTINCT ALL>; n)

• returns maximum value of n

Example: find the maximum balance in each branch.
 SELECT branch_name, max (balance) “Maximum Balance”
 FROM account

4.0 Structure Query Language (SQL)

© T. Paneru 14

 GROUP BY branch_name;

COUNT:
 Syntax: COUNT (<DISTINCT ALL>; n)

• returns numbers of rows where n is not null.

NOTE: COUNT (*)

• returns numbers of rows in the table, including duplicates and those with
nulls.

Example: find the numbers of depositor for each branch.

NOTE: each depositor may have numbers of account so we must count depositor
only once thus we write query as below:

SELECT branch_name, count (DISTINCT Customer_name)
 From depositor, account
 WHERE depositor account number = account. Account_number
 GROUP BY branch_name;

NOTE: if we need to specify the condition (predicates) after GROUP BY clause, we
need having clause.

PROBLEM: find only those branches where the average account balance is more
than 1200.
 SELECT branch_name, AVG (balance) FROM account
 GROUP BY branch_name having AVG (balance) > 1200;

PROBLEM: find the no. of customer in customer table.
 SELECT COUNT (*) FROM Customer;

NOTE: If a WHERE clause and HAVING clause both appears in the same query, SQL
executes predicate in the WHERE clause first and if it satisfied the only it executes
predicate of GROUP BY clause.

PROBLEM: Find the average balance for each customer who lives in KATHMANDU
and has at least three accounts.

 SELECT depositor customer_name, AVG (balance)
 FROM depositor, account , customer
 WHERE depositor account_number = account account_number
 Depositor customer_name = customer customer_name
 Customer_city = ‘KATHMANDU’
 GROUP BY depositor, customer_name
 HAVING COUNT (DISTINCT depositor account_number) > = 3;

 SUM
 Syntax: SUM ([DICTINCT/ ALL] n)

• return sum of value of n

 Example: find total loan amount for each branch
 SELECT branch_name, SUM (amount)
 FROM loan
 GROUP BY branch_name;

4.0 Structure Query Language (SQL)

© T. Paneru 15

NULL VALUES

• In SQL, NULL values all to indicate absence of information for the value of
attribute.

• SQL provides special key word NULL in a predicate to test for NULL values.
Not NULL in predicate use to test absence of NULL values.

Example: find the balance of each branch whose balance is not empty.

 SELECT branch_name, balance
 FROM account
 WHERE balance is NOT NULL;

Example: List the account number, branch name and balance whose balance is
empty.

 SELECT *FROM account
 WHERE balance is NULL;

• The feature of SQL that handles NULL values has important application but
some time it gives unpredictable result. For example, an arithmetic
expression involving (+. _ , * or /), if any of the input values is NULL value
(except IS NULL Q IS NOT NULL).

• If NULL values exist in the processing of aggregate operation, it makes
process complicated.

 Example: SELECT AVG (amount) FROM loan;
• This query calculates the average loan amount that is not empty so if there

exist empty amount then calculated average amount is not valid. Except
COUNT(*) function all aggregate function ignores NULL values in input.

• The COUNT () function return if count value is empty and all other aggregate
function returns NULL if it found empty value.

Example: consider a table ‘emp’ as below:

Empno Sal Comm
10 100
20 200 50
30 300 20

Suppose the SQL statement are as below
a. SELECT COUNT (*) FROM emp;

returns count is equal to 3
 That is count(*)

 3

b. SELECT COUNT (comm.) FROM emp WHERE empno = 10;
returns count(comm.)

 0
c. SELECT SUM(COMM) FROM emp WHERE empno = 10;

return sum(comm.)

 (nothing)

4.0 Structure Query Language (SQL)

© T. Paneru 16

d. SELECT SAL+COMM FROM emp WHERE empno = 10;
return sal+comm.

 (nothing)

• here the result is unpredictable. In this case result should be 100. To handle such
unpredictable situation SQL provides NVL () function

 Example: SELECT sal+nvl(comm,0)/100

• nvl function returns 0 when comm is found empty. If user do not specify the
value for any column (attribute) SQL place null values in these columns. The null
value is different from zero. That is null value is not equivalent to value zero.

• A NULL value will evaluate to NULL in any expression.
 Example: NULL multiply by 10 is NULL.
• If the column has a NULL value, SQL ignores the unique Foreign key, check

constraints that are attached to the column.
• If any field define as NOT NULL, it does not allow to ignore this field, user must

insert value, that is NOT NULL is itself a constraint while it specify in table.

Nested Subqueries

• SQL provides sub_query facility. A sub_query is a SQL statement that
appears inside another SQL statement. It is also called nested sub_queries or
simply nested query.

• Sub_query use to perform tests for set membership, make set comparisons
and determine set cardinality.

• Sub_query can be used with SELECT, INSERT, UPDATE and DELETE
statement.

Example: find all branch name where depositor account number is ‘A005’ .
 SELECT branch name FROM account
 WHERE account account_number = (SELECT account_number FROM
depositor
 WHERE account number
= ‘A005’);
• When sub_query return more than one values the we required to test whether

value written by first query is match/exist or not within values return by
sub_query.

• IN and NOT IN connectives are useful to test in such condition. That is IN
connectives use to test for set membership and NOT IN connectives use to test
for absence of set membership.

Example: find those customers who are borrowers from the bank and who are also
account holder.
 SELECT DICTINCT customer_name FROM borrower
 WHERE customer_name IN (SELECT customer_name FROM
depositor);

Example: find all customer who do have loan at the bank but do not have an amount
at the bank.
 SELECT DISTINCT customer_name FROM borrower
 WHERE customer_name NOT IN (SELECT customer_name FROM
depositor);

4.0 Structure Query Language (SQL)

© T. Paneru 17

Example: list the name of customers who have a loan at the bank and whose name
neither SMITH nor JONE
 SELECT DISTINCT Customer_name FROM borrower
 WHERE customer_name NOT IN (‘SMITH’, ‘JONE’);

Example: find all customers who have both an account and loan at Kathmandu
branch.
 SELECT DISTINCT Customer_name FROM borrower, loan
 WHERE borrower loan number = loan loan_number and
branch_name = ‘KATHMANDU’
 AND (branch_name, customer_name) IN (SELECT
branch_name, customer_name
 FROM depositor account
 WHERE depositor account_number = account
account_name);
SET COMPARISION
 Nested sub_query have an ability to compare set.

Example: Find the names of all branches that have assets greater than those of at
least one branch located
 in ‘Kathmandu’.

The simple SQL statement is
 SELECT DISTINCT B1 branch_name FROM branch B1. branch B2
 WHERE B1 assets>B2 assets
 AND B2.branch_city = ‘Kathmandu’.

The same query can be written by using subquery as
 SELECT branch_name FROM branch
 WHERE assets > some (select assets FROM branch
 WHERE branch_city = ‘Kathmandu’);

- here, >some comparison in the where clause of the outer value return by

sub_query.
- SQL also allow <some, >=some, =some and < > some comparison
- Not that = some is identical to IN. but < > some is not same as NOT IN.

Example: Find the names of all branches that have an assets value greater than that
of each branch in ‘KATHMANDU’.

NOTE: The construct > all corresponds to the phase ‘greater than all’

SELECT branch_name FROM branch
 WHERE assets > all (SELECT assets FROM branch
 WHERE branch city = ‘KATHMANDU’)

NOTE: SQL also allow <all, <=all, >=all, =all and < >all comparison.

Example: find the branch that has the highest average balance.

NOTE that we can not use MAX {AVG (balance)}, since aggregate function can not
be composed in SQL. So we first need to find all average balances and need to nest

4.0 Structure Query Language (SQL)

© T. Paneru 18

it as subquery of another query that finds those branches for which average balance
is greater than or equal to all average balances.
 SELECT branch_name FROM account
 GROUP BY branch_name
 HAVING AVG (balance) >=all (SELECT AVG (balance) FROM account
 GROUP BY
branch_name);

TEST EMPTY RELATIONHIP
SQL has a feature for testing whether a subquery return any value or not. The exists
construct returns true if subquery returns values.

Example: find all customers who have both an account and loan at the bank.

 SELECT customer_name FROM borrower

 WHERE exists (SELECT *FROM depositor
 WHERE depositor customer_name = borrower
customer_name);

We can test non existence of values (tuples) in sub_query by using not exists
construct.

Example: find all customers who have an account at all branches located in
‘KATHMANDU’.

 SELECT DISTINCT d1.customer_name
 FROM depositor as d1
 WHERE not exists {(SELECT branch_name FROM branch
 WHERE branch_city = ‘KATHMANDU’)
 Except
 (SELECT d2. branch_name FROM depositor as d2, account as a
 WHERE d2. Account–no. = a. Account_no.
 AND d1. Customer_name = d2.
Customer_name)};

Test for the absence of Duplicate Tuples

SQL has a feature for testing whether the subquery has any duplicate Tuples in its
results.
The UNIQUE construct true if a subquery contains no duplicate Tuples.

Example: find all customers who have at most one account at the KATHMANDU
branch.

SELECT d.customer_name FROM depositor d1
 WHERE UNIQUE (SELECT d2. customer_name FROM account depositor d2
 WHERE d1. customer_name = d2. customer_name
 AND d2. account_no. = account. Account_no.
 AND account. Branch_name = ‘KATHMANDU’);

NOTE: using NOT UNIQUE construct, we can test the existence of duplicate tuples.

Example: find all customers who have at least two account at the KATHMANDU
branch.

4.0 Structure Query Language (SQL)

© T. Paneru 19

 SELECT DISTINCT d1.customer_name FROM depositor as d1
 WHERE UNIQUE (SELECT d2. customer_name FROM account depositor d2
 WHERE d1. customer_name = d2. customer_name
 AND d2. account_no. = account. Account_no.
 AND account. Branch_name = ‘KATHMANDU’);
 Complex Queries
There are several way of composing query: derived relation and the with clause are
ways of composing complex queries.

 Derived Relation
- SQL have a feature that it allow sub_query expression to used in the FROM

clause.
- If we use such expression then we must give result relation name and we can

remove the attributes.

Example: find the average account of those branches where the average account
balance is greater than 1200.
 SELECT branch_name, avg_balance
 FROM {SELECT branch_name, avg (balance) FROM account GROUP BY
branch_name}
 AS branch_avg (branch_name, avg_balance)
 WHERE avg_balance > 1200;
The with clause

- The with clause introduced in SQL: 1999 and is currently supported by only
some database.

- The with clause makes query logic clear.

Example: find all branches where the total account deposit is less than the average
deposits at all branches.
 WITH branch_total (branch_name, value) as
 SELECT branch_name, SUM (balance) FROM account
 GROUP BY branch_name
 WITH branch_total_avg (value) as
 SELECT avg (value) FROM branch_total
 SELECT branch_name FROM branch_total, brnch_total_avg
 WHERE branch_total.value >= branch_total_avg.value;

UPDATE STATEMENT

- The UPDATE statement is used to modify one or more records in specified

relation. The records to be modify are specified by a predicate in the WHERE
clause and new value of the column (s) to be modified is specified by a SET
clause.

The syntax is
 UPDATE <relation>
 SET <attribute with new value>
 [WHERE <predicate>];

Example: increase the balance of all branches by 5%
 UPDATE account

4.0 Structure Query Language (SQL)

© T. Paneru 20

 SET balance = balance * 1.05;
 OR
 UPDATE account
 SET balance = (balance) + (balance * 0.05);

Example: increase balance of those branches whose current balance is less than or
equal to 1000 by 5%
 UPDATE account
 SET balance = balance * 1.05
 WHERE balance <= 1000;

 Example: decrease the balance by 5% on accounts whose balance is greater than
average.
 UPDATE account
 SET balance = balance_ (balance * 0.05)
 WHERE balance > {SELECT average (balance) FROM account};

 NOTE: SQL provides case construct, which can be perform multiple updates with a
single UPDATE statements
 The syntax is:

 Case
 When predicate 1 then result 1
 When predicate 2 then result 2
 When predicate n then result n
 Else result
 END

Example: UPDATE account
 SET balance = case
 When balance <= 1000then balance *1.05
 else balance *1.06
 end;

 DELETE STATEMENT

The DELETE statement use to delete one or more records from relations. The records
to be deleted are specified by the predicate in the WHERE clause.

The Syntax is:
 DELETE <relation> [WHERE <Predicate>]

Note: Delete statement can operate only one relation. It can not delete records of
multiple relation.

Example: Delete all records from loan relation.
 DELETE FROM loan;

Example: Delete all records from account relation whose branch is located in
Kathmandu.
 DELETE FROM account
 WHERE branch_name = ‘KATHMANDU;

4.0 Structure Query Language (SQL)

© T. Paneru 21

Example: Delete all loan with loan amount between 1000 and11500;
DELETE FROM account
WHERE branch_name IN (SELECT branch_name FROM branch)
 WHERE branch_city = ‘KATHMANDU’);

Example: Delete all records of account with balance below the average
 DELETE FROM account
 WHERE balance <(SELECT avg (balance) FROM account);

INSERT STATEMENT
 The

INSERT INTO <relation>

 INSERT statement used to insert a new records into a specified relation
 Syntax:

 VALUES (<values list>)

 Another form:
 INSERT INTO <relation> (<target columns>)
 VALUES (<values list>)

 The attributes values that are going to insert must be match order by corresponding
attributes and also must be matched data type of value and corresponding attribute
data type.

Example: insert one record in account relation.
 INSERT INTO account
 VALUES (‘A_0009’, ‘LALITPUR’, 1500);
 OR
 INSERT INTO account (account_no., branch_name, balance)
 VALUES (‘A_0009’, ‘LALITPUR’, 1500);

we can also insert records on the basis of query

Example: INSERT INTO account
 SELECT loan_number = ‘KATHMANDU’;
 It inserts the records in account relation taking account_number, brancg_name
from loan relation whose branch is located in Kathmandu and for all records balance
is constant 500.

Example: INSERT INTO depositor
 SELECT customer_name, loan_number FROM borrower, loan
 WHERE borrower . loan_number = loan . loan_number
 AND branch_name = ‘KATHMANDU’;

Insert Tuple (customer_name, loan_number) into the depositor relation for each
customer who has a loan in Kathmandu branch with loan number.

Example: INSERT INTO account
 SELECT *FROM account;
 Insert infinite number of Tuples.

Joined Relations
- one of the most powerful feature of SQL is its capability to gather and

manipulate data from several relations.

4.0 Structure Query Language (SQL)

© T. Paneru 22

- If SQL does not provides this feature we must have to store all the data
elements in a single relations for each application. We have to store same data
in several relations.

- The join statements of SQL enables to design smaller, more specific relations
that are easier to maintain than larger relations.

- There are several methods for joining relations. Some methods are not useful for
application and some are very useful.

1. Cross Join
 Joins two or more tables without relation between them or without condition
in the where clause. The results is the Cartesian product of two or more table’s
attributes
 Examples: consider two relations

Table 1:
 row remarks Table 2: row remarks

 1. Table 1 1. Table 2
 2. Table 1 2. Table 2

The cross join statement is
 SELECT *FROM Table 1,Table 2;

 Output is:
 row remarks row remarks
 1 Table 1 1 Table 2
 1 Table 1 2 Table 2
 2 Table 1 1 Table 2
 2 Table 1 2 Table 2

- cross join is normally not useful but it illustrates the basic combining property of

all join types.

 Equi Join (natural inner join)
Equi joins methods joins relations based on the equality. It has very important
application in commercial database application.

Example: consider
 Relation : dept

#empno E name job sal comm Dept. no
E001 SMITH Manager 7000 500 10
E002 JONE Engineer 6000 3000 20
E003 MICLE Engineer 5000 2000 20
E004 JACK Accountant 3000 500 40

relation: emp

#dept. no Depo. name Loc
10 Management Kathmandu
20 Technical Kathmandu
30 Marketing Bhaktapur
40 Account Lalitpur

Example: list all employee name, department name and salary

4.0 Structure Query Language (SQL)

© T. Paneru 23

 SELECT e. ename, d. dname FROM emp e, dept d
 WHERE e. deptno = d. deptno;
 Output:
 ename Dname

SMITH MANAGEMENT
JONE TECHNICAL
MICLE TECHNICAL
JACK ACCOUNT

We can further qualify this query by adding more condition on where clause.

Example: SELECT e.ename, d.dname
 FROM emp e , dept d
 WHERE e.deptno = d.deptno
 AND e.sal >5000 ORDER By e.ename;

Example: consider relations

Loan_number Depo. name Loc
L_170 Management Kathmandu
L_230 Technical Kathmandu
L_260 Marketing Bhaktapur

Customer_name Loan_nuber
JONE L_170
SMITH L_230
MICLE L_155

 Relation: loan relation: borrower

SELECT *FROM loan, borrower
 WHERE loan. Loan_number = borrower.loan_number;

Non – Equi join (Outer join)

SQL also supports non equi_join. That is, this method joins tables (relations) based
on non equality. But equi_join is far more common than non equi_join

e.g. Select e.ename, d.dname, d.dname d.deptno
 FROM emp e, dept d
 WHERE e.deptno > d.deptno;
Output:
 Ename dname dept no
 JONE MANAGEMENT 10
 MICLE MANAGEMENT 10
 JACK MANAGEMENT 10
 JACK TECHNICAL 20
 JACK MARKETING 30
Here, this information is not so useful.

How from the output? Lets look

 Case 1: equi_join
 SELECT e.ename, d.dname, e.deptno “emp deptno”, d.deptno “deptno”
 FROM emp e, dept d
 WHERE e.deptno;

OUTPUT: ename dname emp deptno deptno
 SMITH MANAGER 10 10

4.0 Structure Query Language (SQL)

© T. Paneru 24

 JONE TECHNICAL 20 20
 MICLE TECHNCAL 20 20
 JACK ACCOUNT 40 40

REMARKS: output is selected from the Cartesian product of two relations
 Emp (e.ename, e.deptno)
 Dept (d.dname, d.deptno)
 such that both department no is equal only.

Case 2: (Non equi join)

SELECT e.ename, d.dname, e.deptno “emp deptno”, d.deptno “dept deptno”
 FROM emp e, dept
 WHERE e. dept> d.dept no;

Output: ename dname empdeptno detno
 JOHN Management 20 10
 MICHAEL Management 20 10
 JACK Management 40 10
 JACK Technical 40 20
 JACK Markeing 40 30
..
Remarks:
Output is seleted from the Cartesian product of two relations

emp (e.ename, e.dept no)
Dept (d.dname, d.deptno)

Such that emp tanle of department no is greater than department table of
department no.

Case 3 (Non equi join)
SELECT e.ename , d.dname e.dept no “emp deptno”
 FROM emp e , dept d
WHERE e. deptno> 10;

Output:

 ename dname Emp deptno
JONE MANAGEMENT 20 >10
MICLE MANAGEMENT 20 >10
JACK MANAGEMENT 40 >10
JONE TECHNICAL 20 >10

REMARKS: output is selested from the Cartesian product of two relation
 Emp (e.ename, e.deptno)
 Dept (e.ename, e.deptno)
Such that emp table of deptno is always greater than 10.

Three types of outer join

1. Left outer join
2. Right outer join
3. Full outer join

4.0 Structure Query Language (SQL)

© T. Paneru 25

Consider two relations

 Loan Borrower

Loan_no. Branch_name amount
L-170 KATHMANDU 3000
L-230 BHAKTAPUR 4000
L-260 LALITPUR 1700

Customer_name Loan_number
JONE L-170
SMITH L-230
MICLE L-155

a. SELECT loan . loan_number, loan . branch_name, loan . amount, borrower .
loan_number loan

Left outer join borrower on loan . loan_number = borrower . loan_number

Loan_no. Branch_name amount Customer_name
L-170 KATHMANDU 3000 JONE
L-230 BHAKTAPUR 4000 SMITH
L-260 LALITPUR 1700 null

Remarks: Tuple from the left hand side relation that do not math any Tuple in the
right side relation are padded with null.
SELECT loan. loan_number, loan . brach_name, loan.amount, borrower.
Customer_name loan
 right outer join borrower on loan.loan_number = borrower. Loan_number;

Loan_no. Branch_name amount Loan_no. Customer_name
L-170 KATHMANDU 3000 L-170 JONE
L-230 BHAKTAPUR 4000 L-230 SMITH
L-155 null null null MICLE

Remarks: Tuples from the right hand-side that do not match any Tuple in the left
hand side relation are padded with nulls.

SELECT loan. loan_number, loan. branch_name, loan. amount, borrower
customer_name loan
Full outer join burrower on loan.loan_number = borrower. Loan_number;

 loan number branch name amount customer name

 L - 170 Kathmandu 3000 JONES
 L - 230 Bhaktapur 4000 SMITH
 L - 260 Lalitpur 1700 NULL
 L -150 NULL NULL MICHALE
Self join
- In some situation, we may need necessary to join a table to itself as we are

joining two separate tables, this is known as self-join
- In a self join two rows from the same table combine to form a result row.
- Example: Consider a relation `employee’ as below.
 Empno name manager no
 E001 Smith E002
 E002 Michale E005
 E003 John E004
 E004 Ivan
 E005 Scott

4.0 Structure Query Language (SQL)

© T. Paneru 26

 Retrieve the names of employees and the names of their respective manager

from the employee relation.

SELECT emp name , mgr name “Manager”
 FROM employee emp, employee mgr
 WHERE emp. Manager no = mgr. emp_no;

Output:

Name Manager
Smith Michael
Michael Scott
John Ivan

Process:
 EMP MGR
Emp no name manager no emp no name manager no
E001 Smith E002 E001 Michael E002
E002 Michael E005 E002 Scott E005
E003 John E04 E003 Ivan E004

 Name Manager
 Smith Michael
 Michael Scott
 John Ivan
Data definition Language in SQL

• In SQL, DDL specifies set of relations (tables) in a database.
• SQL DDL also allows to specify

o Integrity constraints.
o Index on relations
o Security and authorization for each relation
o Physical storage structure of each relation

• Basic statement in Data Definition Language are CREATE, DROP, ALTER

Some Domain types in SQL (Data type in SQL)
CHAR(n): fixed length character string with user specified length n.
VARCHAR2(n) : A variable length character string with user specified length n. Full

form is character
 varying and to indicate version of the domain.
NUMBER(n): holds fixed number specified length n.
NUMBER(P,S): holds fixed or floating point numbers
 P determines the maximum length of data, and S
 Determines the number of places to the right of decimal.
 If S is not specified then default is zero ; in such case or specified 0,

it can not hold floating point number.

INT : An integer , small int
FLOAT(n) : A floating point number , with precision of at least n digits.
DATE : Represents date and time. The standard format is DD-MM-YY
LONG: Used to store variable length character strings containing up to 2 GB.
 RAN/ LONG RAW : Used to store binary data such as digitized picture or

image. It can contain up to 2 GB.

4.0 Structure Query Language (SQL)

© T. Paneru 27

Schema Definition in SQL

- CREATE TABLE command is usedto create relation
Syntax :
 CREATE TABLE <relation name>
 (A1D1 , A2D2, ……… , AnDn ,
 [< integrity constraint 1>]
 [< integrity constraint K>]
);
- Here, Ai is the name of attributes.
- Di is the domain type (or data type)
And integrity constraint includes:

PRIMARY KEY :

Primary key is an attribute or combination of multiple attributes that uniquely
identifies records.

If a primary key is a combination of multiple attributes called composite
primary key. A primary

 key attributes are required NOT NULL AND UNIQUE. That is primary key
attribute cannot be

left null and it cannot contain duplicate values.

NOT NULL / UNIQUE: Attribute can be specified NOT NULL attribute or unique
attribute.

FOREIGN KEY: Any column (attribute) of table (relation) can be specified as a

foreign key if it is a
 common attribute between relations where we are going to

establish a relationship.

• In one relation (master table) it should be primary key and in
another table (detail table) some attribute should be foreign key.

• Primary key and foreign key together used to establish the
relationship between the two relations.

• The concept of primary key and foreign key is very important in
RDBMS.

CHECK(P) : Check clause specifies the predicate P that must satisfy specified
condition.

Example: SQL data definition for the simple banking database.

CREATE TABLE customer
 Customer_ name VARCHAR2(20) NOT NULL,
 Customer location VARCHAR2 (20)
 Constraint PK_Cname Primary key (Customer name));

CREATE TABLE branch
 (
 branch_name VARCHAR 2(15),
 branch_city VARCHAR2(30) DEFAULT “ KATHMANDU” ,
 assets NUMBER (5) ,
 CONSTRAINT PK_branch_name PRIMARY KEY (branch_name),
 CONSTRAINT ch_accbal CHECK (balance >=0)
);

4.0 Structure Query Language (SQL)

© T. Paneru 28

CREATE TABLE depositor
 (
 customer_name VARCHAR2(20),
 account no CHAR(10)
 CONSTRAINT fk_depositor_cname
 FOREIGN KEY(customer_name) REFERENCES customer,
 CONSTRAINT PK_cname_accno PRIMARY KEY (custome_name, account no)
);

CREATE TABLE loan
 (
 loan_no CHAR(10) PRIMARY KEY ,
 branch_name VARCHAR2(15) NOT NULL,
 amount NUMBER (5),
 CONSTRAINT fk_loan_branch_name
 FOREIGN KEY (branch_name) REFERENCES branch,
 CHECK (amount>=0)
);
CREATE TABLE borrower
(
 customer_name VARCHAR2(20),
 loan_no CHAR(10),
 CONSTRAINT fk_ cname FOREIGN KEY (customer_name) REFERENCES customer
);
.
Example of using UNIQUE key and DEFAULT value

 e.g. CREATE TABLE student
 (
 student_id NUMBER (3) PRIMARY KEY,
 name CHAR (20) UNIQUE,
 degree CHAR (15) DEFAULT ` Master’ ,
 CHECK (degree IN (`Bachelors’ , `Master’ , `Doctorate’))
);

Drop statement

• Drop table statement used to drop the relation.

Syntax:
 DROP TABLE <relation name>;

DROP user statement

• DROP USER statement is used to drop the user.
Syntax:
 DROP USER <user name> [USER CASCADE];

ALTER TABLE statement

• Alter Table command is used to add or modify attributes to the existing
relation.

Syntax:
 ALTER TABLE <relation> ADD (attribute domain type);

4.0 Structure Query Language (SQL)

© T. Paneru 29

 ALTER TABLE <relation> MODIFY (attribute domain type);
 ALTER TABLE <relation> DROP CONSTRAINT <constraint_name>;
 ALTER TABLE <relation> DROP COLOUMN <coloumn_name>;
Examples:
 ALTER TABLE customer ADD PRIMARY KEY (customer_name);
 ALTER TABLE customer ADD (customer_adds VARCHAR2(23));
 ALTER TABLE customer MODIFY (customer_adds VARCHAR2(32) NOT NULL);
 ALTER TABLE customer DROP PRIMARY KEY;
 ALTER TABLE customer DROP CONSTRAINT fk_cname;
 ALTER TABLE customer DROP COLOUMN customer_adds
View

• View is a virtual table, it does not contain actual data it is map to the base
table/s.

• When tables are created or populated with data, we may require to prevent
all user from accessing all columns of table. So for the data security reasons
view are created.

• One alternative solution is to create several table having appropriate no of
columns and assigned each user to each table. This provides well data
security but it keeps redundant data in tables. So it is not useful practically.
So, views are generally created instead of it . It reduces redundant data.

• View can be created from a single table hiding some coloumn/s or from the
multiple tables mapping all or some of the columns of the base tables. View is
the simple and effective way of hiding columns of tables for security reason.

• When view is referenced then only it holds data, so it reduces redundant data.
• When view is used to manipulate table , the underlying base e table/s are

completely invisible. This adds level of data security.
• Since view can be created from multiple tables so it makes easy to query

multiple tables because we can simply query views instead of query multiple
tables.

• View may be read only or updateable view. Read only view only allow to read
data from view. Updatable view allow insert, update and delete on view.

• If view is created from multiple tables it won’t be updateable.
• If view is created without primary key and null columns then value/record can

be inserted in view.
• The general syntax for view is

 CREATE VIEW <view name> AS < query expression> ;

Example: creating view from single table.
 CREATE VIEW vw_emp AS
 SELECT empno, ename, job FROM emp;
 View coloumn can be renamed as below:
 CREATE VIEW vw_emp AS
 SELECT empno “Employee no”, ename “ Employee name”
 Job “work” FROM emp;
- Creating view from multiple tables.
 CREATE VIEW vw_emp_info AS
 SELECT e.empno, e.ename, e.ejob, d.dname
 FROM emp e, dept d
 WHERE e.empno = d.dept no AND e.sal>1000;
Common restrictions on view

• We cannot use delete statement on multiple table view.
• We cannot use insert statement unless all NOT NULL columns On underlying

table are included.
• View must be created from single table to allow insert or update on view.

4.0 Structure Query Language (SQL)

© T. Paneru 30

• If we use DISTINCT clause to create views, we cannot update or insert
records within that view.

Common application of views
• Provides user security functions.
• Simplifies the constructions of complex queries.
• Summarize data from multiple tables.

Common restrictions on updatable views

• For the views to be updateable, the view definitions must not include.
• Aggregate function.
• DISTINCT, GROUP BY or HAVING clause.
• Sub – queries.
• Constraints, strin or value expression like bal*1.05
• UNION, INTERSECT, OR MINUS/EXCEPT clause.
• View can be destroyed by using DROP VIEW command.

 Syntax:
 DROP VIEW <view name>;
 e.g. DROP view vw_emp;
Transactions:

• A transaction consists of sequence of query / or updateable statements.
• SQL standard specifies, the transaction begins implicitly when SQL statement

is executed and one of the following SQL statement must end with transaction
commands.

 COMMIT:
It commits (save) the current transaction changes on database / table/s by
update statements. After the transaction is committed, a new transaction is
automatically started.

 ROLLBACK:
It rollback (undo) the current transaction. That is, it undo all the update
performed by SQL statements. Thus database state is restored to what it was
before the first statements of the transaction were executed.

• If program terminates without executing either of the commands commit or
rollback. The updates or changes to database are either committed or
rollback. This depends upon SQL implementation.

• In many SQL implementations, if transactions are continued and at the same
moment if the system is restarted or fails then transaction is rollback.

5.0 Integrity Constraints

©T Paneru 1

5.0 Integrity Constraints

• Integrity constraints are those constraints in database system which guard against invalid
database operations or accidental damage to the database, by ensuring that authorized
changes to the database. It does not allow to loss of data consistency in database, it
ensures database consistency.

• In fact, integrity constraints provide a way of ensuring that changes made to the database
by authorized users do not result in a loss of data consistency.

• Example of integrity constraints in E-R model
o Key declaration: candidate key, primary key
o Form of relationship : mapping cardinalities: one to one, one to many etc

• In database management system we can enforce any arbitrary predicate as integrity
constraints but it adds overhead to the database system so its cost should be evaluated,
as far as possible integrity constraint should with minimal overhead.

5.1 Domain Constraints

o Set of all possible values for attribute known as its domain. Domain constraints enforce
attribute should hold only particular types of attributes. A domain of possible values
should be associated with every attribute. Domain constraints are the most elementary
form of integrity constraint. It is tested by database system whenever a new data item is
entered into database. System test values inserted in the database and test queries to
ensure that the comparisons make sense.

Domain types in SQL

SQL standard supports a variety of built in domain types including:

 Char (n): A fixed length character string with user specified length n.
 Varchar(n): A variable length string with user specified maximum length n.
 Int: An integer (Machine dependant).
 Smallint: A small integer.
 Numeric (p,d): A fixed point number with user specified precision. Where (.) is

counted in p.
 Real, double precision: Floating point and double precision floating point numbers.
 Float (n): A floating point number with precision of at least n digits.
 Date: A calendar date containing a four digit year, month and day of the month.
 Time: The time of a day, in hours, minutes and seconds.
 Timestamp: A combination of date and time.

o New domains can be created from existing data types
o E.g. create domain Dollars numeric(12, 2)

 create domain Pounds numeric(12,2)
o The check clause in SQL allow domains to be restricted

Example 1
 create domain salary-rate numeric(5)
 constraint value-test check(value > = 5000)
The domain constraint ensures that the hourly-rate must greater than 5000

The clause constraint value-test is optional but useful to indicate which constraint an
update violated.

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 2

Example 2:
•

create domain AccountType char(10)
 constraint account-type-test
 check (value in (‘Checking’, ‘Saving’))

Example 3:

create domain account-number char(10)
constraint account-number-null-test check(value not null)

5.2 Referential Integrity

• Referential integrity is a condition which Ensures that a value that appears in one
relation for a given set of attributes also appears for a certain set of attributes in
another relation.

Example
If “B1” is a branch name appearing in one of the tuples in the account relation, then
there exists a tuple in the branch relation where “B1” exist for branch name attribute.
.

Example:
Consider two relation department and employee as follows

department(deptno#,dname)
employee(empno#,ename,deptno)
• Deletion of particular department from department table also need to delete records of

employees they belongs to that particular department or delete need not be allow if
there is any employee that is associated to that particular department that we are
going to delete.

• Any update made in deptno in department table deptno in employee must be updated
automatically.

• This implies primary key acts as a referential integrity constraint in a relation.

Formal Definition

• Let r1(R1) and r2(R2) be relations with primary keys K1 and K2 respectively.
 The subset α of R2 is a foreign key referencing K1 in relation r1, if for every t2 in r2

 there must be a tuple t1 in r1 such that t1[K1] = t2[α].
• Referential integrity constraint also called subset dependency since its can be

written as
 ∏α (r2) ⊆ ∏K1 (r1)

5.2.1 Referential integrity in E-R Model

• Consider relationship set R between entity sets E1 and E2. The relational schema
for R includes the primary keys K1 of E1 and K2 of E2. Then K1 and K2 form foreign
keys on the relational schemas for E1 and E2 respectively that leads referential
integrity constraint.

• Weak entity sets are also a source of referential integrity constraints. A weak entity

set must include the primary key attributes of the entity set on which it depends

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 3

5.2.2 Database modification

• The following tests must be made in order to preserve the following referential
integrity constraint:

 ∏α (r2) ⊆ ∏K (r1)
• Insert. If a tuple t2 is inserted into r2, the system must ensure that there is a tuple t1

in r1 such that t1[K] = t2[α]. That is
 t2 [α] ∈ ∏K (r1)

• Delete. If a tuple, t1 is deleted from r1, the system must compute the set of tuples in
r2 that reference t1:

 σα = t1[K] (r2)
• If this set is not empty

• either the delete command is rejected as an error, or
• the tuples that reference t1 must themselves be deleted

(cascading deletions are possible).

• Update: There are two cases:
o If a tuple t2 is updated in relation r2 and the update modifies values for foreign

key α, then a test similar to the insert case is made:
 Let t2’ denote the new value of tuple t2. The system must ensure that

 t2’[α] ∈ ∏K(r1)
o If a tuple t1 is updated in r1, and the update modifies values for the primary key

(K), then a test similar to the delete case is made:
1. The system must compute

 σα = t1[K] (r2)
 using the old value of t1 (the value before the update is applied).

2. If this set is not empty
1. the update may be rejected as an error, or
2. the update may be cascaded to the tuples in the set, or
3. the tuples in the set may be deleted.

5.2.3 Referential integrity in SQL

• Using the SQL Create table statement we can enforce

o Primary key
o Unique.
o Foreign key

Example:
create table customer
(
 customer-name char(20),
 customer-street char(30),
 customer-city char(30),
 primary key (customer-name)
)

create table branch
(
 branch-name char(15),
 branch-city char(30),
 assets integer,
 primary key (branch-name)
)

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 4

create table account
(
 account-number char(10),
 branch-name char(15),
 balance integer,
 primary key (account-number),
 foreign key (branch-name) references branch
)

create table depositor
(
 customer-name char(20),
 account-number char(10),
 primary key (customer-name, account-number),
 foreign key (account-number) references account,
 foreign key (customer-name) references customer
)
Cascading actions

Syntax

create table account
 . . .
 foreign key(branch-name) references branch
 on delete cascade
 on update cascade
 . . .)

on delete cascade: if a delete of a tuple in branch results referential-integrity constraint
violation, it also delete tuples in relation account that refers to the branch that was deleted.

on update cascade : if a update of a tuple in branch results referential-integrity constraint
violation, it updates tuples in relation account that refers to the branch that was updated.

5.3 Assertion

• An assertion is a predicate expressing a condition we wish the database to always
satisfy

• Domain constraints, functional dependency and referential integrity are special forms
of assertion.

• If a constraint cannot be expressed in these forms, we use an assertion
• e.g.

o Sum of loan amounts for each branch is less than the sum of all account
balances at the branch.

o Every loan customer keeps a minimum of $1000 in an account.
• General syntax for creating assertion in SQL is

 create assertion <assertion-name> check <predicate>

• Example 1: sum of loan amounts for each branch is less than the sum of all account

balances at the branch.

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 5

create assertion sum-constraint check
 (not exists (select * from branch
 where (select sum(amount) from loan
 where loan.branch-name = branch.branch-name)
 >= (select sum(amount) from account
 where loan.branch-name = branch.branch-name)))

Example 2: every customer must have minimum balance 1000 in an account who are loan
holder

create assertion balance-constraint check
 (not exists (
 select * from loan
 where not exists (
 select *from borrower, depositor, account
 where loan.loan-number = borrower.loan-number
 and borrower.customer-name = depositor.customer-name
 and depositor.account-number = account.account-number
 and account.balance >= 1000)))

o When an assertion is created, the system tests it for validity. If the assertion is valid then

only allow further modification. if test found assertion is violated then it can not go ahead.
o Assertion testing may introduce a significant amount of overhead, especially if the assertions

are complex; hence assertions should be used with great care.

5.4 Trigger

A trigger is a statement that is automatically executed by the system as a side effect of a
modification to
the database. While writing a trigger we must specify

o conditions under which the trigger is executed
o actions to be taken when trigger executes

Triggers re useful mechanism to perform certain task automatically when certain condition/s met.
Sometime trigger is also called rule or action rule.

Basic syntax for trigger
CREATE OR REPLACE TRIGGER <TRIGGER NAMR>
{BEFORE,AFTER}
 {INSERT|DELETE|UPDATE [OF column, . .]} ON <table name>
[REFERENCING {OLD AS <old>, NEW AS <new>}]
[FOR EACH ROW [WHEN <condition>]]
DECLARE
 Variable declaration;
BEGIN
 . . .
END;

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 6

Example 1: maintaining log

emp(empno,ename,sal)
emp_log(empno,ename,sal,operation_perform,userid,opr_date

Create or replace emp_operation_log
After update or delete on emp
For each row
Declare
 oper varchar2(8);
 v_empno emp.empno%type;
 v_ename emp.ename%type;
 v_sal emp.sal%type;
begin
 if updating then

oper:=’Update’;
 end if;
 if deleting then
 oper:=’Delete’;
 end if;

 v_empno:=old.empno;
 v_ename:=old.ename;
 v_sal:=old.sal;
 insert into emp_log values(v_empno,v_ename,v_sal,oper,user,sysdate);
end;

Example 2:

o Suppose that instead of allowing negative account balances, the bank deals with overdrafts by

o setting the account balance to zero
o creating a loan in the amount of the overdraft providing same loan number as a

account number of the overdrawn account

create trigger overdraft-trigger
 after update on account
referencing new row as nrow
 for each row
 when nrow.balance < 0
begin
 insert into borrower
 (select customer-name, account-number
 from depositor
 where nrow.account_number = depositor.account-number);
 insert into loan values
 (nrow.account_number, nrow.branch-name, nrow.balance);
 update account
 set balance = 0
 where account.account_number = nrow.account_number
end;

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 7

5.6 Functional Dependencies

• Functional dependencies are constraints on the set of legal relations. It defines attributes
of relation, how they are related to each other.

• It determines unique value for a certain set of attributes to the value for another set of
attributes that is functional dependency is a generalization of the notation of key.

• Functional dependencies are interrelationship among attributes of a relation.

Definition:

For a given relation R with attribute X and Y, Y is said to be functionally dependent on X, if given
value for each X uniquely determines the value of the attribute in Y. X is called determinant of
the functional dependency (FD) and functional dependency denoted by X→ Y.

Example 1: consider a relation supplier

 Supplier(supplier_id#,sname,status,city)

Here, sname, status and city are functionally dependent on supplier_id. Meaning is that each
supplier id uniquely determines the value of attributes supplier name,supplier status and city This
can be express by

Supplier.supplier_id→supplier.sname
Supplier.supplier_id→supplier.status
Supplier.supplier_id→supplier.city

Or simply,

supplier_id→ sname
supplier_id→ status
supplier_id→city

Question: is following functional dependency is valid ?

sname→status
sname→city

Answer: it is true only if sname is unique, otherwise false.

 Valid case
 sname status

X Good
Y Good

 Invalid case
 sname status

X Good
Y Good
X Bad

Example 2: Consider a relation student-info

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 8

Student-info(name#,course#,phone_no,major,prof,grade)

That is, {name,course} is composite primary key

This relation has the following functional dependencies
{name→phone_no, name→major, name,course→grage, course→prof}

Functional dependency X→Y satisfied on the relation R/ hold on R

FD X→Y is satisfied on relation R if the cardinality of ∏Y(σ x=x(r)) is at most one. That is if, two
tuples ti and tj of R have the same X value then the corresponding value of Y must identical.

Let R be a relational schema
 α ⊆R and β ⊆R

then the functional dependency α → β holds on R iff for any legal relation r(R), whenever any

two tuples t1 and t2 of r agree on the attributes α then they also agree on the attributes β .

That is, if t1[α]=t2[α] then t1[β]=t2[β].

5.6.1 Application of Functional dependencies

Functional dependencies are applicable

o To test the relation whether they are legal under a given set of functional dependency.
o Let r is a relation and F is a given set of functional dependencies. If r satisfies F,

then we determine that r is legal under a given set of functional dependency F
o To specify the constraints for the legal relation

o We say that f holds on R if all legal relations on R satisfy the set of functional
dependencies F.

5.6.2 Types of Functional Dependencies
Trivia functional dependency

Functional dependencies are said to be trivial if it satisfied by all relations.
For example:

o A→A is trivial. It satisfied by all relation involving attribute A
o AB→A is trivial. It satisfied by all relations involving attribute A.

In general, A functional dependency of the form α → β is trivial if β ⊆ α .
Verification:

Consider a relation r

 A B C D

a1 b1 c1 d1

a1 b2 c1 d2

a2 b2 c2 d2

a2 b2 c2 d3

a3 b3 c2 d4

t1

t2

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 9

t1[AB]=a2b2, t2[AB]=a2b2 agree

t1[A]=a2 t2[A]=a2 agree

Here, t1[AB]=t2[AB] ⇒ t1[A]= t2[A]. This implies AB→A is satisfied.

Fully functionally dependency

For a given relation schema R, FD X→Y, Y is said to be fully functionally dependent on X if there
is no Z (where Z is a proper subset of X) such that Z→Y.

Example: Let us consider relational schema R=(A,B,C,D,E,H) with the FDs
 F={A→BC,CD→E,C→E,CD→E,CD→AH, ABH→BD,DH→BC}

o Here, the FD A→BC is left reduced, so clearly, BC is fully functionally dependent on A
(because there is no possible proper subset of only element A)

o Here, the FDs CD→E, C→E where E is functionally dependent on CD and again E is

functionally dependent on subset of CD. That is C (i.e. C→E). Hence E is not fully
functionally dependent on CD.

Example: Consider a relation sales

Sales (product_id#,sales_date#,quantity,product_name)
With the following functional dependencies

 F={product_id,sales_date→quantity, product_id→quantity, product_id→product_name}

o Here,. FDs product_id,sales_date→quantity, product_id→quantity, quantity is not fully

functional dependent on product_is,sales_date.
o Here, functional dependency product_id→product_name, product_name is fully functional

dependent on product_id.

Partial functional dependency

For a given relation schema R with set of functional dependency F on attribute of R. Let K as a
candidiate key in R. if X is a proper subset of K and X and X→A then A is said to be partially
dependent on K.

Example: Consider a relation schema ‘student_course_info’

student_course_info(name#,course#,grade,phone_no,major,course_department)

with the following FDs

 {name→phone_no,major
 course→course_department,
 name,course→grade
 }

Here {name,course} is a candidate key. Here grade is fully functionally dependent on
{name,course}. If thee is a possible FD name→grade then we can not say grade is fully

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 10

functionally dependent on {name,course}. Here phone_no, major and course_department are
partially dependent on {name,course}

Transitive dependency

For a given relational schema R with set of functional dependency F. Let X and Y be the subset of
r anf Let A be the attribute of R s.t. X⊄ Y, A⊄XY. If the functional dependencies {X→Y, Y→A}
implies by F (i.e. X→Y→A) then A is said to be transitively dependent on X.

Example:
Let us consider relational schema ‘prof_info’
 prof_info=(prof_name#,department_name, head_of_department)

with the set functional dependency
 F={prof_name→department_name, department_name→head_of_department}

Here prof_name→department_name→head_of_department so head_of_department is transitively
dependent on the key prof_name.

Example:
Let R=(A,B,C,D,E) and FDs F={AB→C,B→D,C→E}
Here AB act a candidate key and E is transitively dependent on the key AB, ince AB→C→E).

5.6.3 Closure of Set of Functional Dependencies

For a given set of functional dependencies F, there are certain other functional dependencies that
are logically implies by F. (i.e. if A→B and B→C, then we can write A→C). the set of all functional
dependencies logically implies F is the closure of F. Closure of F is denoted by F+.

We can find all of F+ by applying Armstrong’s Axioms:
o if β ⊆ α then α → β or α →α (reflexive)

o if α → β then γ α →γ β (augmentation)

o if α → β and β →γ then α →γ (transitivity)

Example: Let R=(A,B,C,G,H,I)
 F={A→B, A→C,CG→H,CG→I,B→H}
Compute closure of F+.

Closure of F+ computed as follow:
o A→H

o by transitivity A→B and B→H
o AG→I

o By augmenting A→C with G we get AG→CG and then by transitivity with CG→I we get
AG→I

o CG→HI
o From CG →H and CG→I “union rule” can be inferred from definition of functional dependency

ot
Augmentation of CG→I to infer CG→CGI, argumentation of CG→H to infer CGI→HI, and then
transitivity.

Hence, F+={ A→A,B→B,C→C,H→H,G→G,I→I,A→B,

Downloaded from: www.csitsansar.com

5.0 Integrity Constraints

©T Paneru 11

 A→C,CG→H,CG→I,CG→HI,B→H,A→H,
 AG→I,CG→Hi
 }
here , first six FDs obtain by reflexive axiom.

We can further simplify the the computation of F+ by using the following addition rule.

(a) if α → β holds and α → γ holds, then α → β γ (Additivity or union rule)

(b) if α → β γ holds then α → β holds and α → γ holds (projectivity/decomposion)

(c) if α → β holds and γ β →δ holds then α γ →δ holds (pseudotransitivity)

Examples: Let R=(A,B,C,D) and F={A→B,A→C,BC→D} then compute F+.

• Since A→B and A→C then by union rule A→BC.
• Since BC →D, then by projective/decomposition B→D, C→D. Again by transitivity A→B &

B→D ⇒ A→D and A→C and C→D ⇒ A→D.
• Hence, F+ ={A→A, B→B, C→C, D→D, A→B, A→C, BC→D, B→D, C→D, A→D}

5.6.4 Attribute Closure

The closure of X under a set of functional dependencies F, written as X+, is the set of attributes
{A1,A2, . . Am} such that the FD X→Ai for Ai∈X+ follows from F by the inference axioms for
functional dependencies.

Example:

Let X=BCD and F={A→BC,CD→E,E→C,D→AEH,ABH→BD,DH→BC}. Compute the closure X+ of X
under F.

• initialize X+:=BCD.
• Since left hand side of the FD CD→E is a subset of X+ (i.e CD X⊆ +), X+ is augmented by

the right hand side of the FD (i.e. E) thus now X+:=BCDE.
• Similarly, D X⊆ +, the right hand side of the FD D→AEH is added to X+. Hence now

X+:=ABCDEH.
• Now X+ can not be augmented any further because no FDs left hand side is subset of X+.

Application of Attribute Closure

1. Testing superkey

To test α is a superkey we compute α + and check whether α + contains all attributes of R. if
so α is a superkey, otherwise not.

2. Testing functional dependencies
To check a functional dependency α → β holds check whether β ⊆ α +. If so α → β ;
otherwise not.

Downloaded from: www.csitsansar.com

6.0 Relational Database Design

©T Paneru 1

6.0 Relational Database Design

6.1 Pitfall of relational model
• The main goal of relational database is to create / find good collection of relational schemas.

Such that database should allow us to store data / information without unnecessary
redundancy and should also allow to retrieve information easily. That is the goal of
relational database design should concentrated

o To avoid redundant data from database.
o To ensure that relationships among attributes are represented.
o To facilitate the checking of updates for the violation of database integrity

constraints.

• A bad relational database design may lead to:
o Repetition of information.

- That is, it leads data redundancy in database, so obviously it requires much
space.

o Inability to represent certain information.

Example 1: Consider the relational schema

 Branch_loan = (beranch_name, branch_city, assets, customer_name, loan_no, amount)

branch_name branch city assets customer name loan no amount
kathmandu baneshwor 25000 rohan L - 15 3000

Lalitpur patan 19000 mohan L - 17 5000
Kathmandu baneshwor 25000 raju L - 19 10000

Pokhara Prithibi nagar 17000 manoj L - 10 7000
Lalitpur patan 19000 swikar L - 30 9000

Redundancy:
• Data for branch_name, branch_city, assets are repeated for each loan that provides

by bank.
• Storing information several times leads waste of storage space / time.
• Data redundancy leads problem in Insertion, deletion and update.

Insertion problem

• We cannot store information about a branch without loan information, we can use
null values for loan information, but they are difficult to handle.

Deletion problem
• In this example, if we delete the information of Manoj (i.e. DELETE FROM

branch_loan WHERE customer_name = ‘Manoj’;), we cannot obtain the
information of pokhara branch (i.e. we don’t know branch city of pokhara, total
asset of pokhara branch etc.

Update problem
• Since data are duplicated so multiple copies of same fact need to update while

updating one. It increases the possibility of data inconsistency. When we made
update in one copy there is possibility that only some of the multiple copies are
update but not all, which lead data/database in inconsistent state..

Downloaded from: www.csitsansar.com

6.0 Relational Database Design

©T Paneru 2

6.2 Decomposition

The idea of decomposition is break down large and complicated relation in no. of simple and
small relations which minimized data redundancy. It can be consider principle to solve the
relational model problem.

Definition

The decomposition of relation schema R= (A1, A2, . ,An) is a set of relation schema { R1, R2, ---
-- Rm}, such that Ri ⊆ R 1 ≤ i≤ m and R∀ 1 RU 2 . . U RU m = R.

That is all attributes of an original schema (R) must appear in the decomposition (R1, R2).
That is, R= R1U R2. if R R≠ 1U R2 then such decomposition called lossey join decomposition.
That is, R≠ ∏R1(R) ∏R2(R). Decomposition should lossless join decomposition.

A decomposition of relation schema R into R1 and R2 is lossless join iff at least one of the
following dependencies is in F+.

R1I R2→R1

R1I R2→R2

Example 1: The problems in the relational schema branch_loan (illustrated in above example)
can be resolved if we replace it with the following relation schemas.

Branch (# branch_name, branch_city, assets)
Loan (customer_name, loan_number, branch_name, amoun)

Example 2: Consider the relation schema to store the information a student maintain by the
university.

 Student_info (#name, course, phone_no, major, prof, grade)

name course phone_no major prof grade
John 353 374537 Computer Science Smith A
Scott 329 427993 Mathematics James S
John 328 374537 Computer Science Adams A
Allen 432 729312 Physics Blake C

Turner 523 252731 Chemistry Miller B
John 320 374537 Computer Science Martin A
Scott 328 727993 Mathematics Ford B

Problems:

Redundancy:

• Data for major and phone_no of student are stored several times in the database
once for each course that is taken by a student.

Complicates updating:

• Multiple copies of some facts may lead to update which leads possibility of
inconsistency.

• Here, change of phone_no of John is required we need to update three records
(tuples) corresponding to the student John. If one of the three tuples is not changed
there will be inconsistency in the date.

Downloaded from: www.csitsansar.com

6.0 Relational Database Design

©T Paneru 3

Complicate insertion

• If this is only the relation in the database showing the association between a faculty
member and the course he / she teaches, then the information that a given professor is
teaching a given course cannot be entered in the database unless a student is registered
in the course.

Deletion Problem:

• If the only one student is registered in a given course then the information as to which
professor is offering the course will be lost if this is only the relation in the database
showing the association between the faculty member and the course he / she teaches. If
database have another relation that establishes the relationship between a course, the
deletion of 4th & 5th tuple in this relation will not cause the information about the
councils teach to be lost.

Solution?

⇒Decomposition

The problems in this relation schema student_info can be resolved if we it with the following
relation schemas.

Students (#name, phone_no, major)
Transcript (#name, course, grade)
Teacher (course, prof)

• Here, first relation schema gives the phone number and major subject of each student

such information will be stored only once for each student. Thus, any changes in the
phone number will thus require changes in only one tuple of this relation

• The second relation schema ‘TRANSCRIP’ stores the grade of each student in each
course. So, to insert information about student phone number, major and the course
teaches by which the professor.

• Third relation schema records the teacher of each course.

What is the problem of such of such decomposition?

• One of the disadvantages of original relation relation schema ‘student_info’ with
these true relational schemas is that retrieval of certain information required to
performed natural join operation.

• We know that to resolve the problem of bad relational database design we need to
decompose relation but the problem is that how to decompose relation. That is, we
require to process decomposition of relation that may give good relational database.
Normalization gives the approach for designing the best relational database under
the five normal forms.

Downloaded from: www.csitsansar.com

Administrator
Highlight

Administrator
Highlight

6.0 Relational Database Design

©T Paneru 4

6.3 Normalization:

Normalization is the process of reducing redundant data / information in the database by
decomposing the long relation. It is an approach for designing reliable database system.
Normalization theory is built under the concept of the normal form. There are several normal
form called

First Normal Form. (1NF)
Second Normal Form (2NF)
Third Normal Form (3NF)
Fourth Normal Form (4NF)
Fifth Normal Form (5NF)

A relation is said to in particular normal form if it satisfy the set of this particular normal form if
it satisfy the set of this particular normal form’s constraints. In practical, third normal form is
sufficient to design reliable database system.

Normalization theory is based on:

• Functional dependencies
• Multi valued dependencies.

6.3.1 Needs of normalization
In database, there is considerable amount of data redundancy and also serious insertion,
deletion and update. Thus to reduce the data redundancy as far as possible and for easy insert,
delete and update operation in relational database system we require normalization. It does not
allow any inconsistency in database system.

6.3.2 Objectives of Normalization
Dr. codd suggested five normal form for relational database design without data redundancy
and serious insertion, update and deletion. According to him, the objectives of normalization
are:

1. To free a collection of relation from undesirable insertion, update and deletion.
2. To move the relational model more informative to use.
3. To increase the lifetime of application programs.

6.3.3 Properties of relation after normalization
1. No data value should be duplicate in different row or tuple.
2. A value must be specified for every attribute in a tuple.
3. Important information should not be accidentally lost.
4. When new data / record are inserted to relation, other relation in database should not

be affected

Downloaded from: www.csitsansar.com

6.0 Relational Database Design

©T Paneru 5

6.3.4 Non -Normalized Relation
A relation schema R is said to be non-normalized relation if any domain of attributes of R are
non atomic.

 Example:

course faculty prof
course_name department

DBMS Computer
Software

Engineering
Computer

X

Microprocessor Electronics
Mathematical

Analysis
Math

computer

Y

Probability Theory Stat
Modern Physic Physics Z

Z Dynamics Physics

Physics
P Vector Analysis Math

Figure: non-normalized relation
• Here, the attribute of relation schema, that is course is divided into course_name and

department. That is, domain of attribute course is non atomic.
• Here, each row contains multiple set of values.

6.3.5 Key and non key attribute (prime and non prime attribute)

An attribute A in relation R is said to be key attribute if A is any part of candidate key;
otherwise A is called non key attribute.

Example: Consider a relational schema ‘student_course_info’

 Student_course_info=(#name,course,grade,phone,major,department)
 With the following FDs
 F={name→phone_no,major, course Mathdepartment, name,course Mathgrade}

• Here, name and course are key attributes and phone_no, major and department are non

key attribute.

Example: Let R=(A,B,C,D,E) and FDs F={AB →C,B →D,C→E}
• Here AB is composite primary key (composite candidate key) so attribute A and B are key

attributes and attributes C, D and E are non key attributes.

6.4 Normal Forms

6.4.1 First Normal Form
• A relation schema R is said to be in first normal form if domain of all attributes of R are

atomic. That is, for any relational schema R to be in first normal form, each attribute of
relation not divisible and each row must contain single set of values for all attributes.

• The previous relational schema ‘course_info’ can be covert into first normal form as below

Downloaded from: www.csitsansar.com

6.0 Relational Database Design

©T Paneru 6

prof course_name faculty department
X DBMS computer Computer
X Software Engineering computer Computer
X Microprocessor computer Electronics
Y Mathematical Analysis computer Math
Y Probability Theory computer Stat
Z Modern Physic Physics Physics
Z Dynamics Physics Physics
P Vector Analysis Physics Math

 Figure: course_info relation in first normal form
• First normal form enforce relation in tabular form.

Here, FDs F={prof → faculty,course_name→department}
• Here key attributes are prof and course and key of relation is {prof,course_name}
• The representation of relation ‘course_info’ in first normal form has several drawbacks.

Major problem is data redundancy.

Data redundancy

o Given professor assigned to corresponding faculty is repeated a number of times.
o Given course offered by corresponding department is repeated number of times.
o Data redundancy leads problem in insertion, deletion and update.

Update problem

o If professor change faculty to teach then we must change all rows where that
professor appears, it may leads inconsistency in database.

Deletion problem
o If we have to delete the professor who teach only one subject (course_name) in such

case deletion cause the loss of information about the department to which the course
belongs.

Insertion problem
o Suppose department introduce new course (i.e. course_name) such information can

not insert without professor name and assigned faculty. This is possible inserting
only null values instead of professor name and his/her assigned faculty.

6.4.2 Second Normal Form
• A relation schema R is said to be in second normal form (2NF) if it is first normal form and

all non key attributes are fully functionally dependent on relation key (s).
• A second normal from does not allow partial dependency between non key attribute and

relation key (s). But it does nor enforce that non key attribute may not functionally
dependent on another non key attribute. (In fact, 2NF that does not allow such dependency
called relation in 3NF).

Example: Let us consider the relation ‘student_info’

Student-info=(#name,course,phone_no,major,prof,grade)
 with the functional dependencies

F={name→phone_no,name→major,course→prof,name,course→grade}
• Here, in this relation grade is fully functionally dependent on key (name,course). But

phone_no and major are partially dependent on name and prof and prof is partially
dependent on course.

• Since, second normal form does not allow partial dependency so the given relation
‘student_info’ is only in 1NF but not in 2NF.

Downloaded from: www.csitsansar.com

6.0 Relational Database Design

©T Paneru 7

Remarks: The relation can be converted into 2NF as below:
Student-general-info=(name,phone_mno,major)
Transcript=(#name,course,grade)
Teacher=(#course,prof)

• Here the functional dependencies on relations are as below:

Student-general-info

F={name→phone_no,name→major}

Phone_no and major are fully functional dependent on key ‘name’ of relation schema ‘student-
general-info’. So the is in 2NF. Moreover, here is no functional dependency between non key
attributes (phone_no & major). So this relation is also in 3NF (discuss later)

Transcript

F={name,course→grade}

Here grade is fully functionally dependent on relation key (name, course). So this relation is in
2NF. Moreover, here is no functional dependency between non key attributes because here is
only one non key attribute grade.

Teacher

F={course→prof}

Here. Prof is fully functionally dependent on relation key course. So this relation is in 2NF.
Moreover, here is no functional dependency between non key attributes. Here is only one non
key attributes prof.

6.4.3 Third Normal Form
• A relation R is said to be in third normal form if it is in 2NF, every non key attributes in non

transitively and fully functionally dependent on the every candidate key.
• That is, relational schema in 3NF does not allow partial dependency, transitive dependency.

For any relation that is in 3NF, it must in 2NF, every non key attribute must fully
functionally dependent on relation key (s) and relation must not exist partial dependency,
transitive dependency and no functional dependency between non key attribute.

• The problems with a relation schema that is not in 3NF (problems with a relational schema
in 2NF) are
• If a relation schema R contains a transitive dependency Z→X→A , we can not insert an

values for x in relation along with X value. That is, we can not independently record the
fact that for each value of X there is one value of A (insertion problem). Similarly,
deletion of a Z→A association also required the deletion of X→A association (deletion
problem).

• If a relation schema R contains a partial dependency (That is, an attribute A dependent
on subset X of the key K of R.. i.e K is key of R, X K and X→A) then association
between X and A (i.e. X→A) can not express (insert) unless remaining part of K is
present in a tuple, remaining part of k must also be express (insert) since K is a key of
relation, these part can not be null.

⊂

• In the above relation ‘course_detail’
Course_detail=(#course,prof,#room,enroll_limit)

Downloaded from: www.csitsansar.com

6.0 Relational Database Design

©T Paneru 8

There is a transitive dependency, course→room→enroll_limit). We can eliminate this
transitive dependency by decomposing the relation ‘course_detail’ info into the relations

Course_prof_info=(#course,prof,enroll_limit)
Fds={course→prof,course→enroll_limit}

Course_room_info=(course,room)
Fds=no functional dependency exist because course and room both are here

foreign key.

That is, all relations in 3NF are as below:

Given relation in 1NF

Course_detail=(#course,prof,room,room_capacity,enroll_limit)
Fds={course→(prof,room,room_capacity,enroll_limit),room→room_capacity}

Relations in 2NF

Course_detail=(#course,prof,room,emroll_limit)
FDs={course→prof,course→room,course→enroll_limit,room→enroll_limit}

Room_detail=(#room,room_capacity)
Fds={room→room_capacity}

Relations in 3NF

Course_prof_info=(#course.prof,enroll_limit)
FDs={course→prof, course→enroll_limit}

Course_room_info=(course,room)
No FDs

Room_detail=(#room,room_capacity)
FDs={room→eoom_capacity}

6.5 Boyce Codd Normal Form (BCNF)
A relation schema R is said to be in Boyce Codd normal form if it is in 3NF and every FDs in F+

should be in the form X→A where X S and A⊆ ∈S and at least one of the following condition
hold:

(a) X→A is a trival FD (i.e. A∈X) or
(b) X→R (i.e. X is a superkey of R, here X called determinant of functional dependency
X→R)

•
• The BCNF imposes stronger constraints on the type of FDs allow in a relation.

o It allows only those non trivial functional dependencies whose determinants are
candidate sperkeys of relation. But in case of 3NF, it allow non trivial FDs whose
determinant is not a candidate superkey if right-hand side of FDs contained a
candidate key.

o That is BCNF enforce more stronger constraints than 3NF.

Example: Let us consider the relation schema “grade” which is in 3NF.

Grade=(#name,student_id,course,grade)

Downloaded from: www.csitsansar.com

6.0 Relational Database Design

©T Paneru 9

• Assume that , each student has unique name and unique student_id then set of FD

FDs={name,course →grade,
student_id,course→grade,name→student_id,student_id→name}

• Here this relation has two candidate keys {name,course} and {student_id,course}. Each of

those composite key has common attribute course.
• Here the relation grade is not in BCNF because the dependencies

{student_id→name}and {name→student_id} are non trivial and there determinants are not
superkey of relation grade.

Drawback of this relation (which is not 3NF)

• Data redundancy: The association between name and corresponding student_id are
repeated.

• Update problem: Any changes in one of these attribute value (name or student_id) has
to reflected all tuples; otherwise there will be inconsistency in the database.

• Insertion problem: The student_id can not be associated with the student name unless
the student has registered in a course.

• Deletion problem: The association between student_id and student name is lost if the
student deletes all courses he/she is reistered in.

• Solution ?
student_info=(#student_id,name)
grade(#student_id,course,grade)

These problems of relation schema in 3NF occur since relation may have overlapping candidate
keys. BCNF removes this problem. So it is stronger than 3NF.

Example: Let us consider the relational schema

Student_info=(student_id,name,phone_no,major)

where student_id, name and phone_no assumed to be unique in this relation. The following FDs
satisfy this relation.

FDs={student_id→name,student_id→phone_no,student_id→major, name→student_id,
name→phone_no, name→major,
phone_no→student_id,phone_no→name,phone_no→major}

Here each non trivial FD involves candidate key as determinant. Hence the relation
‘student_info’ is in BCNF.

Downloaded from: www.csitsansar.com

Prepared by: Er. Bipul Kr. Yadav

Concurrency Control

This chapter deals with the study of concurrency control techniques which are used to
ensure the isolation property of concurrently executing transactions. All the schemes presented
here assume that the schedules are serializable.

Lock based protocol:-
 One way through which we can assume serializability is to access the variables in
mutually exclusive manner. i.e. if one transaction is accessing a data item, no other transaction
can modify that data item. To implement the notion mentioned above, we implement a technique
of using lock on data item .i.e. transaction can access a data item only if it holds lock on that data
item.

Types of lock:-
1. Binary lock:-

A binary lock can have two states i.e. locked and unlocked (1 for locked state and
0 for unlocked state). A transaction requests access to an item Q by first issuing LOCK
(Q) operations. If LOCK (Q) =1, the transaction is forced to wait and if LOCK (Q) = 0, it
is set to 1 and the transaction is allowed to access item Q. When transaction finishes with
the operation, it finally issues unlock operation by setting LOCK (Q) to 0. The rule
followed by binary locking scheme is as follows:

• A transaction T must issue the operation lock (Q) before any read (Q) or
write (Q) operations.

• A transaction T must issue unlock (Q) after all read (Q) and write (Q)
operations are completed.

• A transaction T will not issue any lock (Q) if it already holds lock on
item Q.

• A transaction T will issue unlock (Q) iff it already holds a lock on data
item Q.

2. Shared/Exclusive or Read/Write lock:-

Binary lock as discussed earlier is too restrictive for database items. But we
should allow multiple transactions to access the same item if they all access Q for reading
purpose only. Hence shared/exclusive lock is desired.

Ø Shared: - if Ti holds shared mode lock on Q, it can only read and cannot
write. Multiple shared mode lock can exist for the same data item Q.

Ø Exclusive: - if Ti holds exclusive mode lock on Q, then it can both read as
well as write. There can exist only one exclusive mode lock on a data item Q.

Let A and B are the two arbitrary lock modes. If transaction Ti can be granted a lock on Q
immediately inspite of the presence of the mode B lock on Q, then we say mode A is
compatible with mode B. Hence lock compatibility matrix can be summarized as shown
below:

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

Note that the shared mode lock is only compatible with the shared mode lock. Hence at any time
more than one shared mode lock can exist on the same data item.
 To access a data item, transaction Ti must first lock that item. If data item is already
locked in an incompatible mode, then the concurrency control manager do not grant the lock until
all incompatible locks held by other transactions have been released. Thus Ti is made to wait until
all incompatible locks held by other transactions have been released. Any transaction Ti may
unlock the data item that it had locked in earlier point but unlocking data item immediately may
not ensure serializability. For example consider the schedule as shown below(A=1000 &
B=2000):

T1 T2 Concurrency control manager Value
Lock-X(B)

 Grant-X(B,T1)
Read(B) 2000
B:=B-50
Write(B) 1950

Unlock(B)
 Lock-S(A)
 Grant-S(A,T2)
 Read(A) 1000
 Unlock(A)
 Lock-S(B)
 Grant-S(B,T2)
 Read(B) 1950
 Unlock(B)
 Display(A+B) 2950

Lock-X(A)
 Grant-X(A,T1)

Read(A) 1000
A:=A+50
Write(A) 1050

Unlock(A)

As we can see that unlocking B too early has caused the database in inconsistent state. i.e.
transaction T2 should display 3000 as a result but it is now showing 2950. Hence from here we
can conclude that unlocking data items too early is not desirable. Hence delaying data unlocking
can solve this problem. i.e.

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

T20:
Lock-X(B)
Read(B)
B:=B-50
Write(B)
Lock-X(A)
Read(A)
A:=A+50
Write(A)
Unlock(B)
Unlock(A)

T30:

Lock-S(A)
Read(A)
Lock-S(B)
Read(B)
Display(A+B)
Unlock(A)
Unlock(B)

Hence, from the schedule shown above, it becomes sure that no undesirable result is displayed.

Two phase locking protocol:-

This is a protocol which ensures conflict-serializable schedules. This protocol requires
that each transaction issue lock and unlock requests in different phases. There are two phases as
discussed below:
Phase 1: Growing Phase

• transaction may obtain locks
• transaction may not release locks

Phase 2: Shrinking Phase
• transaction may release locks
• transaction may not obtain locks

For example:
Transaction T20 and T30 are the example of two phase locking protocol. Initially a transaction is in
growing phase and can acquire locks as per its need. Then the transaction reaches its lock point
i.e. it is the point where a transaction acquires its final lock. Finally when transaction unlocks any
data item, it enters into shrinking phase and no more locks can be acquired again.

The protocol assures serializability. It can be proved that the transactions can be serialized in the
order of their lock points (i.e. the point where a transaction acquired its final lock). Two-phase
locking does not ensure freedom from deadlocks.

Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified
protocol called strict two-phase locking. Here a transaction must hold all its exclusive locks till
it commits/aborts.
Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In this
protocol transactions can be serialized in the order in which they commit.

Lock conversion:
Two-phase locking with lock conversions:
 – Growing Phase:

• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

 – Shrinking Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

Implementation of locks:-
A lock manager can be implemented as a separate process to which transactions send

lock and unlock requests. The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of a deadlock). The requesting
transaction waits until its request is answered. The lock manager maintains a data-structure called
a lock table to record granted locks and pending requests. The lock table is usually implemented
as an in-memory hash table indexed on the name of the data item being locked.

• Black rectangles indicate granted locks, white ones indicate waiting requests
• Lock table also records the type of lock granted or requested
• New request is added to the end of the queue of requests for the data item, and granted if

it is compatible with all earlier locks
• Unlock requests result in the request being deleted, and later requests are checked to see

if they can now be granted
• If transaction aborts, all waiting or granted requests of the transaction are deleted

o lock manager may keep a list of locks held by each transaction, to implement this
efficiently

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

Timestamp ordering protocol:-
Each transaction is issued a timestamp when it enters the system. If an old transaction Ti

has time-stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti)
<TS(Tj). The protocol manages concurrent execution such that the time-stamps determine the
serializability order. In order to assure such behavior, the protocol maintains for each data Q two
timestamp values:

• W-timestamp (Q) is the largest time-stamp of any transaction that executed write (Q)
successfully.

• R-timestamp (Q) is the largest time-stamp of any transaction that executed read (Q)
successfully.

Rules:
Ø Ti issues read(Q):

i. TS(Ti) < W-timestamp(Q)
Reject Ti, rollback

ii. TS(Ti) ≥ W-timestamp(Q)
Commit read instruction, update R-timestamp (Q) = maximum TS (Ti)

Ø Ti issues write(Q):
i. TS(Ti) < R-timestamp(Q)

Reject write (Q), roll back Ti
ii. TS(Ti) < W-timestamp(Q)

Reject write (Q), roll back Ti
iii. Otherwise execute write(Q) instruction

Update W-timestamp (Q) = TS (Ti)

Example:
T14 T15 R-TS W-TS

Read(B) B-14 -----
 Read(B) B-15 ------
 B:=B-50 ---- -----
 Write(B) ------ B-15

Read(A) A-14 ---
 Read(A) A-15 ----

Display (A+B)
 A:=A+50
 Write(A) ----- A-15
 Display(A+B)

Problem with timestamp-ordering protocol:

Suppose Ti aborts, but Tj has read a data item written by Ti Then Tj must abort; if Tj had
been allowed to commit earlier, the schedule is not recoverable. Further, any transaction that has
read a data item written by Tj must abort. This can lead to cascading rollback that is, a chain of
rollbacks.
Thomas’ Write Rule:

 Modified version of the timestamp-ordering protocol in which obsolete write operations
may be ignored under certain circumstances is called Thomas’ write rule. Consider schedule that
is shown below:

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

T16 T17
Read(Q)

 Write(Q)
Write(Q)

If we apply timestamp ordering protocol in the above schedule: the read (Q) instruction

of T16 is executed and similarly the Write (Q) instruction of transaction T17 also gets committed
and W-timestamp (Q) = TS (T17). Now when write (Q) instruction of T16 is executed we find that

TS (T16) < W-timestamp (Q); hence we have to roll back transaction T16.
 In this case when T16 attempts to write data item Q, it is attempting to write an obsolete

value of {Q} because: any transaction Ti with TS (Ti) < TS (T17) that attempts read (Q) will be
rolled back, since TS (Ti) < W-timestamp (Q). And also any transaction having TS (Tj) > TS
(T17) must read the value of Q written by T17. Hence, rather than rolling back T16 as the timestamp
ordering protocol would have done, this {write} operation can be ignored. Otherwise this
protocol is the same as the timestamp ordering protocol. Hence Thomas' Write Rule allows
greater potential concurrency. Hence the modified rule for Thomas’ Write rule is:

Ø Ti issues write(Q):

i. TS(Ti) < R-timestamp(Q)
Reject write (Q), roll back Ti

ii. TS(Ti) < W-timestamp(Q)
Ti is attempting to write obsolete value of Q hence write (Q) operation is
ignored.

iii. Otherwise execute write(Q) instruction
Update W-timestamp (Q) = TS (Ti)

Validation Based protocols:-
According to this protocol execution of transaction Ti is done in two or three phases in its

lifetime, depending on whether it is a read-only or an update transaction.
1. Read phase: Transaction Ti reads the values of the various data items and writes only to
temporary local variables of Ti without updates to the actual database.
 2. Validation phase: Transaction Ti performs a “validation test” to determine if local variables
can be written to the database without violating serializability.
3. Write phase: If Ti is validated, the updates are applied to the database; otherwise, Ti is rolled
back.

Each transaction must go through the three phases in the order shown. But, the phases of
concurrently executing transactions can be interleaved. To perform the validation test, each
transaction Ti has 3 timestamps

− Start (Ti): the time when Ti started its execution.
− Validation (Ti): the time when Ti entered its validation phase.
− Finish (Ti): the time when Ti finished its write phase.
Serializability order is determined by the timestamp-ordering technique, using the value of

Validation (Ti). Thus the value TS (Ti) = Validation (Ti). Hence, if TS (Tj) < TS (Tk), then any
produced schedule must be equivalent to a serial schedule in which transaction Tj appears before
the transaction Tk.
Validation Test for Transaction Tj :
If for all Ti with TS (Ti) < TS (Tj) either one of the following condition holds:

• finish(Ti) < start(Tj)
• start (Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti does not

intersect with the set of data items read by Tj.

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

then validation succeeds and Tj can be committed. Otherwise, validation fails and Tj is aborted.

Multiple granularity:-
 The concurrency control scheme discussed so far treated each individual data item as a
single unit on which concurrency was supposed to be maintained. But there are circumstances
where grouping several data items together and treating them as a single unit is an advantage
while working on them. For example suppose that any transaction wants to access the entire data
items of the database, in such case, if we use locking technique then it is clear to us that we must
lock each and every data item before we use them and finally unlock each and every data item
after we complete our work on them. It is obvious that while locking and unlocking data items we
are consuming some amount of time and if database contains large number of data items then this
locking and unlocking time is significant and hence slows down the execution process. Hence it
becomes better if the transaction can issue a single lock request to lock the entire database or only
certain part of it.
 Hence to apply this notion in concurrency control techniques, system need to define
multiple levels of granularity. The levels, starting from the coarsest (top) level are

• database
• area
• file
• record

The figure below shows an example of multiple granularities.

In addition to S and X lock modes, there are three additional lock modes with multiple
granularity:

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

• intention-shared (IS): indicates explicit locking at a lower level of the tree but only with
shared locks.

• intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or
shared locks

• shared and intention-exclusive (SIX): the sub tree rooted by that node is locked
explicitly in shared mode and explicit locking is being done at a lower level with
exclusive-mode locks.

When a transaction locks a node, the transaction also has implicitly locked all the descendants of
that node in the same lock mode. Intention locks allow a higher level node to be locked in S or X
mode without having to check all descendent nodes. Hence, the compatibility matrix for all
lock modes is as shown below:

Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is currently

locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is

currently locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node (that is, Ti is

two-phase).
6. Ti can unlock a node Q only if none of the children of Q are currently locked by

Ti.
Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-root
order.

Multiversion schemes:-
 In order to maintain serializability, the techniques studied so far either delayed the
transaction or totally aborted the operation. This could lead to undoing of significant work and
hence there is more loss of time. Hence to avoid this, old copy of each data is kept in a system.
i.e. in multiversion concurrency control scheme, each write(Q) creates a new version of Q and
while reading, the concurrency control manager selects one of the version of Q to be read in the
manner which ensures serializability.

1. Multiversion time stamp ordering:
 With every data item Q, there exists sequence of newer version of that data item Qk.
There may exist ‘n’ version of Q. Each version contains field as described below:

• Content – the value of version(Qk)

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

• W-timestamp – timestamp of version that created Qk
• R-timestamp – largest time stamp of any transaction that read Qk

Suppose that transaction Ti issues read (Q) or write (Q) operation. Let Qk denote the version

of Q whose write timestamp is the largest write time stamp less than or equal to TS (Ti).
a. If transaction Ti issues read (Q), the value read is content of Qk i.e. value returned is

the content of version whose timestamp is the largest TS less than or equal to TS (Ti).
b. If Ti issues write(Q)

- if TS(Ti) < R-timestamp(Qk) the roll back Ti.
- else if TS(Ti) = W-timestamp (Qk) the overwrite the content of Qk.
- else create new version of Q

Example:
T1 T2 Version W-TS R-TS

Read A
A:=A+50
Write(A) A1=1050 1 1

 Read(A) A1=1050 1 2
 A:=A-50
 Write(A) A2=1000 2 2
 A:=A+1000
 Write(A) A2=2000 2 2

To delete the data item version no longer in use:
Compares the timestamp of every version with oldest version of transaction remaining and if
TS(Qk) < TS (Ti)oldest then delete Qk.

2. Multiversion two phase locking:
 This protocol uses Multiversion timestamp protocol with the advantage of two phase
locking protocol. This protocol differentiates between read only transaction and update
transaction. Every transaction is assigned a timestamp before it is executed.
 When Ti issues read (Q) instruction, it reads the value of appropriate version of Qk based
on the Multiversion time stamp ordering protocol.
 When update transaction gets chance to execute, for reading purpose it gets a shared lock
and reads the largest version of that item. When it wants to update an item, it gets exclusive lock
on item and writes a newer version of that item and its timestamp is set initially to infinite. When
update is completed, it sets the timestamp of that version of data and updates the counter.
 Versions are deleted in a manner like that of Multiversion timestamp ordering protocol.

Deadlock handling:
 The state where exists a set of waiting transactions such that every transaction in the set is
waiting for another transaction in the set is called deadlock state. Consider the following two
transactions:

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

There are two principal methods for dealing with the deadlock problem:
Deadlock prevention protocol: We use this protocol to ensure that the system will never enter
into a deadlock state.
Deadlock detection and deadlock recovery scheme: Alternatively, we can allow the system to
enter a deadlock state, and then try to recover by using a deadlock detection and deadlock
recovery scheme.

There are two approaches to deadlock prevention.
• No cyclic waits can occur by ordering the requests for locks, or requiring all

locks to be acquired together.
• Performs transaction rollback instead of waiting for a lock.

Schemes under the first approach:
 Each transaction locks all its data items before it begins execution (pre- declaration).
Impose partial ordering of all data items and require that a transaction can lock data items only in
the order specified by the partial order (graph-based protocol).

Schemes under the second approach:
 Use preemption and transaction rollbacks. In preemption, when a transaction T2 requests
a lock that transaction T1 holds, the lock granted to T1 may be preempted by rolling back of T1
and granting of the lock to T2. To control the preemption, we assign a unique timestamp to each
transaction.

Ø Wait-die scheme: This is nonpreemptive scheme. Older transaction may wait for

younger one to release data item. Younger transactions never wait for older ones; they are
rolled back instead. A transaction may die several times before acquiring needed data
item.

Ø Wound-wait scheme: This is preemptive scheme. Older transaction wounds (forces

rollback) of younger transaction instead of waiting for it. Younger transactions may wait
for older ones. May be fewer rollbacks than wait-die scheme.

Both in wait-die and in wound-wait schemes, a rolled back transaction is restarted with its
original timestamp. Older transactions thus have precedence over newer ones, and starvation is
hence avoided.

Ø Timeout-Based Schemes:

 A transaction waits for a lock only for a specified amount of time. After that, the wait
times out and the transaction is rolled back. Thus deadlocks are not possible. Simple to
implement; but starvation is possible.

Downloaded from: http://www.bsccsit.com/

Prepared by: Er. Bipul Kr. Yadav

Dead lock detection and recovery:
 Deadlocks can be described as a wait-for graph, which consists of a pair G = (V,E),
V is a set of vertices (all the transactions in the system)
E is a set of edges; each element is an ordered pair Ti →Tj.
 If Ti → Tj is in E, then there is a directed edge from Ti to Tj, implying that Ti is waiting
for Tj to release a data item. When Ti requests a data item currently being held by Tj, then the edge
Ti Tj is inserted in the wait-for graph. This edge is removed only when Tj is no longer holding a
data item needed by Ti. The system is in a deadlock state if and only if the wait-for graph has a
cycle. DBMS must invoke a deadlock-detection algorithm periodically to look for cycles.

 Wait for graph without cycle wait for graph with cycle (deadlocked)

When deadlock is detected three actions need to be taken to recover from the deadlock:

Ø Selection of a victim: Some transaction will have to rolled back to break deadlock.

Select that transaction as victim that will incur minimum cost.
Ø Rollback: determines how far to roll back transaction i.e. it can be rolled back to its

entirety or partially.
Ø Starvation: Starvation happens if same transaction is always chosen as victim. Include

the number of rollbacks in the cost factor to avoid starvation.

Downloaded from: http://www.bsccsit.com/

Prepeared by: Er. Bipul Kr. Yadav

Transaction processing:

Transaction:

• It is the atomic unit of work that is either completed in its entirety or not at all
• It may also be defined as the unit or piece of program execution that accesses and possibly

updates the various data items.
• Operations recorded by the recovery manager from beginning to end of transaction are:

o Begin_transaction: notes the start of transaction.
o Read/write: specify read or write operation on database.
o End transaction: specify read or write has ended and transaction has ended. At this point

it is necessary to check whether the transaction should be committed or aborted.
o Commit_transaction: signals successful end of transaction.
o Rollback or abort: signals successful transaction.

State transition diagram illustrating the state of transaction execution.

Desirable properties of transaction:

To ensure integrity of data, we require the database system maintain the following properties of
the transaction.

1. Atomicity: either all operations of a transaction is reflected in database or none.
2. Consistency: execution of a transaction in isolation preserves consistency of database.
3. Isolation: even though multiple transactions are executing concurrently, each transaction

is unaware of other transaction.
4. Durability: after a transaction completes, the changes it has made persists.

These properties are also called ACID properties.

Downloaded from: http://www.bsccsit.com/

Prepeared by: Er. Bipul Kr. Yadav

Example:
Let, Ti: read(A);
 A:=A-50;
 Write(A);
 Read(B);
 B:=B+50;
 Write(B);

Consistency:
 In this case consistency requirement here is that the total sum of A and B should always be same
i.e. before and after the transaction is executed. In this case consistency property of the transaction
prevents the unwanted creation of a destroying of money.
 Ensuring consistency for an individual transaction is the responsibility of the application
programmer who codes the transaction.

Atomicity:
 Suppose that failure occur after write(A) operation but before write(B) operation. Hence the
values reflected in the database becomes A=950 and B=2000, which is not the true value. Hence
transaction should be completed in its entirety of not at all.

Durability:
 Once the execution of the transaction completed successfully and the user who initiated the
transaction has been notified that the transfer of the fund has taken place, it must be the case that no
system failure will result in a loss of data corresponding to this transfer of funds.

Isolation:
 Let a transaction T1 transfer Rs 50 from account A to B. While T1 reads and subtracts 50 from
account A but before it was updated to account B a new transaction (T2) interrupts which reads from
account A and B. the value read by transaction T2 is A=950 and B=2000 (initial values of A=1000 and
B=2000).
 Hence in order to maintain consistency isolation of transaction is required. In order to maintain
isolation serial execution of transaction and use of concurrency control mechanism should be used.

Downloaded from: http://www.bsccsit.com/

Prepeared by: Er. Bipul Kr. Yadav

Implementation of Atomicity and Durability:
Shadow copy scheme.

Assume:
• Only one transaction is active at a time.
• Database is simply a file on disk.

• If transaction completes successfully, it is updated in the new copy and then db-pointer is
updated. Now this new copy becomes the current copy of database and old copy is
deleted.

• If transaction is unsuccessful, then new copy is deleted and old copy is again the current
one.

• The implementation actually depends on the write to db-pointer being atomic.i.e either all
its bytes are written or none of its bytes are written.
Drawbacks:

• Implementation is extremely inefficient in the context of large database since
executing single transaction requires copying the entire database.

• Does not allow transaction to execute concurrently.

Concurrent Executions:
 Transaction processing system usually allows multiple transactions to run concurrently but
running multiple transactions at the same time has complications with the preservation of consistency of
the data. There are various techniques by which we can conquer this problem. Hence reasons for using
multiple transactions at the same time are as discussed below:

1. Improved throughput and resource utilization:
Since we know that a transaction comprises of so many steps like reading from

disk, using CPU. Hence we take this feature as gratitude and use it for the parallelism of
transaction. For example, if one transaction is using CPU, another can access the database
files at the same time. Hence number of transactions executed in a given amount of time
increases which is also known as improved throughput. And it also increases the

Downloaded from: http://www.bsccsit.com/

Prepeared by: Er. Bipul Kr. Yadav

utilization of resources. i.e. at the same time more than one source can be used
concurrently.

2. Reduced waiting time:

The total execution time of a transaction depends upon the complexity of the
transaction. Hence the execution time for different transaction is different. In a scenario
where long transaction is followed by short one, in the case of transactions running
serially, short transaction will have to wait for long time in order to complete. Hence
running these transactions concurrently reduces the average response time (average time
for a transaction to be completed after it has been submitted).

Let us consider some schedules and study them briefly:
 T1: read(A)

 A:=A-50

 Write(A)

 Read(B)

 B:=B+50

 Write(B)

 A=1000

A=950

A=950

B=2000

B=2050

B=2050

 T2: read(A)

temp:=A*0.1

A:=A-temp

 Write(A)

 Read(B)

 B:=B+temp

 Write(B)

A=950

temp=95

A=855

A=855

B=2050

B=2145

B=2145

Fig 1: Schedule 1

In the schedule shown above consistency by transferring Rs 50 from account A to account B is
preserved. Since (A+B)initial =(A+B) final

Similarly, if the order of execution of transaction is reversed.i.e. execute T2 first and then execute
T1, then also (A+B)initial =(A+B) final
Hence consistency of data is preserved.

 T1: read(A)

 A:=A-50

 A=1000

A=950

Downloaded from: http://www.bsccsit.com/

Prepeared by: Er. Bipul Kr. Yadav

 Write(A) A=950

 T2: read(A)

temp:=A*0.1

A:=A-temp

 Write(A)

A=950

temp=95

A=855

A=855

 Read(B)

 B:=B+50

 Write(B)

 B=2000

B=2050

B=2050

 Read(B)

 B:=B+temp

 Write(B)

B=2050

B=2145

B=2145

Fig: schedule 2
Here
(A+B)initial =(A+B) final

Hence consistency is preserved.

 T1: read(A)

 A:=A-50

 A=1000

A=950

 T2: read(A)

temp:=A*0.1

A:=A-temp

 Write(A)

 Read(B)

A=1000

temp=100

A=900

A=900

B=2000

 Write(A)

 Read(B)

 B:=B+50

 Write(B

 A=950

B=2000

B=2050

B=2050

 B:=B+temp

 Write(B)

B=2150

B=2150

Fig: Schedule 3

Downloaded from: http://www.bsccsit.com/

Prepeared by: Er. Bipul Kr. Yadav

Here,

(A+B) initial = 1000+2000 =3000
(A+B) final = 950 +150 =3100

Hence consistency of data in schedule 3 is not maintained.

.

Serializability:

Basic Assumption – Each transaction preserves database consistency. Thus serial execution of a set of
transactions preserves database consistency. A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule equivalence give rise to the notions of:
1. conflict serializability
2. view serializability

Conflict serializability:
We ignore operations other than read and write instructions, and we assume that transactions

may perform arbitrary computations on data in local buffers in between reads and writes. Our simplified
schedules consist of only read and write instructions.

Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if there exists some
item Q accessed by both li and lj, and at least one of these instructions wrote Q.
 1. li = read(Q), lj = read(Q). li and lj don’t conflict.
 2. li = read(Q), lj = write(Q). They conflict.
 3. li = write(Q), lj = read(Q). They conflict
 4. li = write(Q), lj = write(Q). They conflict

Intuitively, a conflict between li and lj forces a (logical) temporal order between them.
If li and lj are consecutive in a schedule and they do not conflict, their results would remain the same even
if they had been interchanged in the schedule. Schedule 3 can be transformed into Schedule 6, a serial
schedule where T2 follows T1, by series of swaps of non-conflicting instructions.

 Schedule 3 schedule 6

Therefore Schedule 3 is conflict serializable.

Downloaded from: http://www.bsccsit.com/

Prepeared by: Er. Bipul Kr. Yadav

View serializability:
Let S and S´ be two schedules with the same set of transactions. S and S´ are view equivalent if

the following three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then

transaction Ti must, in schedule S´, also read the initial value of Q.

2. For each data item Q if transaction Ti executes read(Q) in schedule S, and that value was

produced by transaction Tj (if any), then transaction Ti must in schedule S´ also read the value of

Q that was produced by transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final write(Q) operation in

schedule S must perform the final write(Q) operation in schedule S´.

As can be seen, view equivalence is also based purely on reads and writes alone. A schedule S is

view serializable it is view equivalent to a serial schedule. Every conflict serializable schedule is also

view serializable. Below is a schedule which is view-serializable but not conflict serializable.

Recoverable schedules:

 Let us consider the schedule as shown. Transaction T9 gets chance to get executed after the
write(A) instruction of transaction T8, and since it has only one read instruction T9 gets committed before
T8 does. Now at this point let us suppose that T9 is committed and immediately after that system crashes
leading to situation where T8 is in failed state whereas T9 is committed. Since the value read by T9 was
written by transaction T8 hence we must abort both T8 and T9 to satisfy the atomicity property of
transaction. But, since T9 is already committed, it cannot be aborted which ultimately leads us to the state
from where we cannot recover from failure of transaction T8.
 From the example given above what we can conclude is that a recoverable schedule is the one
where, for each pair of transaction Ti and Tj such that Tj reads data item previously written by Ti, the
commit operation of Ti appears before the commit operation of Tj.

Cascadeless Schedules:

 Even if schedule is recoverable, to recover correctly from the failure of transaction Ti, we may
have to roll back several transactions. Such situation occurs if transactions have read data written by Ti.
Consider the following schedules where none of the transaction has yet committed. If T10, fails, T11 and

Downloaded from: http://www.bsccsit.com/

Prepeared by: Er. Bipul Kr. Yadav

T12 must also be rolled back. This phenomena in which single transaction leads to a series of transaction
rollback is called cascading rollback.
 Since cascading rollback leads to undoing of significant amount of work, hence cascading
rollback is undesirable. A cascadeless schedule is one where, for each pair of transaction Ti and Tj such
that Tj reads the data item previously written by Ti, the commit operation of Ti appears before the read
operation of Tj.

Testing for serializability:

Consider some schedule of a set of transactions T1, T2, ..., Tn. Precedence graph — a direct

graph where the vertices are the transactions (names).We draw an arc from Ti to Tj if the two transaction

conflict, and Ti accessed the data item on which the conflict arose earlier. We may label the arc by the

item that was accessed.

For example, the precedence graph for schedule 1 contains the single stage T1 T2, since all
the instructions of T1 are executed before the first instruction of the T2 transaction and hence the
precedence graph of the schedule 1 becomes fig (a) as shown above. Similarly if T2 is followed by T1
then the precedence graph becomes fig (b). Since both fig doesn’t have cycle, they are conflict
serializable.
 The precedence graph for the schedule 3 is as shown below. It contains the edge T1 T2,
because T1 executes read(A) before T2 executes write(A). it also contains the edge T2 T1, because
T2 executes read(B) before T1 executes write(B).

Since the precedence graph of schedule 3 has a loop, schedule 3 is not conflict serializable.

Downloaded from: http://www.bsccsit.com/

	1.0 Database Management System
	1.2 Purpose of Database System
	1. Data redundancy and inconsistency
	2. Difficulty in accessing data
	3. Data isolation
	4. Integrity problem
	5. Atomicity problem
	6. Concurrent access problem
	7. Security problems
	1.3 Data Abstraction
	Physical level
	Logical Level
	View Level

	1.4 Data Models
	1.4.1 Object-based Logical Models
	
	1.4.1.1 Entity Relationship Model
	1.4.1.2 Object oriented model

	1.4.2 Record-based Logical Models
	1.4.2.1 The Relational Model
	1.4.2.2 The Network Model
	1.4.2.3 Hierarchical Model

	1.4.3 Physical Data Models

	1.5 Instance and Schemas
	1.6 Data Independence
	1.7 Database Languages
	But in practice, data definition language and data manipulation language are not separate languages.
	1.7.1 Data Definition Language (DDL)
	1.7.2 Data Manipulation Language (DML)

	1.8 Database Manager
	1.9 Database Administrator
	1.10 Database Users
	1.11 Overall System Structure
	1.11.1 Storage Manager
	1.11.2 Query processor

	1.12 Advantages and disadvantages of DBMS
	1.12.1 Advantages of DBMS
	1.12.2 Disadvantage of DBMS

	2. Entity-Relationship Model
	2.1 Entity and Entity Sets
	2.2 Attributes
	2.2.1 Types of Attributes

	2.3 Relationships and Relationship Sets
	2.4 Constraints in E-R Model
	2.5 Keys
	Super key
	Candidate key
	Primary key

	2.6 Primary Keys for Relationship Sets
	2.7 Entity Relationship Diagram (ERD)
	One-to-one relationship representation
	One to many relationship representation
	Many to one representation
	Many to many relationship representation

	2.8. Weak Entity Sets and their representation in E-R Diagram
	
	 2.9 Extended E-R Features
	2.9.1 Specialization
	2.9.2 Generalization
	2.9.3 Constraints on Generalization and Specialization

	2.10 Aggregation
	2.11 Design of an E-R Database Schema
	2.11.1 Database Design Phase

	2.12 Reduction of an E-R Schema to Tables
	
	2.12.1 Tabular representation of Strong Entity Sets
	2.12.2 Tabular representation of Weak Entity Sets
	2.12.3 Tabular representation of Relationship Sets

	3.0 Relational Model
	3.1 Structure of Relational Databases
	3.1.1 Basic Construct
	 To illustrate the basic structure of database, let us consider a table “account”
	3.1.2 Database Schema
	3.1.3 Keys
	3.1.4 Schema Diagram
	3.1.5 Query Languages

	3.2 Relational algebra
	3.2.1 Fundamental Operations
	3.2.2 Formal Definition of Relational Algebra
	3.2.3 Additional Operations
	3.2.4 Extended Relational-Algebra operations
	3.2.5 Null Values
	3.2.6 Modification of the database
	3.2.7 Views
	3.2.8 View Definition
	3.2.9 Updates through view and null values
	Although views are useful tool for queries, it gives serious problem if we allow insertion, deletion and updates from view. Any modification made by view must be translated to actual relations in database. It is difficult task. In some case, it is not possible Let us consider example to illustrate this.
	3.2.10 Tuple relational calculus

	4.0 Structure Query Language (SQL)
	4.1 Basic Term and Terminology
	4.2 Database Languages
	4.3 Different parts of SQL Language
	4.4 General overview of SQL:

	5.0 Integrity Constraints
	5.1 Domain Constraints
	5.2 Referential Integrity
	5.3 Assertion
	5.4 Trigger
	5.6 Functional Dependencies
	5.6.1 Application of Functional dependencies
	
	5.6.2 Types of Functional Dependencies
	5.6.3 Closure of Set of Functional Dependencies
	5.6.4 Attribute Closure

	6.0 Relational Database Design
	6.1 Pitfall of relational model
	6.2 Decomposition
	 6.3 Normalization:
	6.3.1 Needs of normalization
	6.3.2 Objectives of Normalization
	6.3.3 Properties of relation after normalization
	
	 6.3.4 Non -Normalized Relation
	6.3.5 Key and non key attribute (prime and non prime attribute)

	
	6.4 Normal Forms
	6.4.1 First Normal Form
	6.4.2 Second Normal Form
	6.4.3 Third Normal Form

	6.5 Boyce Codd Normal Form (BCNF)

