
http://www.bsccsit.com/

Computer Architecture

CSC. 201

Third Semester

Prepared By: Arjun Singh Saud

Special thanks to Mr. Arjun Singh Saud for providing this valuable note!

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 1

Chapter 1

Data representation
Number System

Number of digits used in a number system is called its base or radix. We can categorize

number system as below:

- Binary number system

- Octal Number System

- Decimal Number System

- Hexadecimal Number system

Conversion between number systems (do yourself)

Representation of Decimal numbers
We can normally represent decimal numbers in one of following two ways

- By converting into binary

- By using BCD codes

By converting into binary

Advantage

Arithmetic and logical calculation becomes easy. Negative numbers can be represented

easily.

Disadvantage

At the time of input conversion from decimal to binary is needed and at the time of

output conversion from binary to decimal is needed.

Therefore this approach is useful in the systems where there is much calculation than

input/output.

By using BCD codes

Disadvantage

Arithmetic and logical calculation becomes difficult to do. Representation of negative

numbers is tricky.

Advantage

At the time of input conversion from decimal to binary and at the time of output

conversion from binary to decimal is not needed.

Therefore this approach is useful in the systems where there is much input/output than

arithmetic and logical calculation.

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 2

Complements

(R-1)'s Complement

(R-1)'s complement of a number N is defined as (r
n
 -1) –N

Where N is the given number

 r is the base of number system

 n is the number of digits in the given number

To get the (R-1)'s complement fast, subtract each digit of a number from (R-1)

 Example

- 9's complement of 83510 is 16410

- 1's complement of 10102 is 01012(bit by bit complement operation)

R's Complement

R's complement of a number N is defined as r
n
 –N

Where N is the given number

 r is the base of number system

 n is the number of digits in the given number

To get the R's complement fast, add 1 to the low-order digit of its (R-1)'s complement

- 10's complement of 83510 is 16410 + 1 = 16510

- 2's complement of 10102 is 01012 + 1 = 01102

Representation of Negative numbers
There is only one way of representing positive numbers in computer but we can represent

negative numbers in any one of following three ways:

- Signed magnitude representation

- Signed 1’s complement representation

- Signed 2’s complement representation

Signed magnitude representation

Complement only the sign bit

e.g.

+9 ==> 0 001001

-9 ==> 1 001001

Signed 1’s complement representation

Complement all the bits including sign bit

e.g.

+9 ==> 0 001001

-9 ==> 1 110110

Signed 2’s complement representation

Take the 2's complement of the number, including its sign bit.

e.g.

+9 ==> 0 001001

-9 ==> 1 110111

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 3

Overflow Detection
If we add two n bit numbers, result may be a number with n+1 bit which cannot be stored

in n-bit register. This situation is called overflow. We can detect whether there is

overflow or not as below:

Case Unsigned numbers

Consider a 4-bit register

Maximum numbers that can be stored N<= 2
n
 -1 = 15

If there is no end carry => No overflow

e.g.

6 0110

9 1001

15 1111

If there is end carry => Overflow.

e.g.

9 1001

9 1001

 (1)0010

 Overflow

Case Signed Numbers:

Consider a 5-bit register

Maximum and Minimum numbers that can be stored -2
n-1

=< N<= +2
n-1

 -1

 -16 =<N<= +15

To detect the overflow we seed to see two carries. Carry into the sign bit position and

carry out of the sign bit position.

If both carries are same => No overflow

6 0 0110

9 0 1001

15 0 1111

Here carry in sign bit position =cn-1= 0

 carry out of sign bit position =cn= 0

(cn-1  cn) = 0 => No overflow

If both carries are different => overflow

 9 0 1001

+9 0 1001

18 1 0010

Here carry in sign bit position =cn-1= 1

 Carry out of sign bit position =cn= 0

(cn-1  cn) = 1 => overflow

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 4

Floating Point Representation

Floating points are represented in computers as the format given below:

Mantissa
 Signed fixed point number, either an integer or a fractional number

Exponent

 Designates the position of the decimal point

Decimal Value

 N = m * r
e

Where m is mantissa

 r is base

 e is exponent

Example

Consider the number N= 1324.567

Now

m = 0.1324567

e = 4

r = 10

therefore

N= m * r
e
 = 0.1324567 * 10

+4

Note:

In Floating Point Number representation, only Mantissa (m) and Exponent (e) are

explicitly represented. The position of the Radix Point is implied.

Another example

Consider the binary number N=1001.11 (6-bit exponent and 10-bit fractional mantissa)

Now

m= 100111000

e= 0 00100 = +4

r= 2

sign bit = 0

Sign Exponent mantissa

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 5

 Normalizing Floating point numbers

A number is said to be normalized if most significant position of the mantissa contains a

non-zero digit.

e.g.

m= 001001110

e= 0 00100 = +6

r= 2

Above number is not normalized

To normalize the above number we need to remove the leading zeros of mantissa and

need to subtract the exponent from the number of zeros that are removed.

i.e.

m= 1001110

e= 0 00100 = +4

Normalization improves the precision of floating point numbers.

ERROR DETECTING CODES
A parity bit(s) is an extra bit that is added with original message to detect error in the

message during data transmission. This is a simplest method for error detection.

Even Parity

One bit is attached to the information so that the total number of 1 bits is an even number

 Message Parity

 1011001 0

 1010010 1

Odd Parity

One bit is attached to the information so that the total number of 1 bits is an odd number

 Message Parity

 1011001 1

 1010010 0

Parity generator

Message (xyz) Parity bit (odd)

000 1

001 0

010 0

011 1

100 0

101 1

110 1

111 0

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 6

Now

P = x  y  z

Parity Checker:

Considers original message as well as parity bit

e = p  x  y  z

e= 1 => No. of 1’s in pxyz is even => Error in data

e= 0 => No. of 1’s in pxyz is odd => Data is error free

Circuit diagram for parity generator and parity checker

Other Decimal Codes

Decimal BCD(8421) 2421 84-2-1 Excess-3

0 0000 0000 0000 0011

1 0001 0001 0111 0100

2 0010 0010 0110 0101

3 0011 0011 0101 0110

4 0100 0100 0100 0111

5 0101 1011 1011 1000

6 0110 1100 1010 1001

7 0111 1101 1001 1010

8 1000 1110 1000 1011

9 1001 1111 1111 1100

Let d3 d2 d1 d0: symbol in the codes

BCD: d3 x 8 + d2 x 4 + d1 x 2 + d0 x 1  8421 code.

2421: d3 x 2 + d2 x 4 + d1 x 2 + d0 x 1

y

z

x  y

P = x  y  z

p  z

e

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 7

Excess-3: BCD + 3

BCD: It is difficult to obtain the 9's complement.

However, it is easily obtained with the other codes listed above → Self-complementing

codes

Gray Codes

Characterized by having their representations of the binary integers differ in only one

digit between consecutive integers

See ASCII code yourself

Decimal
number

 Gray Binary
 g3 g2 g1 g0 b3 b2 b1 b0

 0 0 0 0 0 0 0 0 0
 1 0 0 0 1 0 0 0 1
 2 0 0 1 1 0 0 1 0
 3 0 0 1 0 0 0 1 1
 4 0 1 1 0 0 1 0 0
 5 0 1 1 1 0 1 0 1
 6 0 1 0 1 0 1 1 0
 7 0 1 0 0 0 1 1 1
 8 1 1 0 0 1 0 0 0
 9 1 1 0 1 1 0 0 1
10 1 1 1 1 1 0 1 0
11 1 1 1 0 1 0 1 1
12 1 0 1 0 1 1 0 0
13 1 0 1 1 1 1 0 1
14 1 0 0 1 1 1 1 0
15 1 0 0 0 1 1 1 1

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 8

Chapter 2

Register Transfer and microoperations

Combinational and sequential circuits can be used to create simple digital systems.

These are the low-level building blocks of a digital computer. The operations on the

data in registers are called microoperations. The functions built into registers are

examples of microoperations

– Shift

– Load

– Clear

– Increment

Alternatively we can say that an elementary operation performed during one clock

pulse on the information stored in one or more registers is called microopeartion.
Register transfer language can be used to describe the (sequence of) microoperations

Register Transfer Language

Registers are designated by capital letters, sometimes followed by numbers (e.g., A,

R13, IR). Often the names indicate function:

– MAR memory address register

– PC program counter

– IR instruction register

A register transfer is indicated as “R2  R1”

Control Function

Often actions need to only occur if a certain condition is true. In digital systems, this is

often done via a control signal, called a control function.

e.g.

P: R2  R1

Which means “if P = 1, then load the contents of register R1 into register R2”, i.e., if (P =

1 then (R2  R1))

If two or more operations are to occur simultaneously, they are separated with commas

e.g.

P: R3  R5, MAR  IR

Microoperations

Computer system microoperations are of four types:

- Register transfer microoperations

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 9

Arithmetic microoperations

• The basic arithmetic microoperations are

– Addition

– Subtraction

– Increment

– Decrement

• The additional arithmetic microoperations are

– Add with carry

– Subtract with borrow

– Transfer/Load

– etc. …

 Summary of Typical Arithmetic Micro-Operations

Binary Adder

To perform multibit addition in computer a full adder must be allocated for each bit so

that all bits can be added simultaneously. Thus, to add two 4-bit numbers to produce a

4-bit sum (with a possible carry), we need four full adders with carry lines cascaded, as

shown in the figure given below. For two 8-bit numbers, we need eight full adders, which

can be formed by cascading two of these 4-bit blocks. By extension, two binary numbers

of any size may be added in this manner.

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 - R2 Contents of R1 minus R2 transferred to R3

R2  R2’ Complement the contents of R2

R2  R2’+ 1 2's complement the contents of R2 (negate)

R3  R1 + R2’+ 1 subtraction

R1  R1 + 1 Increment

R1  R1 - 1 Decrement

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 10

Binary Subtractor

The subtraction A – B can be done by taking the 2’s complement of B and adding it to A

because A- B = A + (-B). It means if we use the inverters to make 1’s complement of B

(connecting each Bi to an inverter) and then add 1 to the least significant bit (by setting

carry C0 to 1) of binary adder, then we can make a binary subtractor.

Binary Adder Subtractor

The addition and subtraction can be combined into one circuit with one common binary

adder. The mode M controls the operation. When M=0 the circuit is an adder when M=1

the circuit is Subtractor. It can be done by using exclusive-OR for each Bi and M. Note

that 1 ⊕ x = x’ and 0 ⊕ x = x

{C = carry bit, V= overflow bit}

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 11

 Binary Incrementer

The increment microoperation adds one to a number in a register. For example, if a 4-bit

register has a binary value 0110, it will go to 011 1 after it is incremented. This can be

accomplished by means of half-adders connected in cascade.

A = A +1

Binary Arithmetic Circuit

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

S1
S0
0
1
2
3

4x1
 MUX

X0

Y0

C0

C1

D0 FA

S1
S0
0
1
2
3

4x1
 MUX

X1

Y1

C1

C2

D1 FA

S1
S0
0
1
2
3

4x1
 MUX

X2

Y2

C2

C3

D2 FA

S1
S0
0
1
2
3

4x1
 MUX

X3

Y3

C3

C4

D3 FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S0

Cin

S1

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 12

If s0 and s1 both are zero mux selects the input a lebel 0 (i.e. Y= B) Then adder adds A

and Y and cin (i.e. A and B and cin)

 D = A + B if cin=0

 D = A + B+1 if cin=1

If s0 =0 and s1=1 mux selects the input at label 1 (i.e. Y= B’) Then adder adds A and Y

(i.e. A and B’ and cin)

 D = A + B’ if cin=0

 D = A + B’ +1 if cin=1

If s0 =1 and s1=0 mux selects the input at label 2 (i.e. Y= 0000) Then adder adds A and Y

(i.e. A and 0 and cin)

 D = A if cin=0

 D = A +1 if cin=1

If s0 =1 and s1=1mux selects the input at label 3 (i.e. Y= 1111= -1) Then adder adds A

and Y (i.e. A and -1 and cin)

 D = A - 1 if cin=0

 D = A if cin=1

Logic Microoperations

Logic microoperations are bit-wise operations, i.e., they work on the individual bits of

data. It is useful for bit manipulations on binary data. Useful for making logical

decisions based on the bit value. There are, in principle, 16 different logic functions

that can be defined over two binary input variables. However, most systems only

implement four of these

– AND (), OR (), XOR (), Complement/NOT

The others can be created from combination of these

S1 S0 Cin Y Output Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 B’ D = A + B’ Subtract with borrow

0 1 1 B’ D = A + B’+ 1 Subtract

1 0 0 0 D = A Transfer A

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 13

Hardware Implementation of Logic microoperations

Applications Of Logic Microoperations

Logic microoperations can be used to manipulate individual bits or a portions of a word

in a register. Consider the data in a register A. In another register, B, is bit data that will

be used to modify the contents of A

– Selective-set A  A + B

– Selective-complement A  A  B

– Selective-clear A  A • B’

– Mask (Delete) A  A • B

– Clear A  A  B

– Insert A  (A • B) + C

– Compare A  A  B

B

A

S

S

F

1

0

i

i

i
0

1

2

3

4 X 1
 MUX

Select

0 0 F = A  B AND

0 1 F = AB OR

1 0 F = A  B XOR
1 1 F = A’ Complement

S1 S0 Output -operation

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 14

Selective-set

In a selective set operation, the bit pattern in B is used to set certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 1 1 1 0 At+1 (A  A + B)

If a bit in B is set to 1, that same position in A gets set to 1, otherwise that bit in A

keeps its previous value

Selective-complement

In a selective complement operation, the bit pattern in B is used to complement

certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A  A  B)

If a bit in B is set to 1, that same position in A gets complemented from its original

value, otherwise it is unchanged

Selective-clear

n a selective clear operation, the bit pattern in B is used to clear certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 0 0 At+1 (A  A  B’)

If a bit in B is set to 1, that same position in A gets set to 0, otherwise it is unchanged

Mask Operation
In a mask operation, the bit pattern in B is used to clear certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 1 0 0 0 At+1 (A  A  B)

If a bit in B is set to 0, that same position in A gets set to 0, otherwise it is unchanged

Clear Operation

In a clear operation, if the bits in the same position in A and B are the same, they are

cleared in A, otherwise they are set in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A  A  B)

Insert Operation

An insert operation is used to introduce a specific bit pattern into A register, leaving the

other bit positions unchanged.

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 15

This is done as

– A mask operation to clear the desired bit positions, followed by

– An OR operation to introduce the new bits into the desired positions

– Example

» Suppose you wanted to introduce 1010 into the low order four bits

of A: 1101 1000 1011 0001 A (Original)

 1101 1000 1011 1010 A (Desired)

 1101 1000 1011 0001 A (Original)

 1111 1111 1111 0000 Mask

 1101 1000 1011 0000 A (Intermediate)

 0000 0000 0000 1010 Added bits

 1101 1000 1011 1010 A (Desired)

Shift Micro-Operations

There are three types of shifts

– Logical shift

– Circular shift

– Arithmetic shift

Right shift operation

Left shift operation

In a logical shift the serial input to the shift is a 0.

Serial
input

Seria
input

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 16

Logical right shift operation:

Logical left shift operation

In a Register Transfer Language, the following notation is used

– shl for a logical shift left

– shr for a logical shift right

– Examples:

» R2  shr R2

» R3  shl R3

Circular Shift operation

In a circular shift the serial input is the bit that is shifted out of the other end of the

register.

Right circular shift operation

Left circular shift operation:

In a RTL, the following notation is used

– cil for a circular shift left

– cir for a circular shift right

– Examples:

» R2  cir R2

» R3  cil R3

»

0

0

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 17

Arithmetic Shift Operation

An arithmetic shift is meant for signed binary numbers (integer). An arithmetic left shift

multiplies a signed number by two and an arithmetic right shift divides a signed number

by two. The main distinction of an arithmetic shift is that it must keep the sign of the

number the same as it performs the multiplication or division

Right arithmetic shift operation:

Left arithmetic shift operation

An left arithmetic shift operation must be checked for the overflow

In a RTL, the following notation is used

– ashl for an arithmetic shift left

– ashr for an arithmetic shift right

– Examples:

» R2  ashr R2

» R3  ashl R3

sig
bit

V
Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 18

Hardware Implementation of Shift Microoperations

S

0
 1

H0
MUX

S

0
 1

H1
MUX

S

0
 1

H2
MUX

S

0
 1

H3
MUX

Select
0 for shift right (down)
1 for shift left (up) Serial

input (IR)

A0

A1

A2

A3

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 19

Chapter 3

Basic Computer Organization and Design

Introduction
Every different processor type has its own design (different registers, buses,

microoperations, machine instructions, etc). Modern processor is a very complex

device. It contains

– Many registers

– Multiple arithmetic units, for both integer and floating point calculations

– The ability to pipeline several consecutive instructions to speed execution

– Etc.

However, to understand how processors work, we will start with a simplified

processor model. M. Morris Mano introduces a simple processor model he calls the

Basic Computer. The Basic Computer has two components, a processor and memory

• The memory has 4096 words in it

– 4096 = 2
12

, so it takes 12 bits to select a word in memory

• Each word is 16 bits long

The instructions of a program, along with any needed data are stored in memory. The

CPU reads the next instruction from memory. It is placed in an Instruction Register

(IR). Control circuitry in control unit then translates the instruction into the sequence

of microoperations necessary to implement it

Instruction Format of Basic Computer
A computer instruction is often divided into two parts

– An opcode (Operation Code) that specifies the operation for that

instruction

CPU RAM

0

4095

0 15

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 20

– An address that specifies the registers and/or locations in memory to use

for that operation

In the Basic Computer, since the memory contains 4096 (= 2
12

) words, we needs 12

bit to specify the memory address that is used by this instruction. In the Basic

Computer, bit 15 of the instruction specifies the addressing mode (0: direct

addressing, 1: indirect addressing). Since the memory words, and hence the

instructions, are 16 bits long, that leaves 3 bits for the instruction’s opcode

Addressing Modes

The address field of an instruction can represent either

– Direct address: the address operand field is effective address (the address

of the operand), or

– Indirect address: the address in operand field contains the memory address

where effective address resides.

0 ADD 45
7

2
2

Operand 45
7

1 ADD 30
0

3
5

135
0

30
0

Operand 135
0

+

AC

+

AC

Direct addressing Indirect addressing

Opcode Address

Instruction Format

1
5

1
4

1
2

0 1
1

Addressing
Mode

I

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 21

• Effective Address (EA)

– The address, where actual data resides is called effective adrress.

Basic Computer Registers

Symbol Size Register Name Description

DR 16 Data Register Holds memory operand

AR 12 Address Register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction Register Holds instruction code

PC 12 Program Counter Holds address of instruction

TR 16 Temporary Register Holds temporary data

INPR 8 Input Register Holds input character

OUTR 8 Output Register Holds output character

Since the memory in the Basic Computer only has 4096 (=2
12

) locations, PC and AR only

needs 12 bits

Since the word size of Basic Computer only has 16 bit, the DR, AC, IR and TR needs 16

bits.

The Basic Computer uses a very simple model of input/output (I/O) operations

– Input devices are considered to send 8 bits of character data to the

processor

– The processor can send 8 bits of character data to output devices

The Input Register (INPR) holds an 8 bit character gotten from an input device

The Output Register (OUTR) holds an 8 bit character to be send to an output device

Common Bus System of Basic Computer
The registers in the Basic Computer are connected using a bus. This gives a savings in

circuitry over complete connections between registers.

Three control lines, S2, S1, and S0 control which register the bus selects as its input

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory

S2 S1 S0 Register

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 22

Either one of the registers will have its load signal activated, or the memory will have

its read signal activated

– Will determine where the data from the bus gets loaded

The 12-bit registers, AR and PC, have 0’s loaded onto the bus in the high order 4 bit

positions. When the 8-bit register OUTR is loaded from the bus, the data comes from

the low order 8 bits on the bus

S1
S0

Bus

Memory unit
 4096 x 16

LD INR CLR

Address

Read Write

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

AC ALU

E

INPR

IR

LD

LD INR CLR

TR

OUTR

LD
Clock

16-bit common bus

7

1

2

3

4

5

6

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 23

Instruction Formats of Basic Computer

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)

Input-Output Instructions (OP-code =111, I = 1)

Instruction Set Completeness

An instruction set is said to be complete if it contains sufficient instructions to perform

operations in following categories:

 Arithmetic, logic, and shift instructions

 Instructions to transfer data between the main memory and the processor registers

 Program control and sequencing instructions

 Instructions to perform Input/Output operations

Instruction set of Basic computer is complete because

ADD, CMA (complement), INC can be used to perform addition and subtraction and CIR

(circular right shift), CIL (circular left shift) instructions can be used to achieve any kind

of shift operations. Addition subtraction and shifting can be used together to achieve

multiplication and division. AND, CMA and CLA (clear accumulator) can be used to

achieve any logical operations.

LDA instruction moves data from memory to register and STA instruction moves data

from register to memory.

The branch instructions BUN, BSA and ISZ together with skip instruction provide the

mechanism of program control and sequencing.

INP instruction is used to read data from input device and OUT instruction is used to

send data from processor to output device.

I Opcode Operand

15 14 12 11 0

0 111 Register Operation

15 14 12 11 0

1 111 I/O Operation

15 14 12 11 0

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 24

Control Unit
Control unit (CU) of a processor translates from machine instructions to the control

signals for the microoperations that implement them. Control units are implemented in

one of two ways

• Hardwired Control

– CU is made up of sequential and combinational circuits to generate the

control signals

– If logic is changed we need to change the whole circuitry

– Expensive

– Fast

• Microprogrammed Control

– A control memory on the processor contains microprograms that activate

the necessary control signals

– If logic is changed we only need to change the microprogram

– Cheap

– Slow

Hardwired control unit of Basic Computer

15 14 13 12 11 - 0

3 x 8
 decoder

 7 6 5 4 3 2 1 0

I
D 0

15 14 2 1 0
4 x 16
 decoder

4-bit
 sequence

 counter
 (SC)

Increment (INR)

Clear (CLR)

Clock

Other inputs

D

T

T

7

15

0

Combinational
Control

logic

Instructions register (IR)

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 25

Operation code is decoded by 3 x 8 decoder which is used to identify the operation. A

4-bit sequence counter is used to generate timing signals from T0 to T15. This means

instruction cycle of basic computer cannot take more than 16 clock cycles.

Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC  0

We can show timing control diagram as below:

Instruction Cycle of Basic Computer
In Basic Computer, a machine instruction is executed in the following cycle:

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory if the instruction has an indirect

address

4. Execute the instruction

After an instruction is executed, the cycle starts again at step 1, for the next

instruction

Fetch and Decode

T0: AR PC (S0S1S2=010, T0=1)

T1: IR  M [AR], PC  PC + 1 (S0S1S2=111, T1=1)

T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 26

S2

S1

S0

Bus

7
Memory
 unit

Address

Read

AR

LD

PC

INR

IR

LD Clock

1

2

5

Common bus

T1

T0

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 27

Flowchart for determining the type of instruction

D'7IT3: AR M[AR]

D'7I'T3: Nothing

D7I'T3: Execute a register-reference instr.

D7IT3: Execute an input-output instr.

Register Reference Instructions are identified when

- D7 = 1, I = 0

- Register Ref. Instr. is specified in b0 ~ b11 of IR

- Execution starts with timing signal T3

let

r = D7 IT3 => Register Reference Instruction

Bi = IR(i) , i=0,1,2,...,11

= 0 (direct)

Start

SC 

AR  PC T0

IR  M[AR], PC  PC + 1 T1

AR  IR(0-11), I IR(15)
Decode Opcode in IR(12-14), T2

D7
= 0 (Memory-reference) (Register or I/O) = 1

I I

Execute
 register-reference

 instruction
 SC  0

Execute
 input-output

 instruction
 SC  0

M[AR] AR Nothing

= 0 (register) (I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute
 memory-reference

 instruction
SC  0

T4

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 28

CLA rB11: AC  0, SC  0

CLE rB10: E  0, SC  0

CMA rB9: AC  AC’, SC  0

CME rB8: E  E’, SC  0

CIR rB7: AC  shr AC, AC(15)  E, E  AC(0), SC  0

CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)

INC rB5: AC  AC + 1, SC  0

SPA rB4: if (AC(15) = 0) then (PC  PC+1), SC  0

SNA rB3: if (AC(15) = 1) then (PC  PC+1), SC  0

SZA rB2: if (AC = 0) then (PC  PC+1), SC  0

SZE rB1: if (E = 0) then (PC  PC+1), SC  0

HLT rB0: S  0, SC  0 (S is a start-stop flip-flop)

The effective address of the instruction is in AR and was placed there during

 timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to complete in a CPU cycle

- The execution of memory reference instruction starts with T4

AND to AC

D0T4: DR  M[AR] //Read operand

D0T5: AC  AC  DR, SC  0 //AND with AC

ADD to AC

D1T4: DR  M[AR] //Read operand

D1T5: AC  AC + DR, E  Cout, SC  0 //Add to AC and stores carry in E

LDA: Load to AC

D2T4: DR  M[AR] //Read operand

D2T5: AC  DR, SC  0 //Load AC with DR

STA: Store AC

Symbol
Operation
Decoder Symbolic Description

AND D0 AC  AC  M[AR]

ADD D1 AC  AC + M[AR], E  Cout

LDA D2 AC  M[AR]

STA D3 M[AR]  AC

BUN D4 PC  AR

BSA D5 M[AR]  PC, PC  AR + 1

ISZ D6 M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 29

D3T4: M[AR]  AC, SC  0 // store data into memory location

BUN: Branch Unconditionally

D4T4: PC  AR, SC  0 //Branch to specified address

BSA: Branch and Save Return Address

D5T4: M[AR]  PC, AR  AR + 1 // save return address and increment AR

D5T5: PC  AR, SC  0 // load PC with AR

ISZ: Increment and Skip-if-Zero

D6T4: DR  M[AR] //Load data into DR

D6T5: DR  DR + 1 // Increment the data

D6T4: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0

// if DR=0 skip next instruction by incrementing PC

Input-Output Configuration and Interrupt

INPR Input register - 8 bits

OUTR Output register - 8 bits

FGI Input flag - 1 bit

FGO Output flag - 1 bit

IEN Interrupt enable - 1 bit

The terminal sends and receives serial information

- The serial info. from the keyboard is shifted into INPR

- The serial info. for the printer is stored in the OUTR

- INPR and OUTR communicate with the terminal serially and with the AC in

parallel.

Input-output
 terminal

Serial
 communication

 interface

Computer
registers and
flip-flops
 Printer

Keyboard

Receiver
 interface

Transmitter
 interface

FGO OUTR

AC

INPR FGI

Serial Communications Path

Parallel Communications Path

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 30

- The flags are needed to synchronize the timing difference between I/O device and

the computer

CPU:

/* Input */ /* Initially FGI = 0 */

 loop: If FGI = 0 goto loop

 AC  INPR, FGI  0

Input Device:

loop: If FGI = 1 goto loop

 INPR  new data, FGI  1

Flowchart of CPU operation

CPU:

/* Output */ /* Initially FGO = 1 */

 loop: If FGO = 0 goto loop

 OUTR  AC, FGO  0

Output Device:

loop: If FGO = 1 goto loop

 consume OUTR, FGO  1

Start Input

FGI  0

FGI=0

AC  INPR

More
Character

END

yes

no

FGI=0

yes

no

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 31

Flowchart of CPU operation (output)

Input Output Instructions

Let

D7IT3 = p

IR(i) = Bi, i = 6, …, 11

INP pB11: AC(0-7)  INPR, FGI  0, SC  0 Input char. to AC

OUT pB10: OUTR  AC(0-7), FGO  0, SC  0 Output char. from AC

SKI pB9: if(FGI = 1) then (PC  PC + 1), SC  0 Skip on input flag

SKO pB8: if(FGO = 1) then (PC  PC + 1), SC  0 Skip on output flag

ION pB7: IEN  1, SC  0 Interrupt enable on

IOF pB6: IEN  0, SC  0 Interrupt enable off

Start Output

FGO  0

FGO=0

More
Character

END

OUTR  AC

AC  Data

yes

no

FGO=1

yes

no

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 32

Interrupt Cycle

The interrupt cycle is a HW implementation of a branch and save return address

operation.

- At the beginning of the instruction cycle, the instruction that is read from

memory is in address 1.

- At memory address 1, the programmer must store a branch instruction

 that sends the control to an interrupt service routine

- The instruction that returns the control to the original program is

"indirect BUN 0"

R = Interrupt flip-flop

Store return address

R
=
1

=
0

in location 0
 M[0]  PC

Branch to location 1
 PC  1

IEN  0

 R  0

Interrupt cycle Instruction cycle

Fetch and decode
 instructions

IE
N

FG
I

FG
O

Execute
 instructions

R  1

=
1

=
1

=
1

=
0

=
0

=
0

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 33

Complete description of Basic Computer

 After interrupt cycle

0 BUN 1120

0

1

PC = 256
255

1 BUN 0

 Before interrupt

Main
 Program

1120

I/O
 Program

0 BUN 1120

0

PC = 1

 256
255

1 BUN 0

Main
 Program

1120

I/O
 Program

256

=1 (I/O) =0 (Register) =1(Indir) =0(Dir)

start

SC  0, IEN  0, R  0

R

AR  PC

R’T0

IR  M[AR], PC  PC + 1

R’T1

AR  IR(0~11), I  IR(15)

D0...D7  Decode IR(12 ~ 14)

R’T2

AR  0, TR 
PC

RT0

M[AR]  TR, PC  0

RT1

PC  PC + 1, IEN  0

R  0, SC  0

RT2

D

I I

Execute
I/O

Instruction

Execute
RR

Instruction

AR <- M[AR] Idle

D7IT3 D7I’T3 D7’IT3
D7’I’T3

Execute MR
Instruction

=0(Instruction Cycle) =1(Interrupt Cycle)

=1(Register or I/O) =0(Memory Ref)

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 34

Design of Basic Computer

Hardware Components of BC

A memory unit: 4096 x 16.

Registers:

 AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC

Flip-Flops(Status):

 I, S, E, R, IEN, FGI, and FGO

Decoders: a 3x8 Opcode decoder

 a 4x16 timing decoder

Common bus: 16 bits

Control logic gates:

Adder and Logic circuit connected to AC

Control Logic Gates

- Input Controls of the nine registers

- Read and Write Controls of memory

- Set, Clear, or Complement Controls of the flip-flops

- S2, S1, S0 Controls to select a register for the bus

- AC, and Adder and Logic circuit

Control of AR register

Scan all of the register transfer statements that change the content of AR:

R’T0: AR  PC LD(AR)

R’T2: AR  IR(0-11) LD(AR)

D’7IT3: AR  M[AR] LD(AR)

RT0: AR  0 CLR(AR)

D5T4: AR  AR + 1 INR(AR)

Now,

LD(AR) = R'T0 + R'T2 + D'7IT3

CLR(AR) = RT0

INR(AR) = D5T4

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 35

Control of IEN Flip-Flop

pB7: IEN  1 (I/O Instruction)

pB6: IEN  0 (I/O Instruction)

RT2: IEN  0 (Interrupt)

=>

Set (IEN) = pB7

Clear(IEN) = pB6 + RT2

p = D7IT3 (Input/Output Instruction)

Control of Common Bus

16-bit common bus is controlled by three selection inputs S2, S1 and S0. The decimal

number associated with each component of the bus determines the equivalent binary

number that must be applied to the selection inputs to select the registers. This is

described by the truth table given below:

AR

LD

IN
R CLR

Clock

To bus
1
2

From bus
1
2 D'

I

T
T

R

T

D

T

7

3
2

0

4

D

I

T3

7

J

K

Q IE
N

p

B 7

B 6

T 2

R

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 36

To find the logic that makes x1=1 we scan and extract all the statements that use AR as

source.

D4T4: PC  AR

D5T5: PC  AR

=>

x1 = D4T4 + D5T5

Control of AC Register

All the statements that change the content of AC

D0T5: AC  AC  DR AND with DR

D1T5: AC  AC + DR Add with DR

D2T5: AC  DR Transfer from DR

pB11: AC(0-7)  INPR Transfer from INPR

rB9: AC  AC Complement

rB7 : AC  shr AC, AC(15)  E Shift right

rB6 : AC  shl AC, AC(0)  E Shift left

rB11 : AC  0 Clear

rB5 : AC  AC + 1 Increment

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0

Selected
Register
 0 0 0 0 0 0 0 0 0 0 none

1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

x1

x2

x3

x4

x5

x6

x7

Encoder

S 2

S 1

S 0

Multiplexer
 bus select
 inputs

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 37

=>

LD(AC) = D0T5 + D1T5 + D2T5 + pB11 + rB9+ rB7 + rB6

CLR(AC) = rB11

INR (AC) = rB5

AC

LD

INR

CLR

Clock

To
bus

16 From Adder
 and Logic

16

AND

ADD

DR

INPR

COM

SHR

SHL

INC

CLR

D 0

D 1

D 2

B 11

B 9

B 7

B 6

B 5

B 11

r

p

T 5

T 5

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 38

Chapter 4

Microprogrammed control

Terminologies

Microprogram

 Program stored in memory that generates all the control signals required to

execute the instruction set correctly

 Consists of microinstructions

Microinstruction

 Contains a control word and a sequencing word

 Control Word – contains all the control information required for one clock cycle

 Sequencing Word - Contains information needed to decide the next

microinstruction address

Control Memory(Control Storage: CS)

 Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory(Writeable Control Storage:WCS)

 CS whose contents can be modified:

 -> Microprogram can be changed

 -> Instruction set can be changed or modified

Dynamic Microprogramming

 Computer system whose control unit is implemented with a microprogram in

WCS.

 Microprogram can be changed by a systems programmer or a user

Control Address Register:

 Control address register contains address of microinstruction

Control Data Register:

 Control data register contains microinstruction

Sequencer:

 The device or program that generates address of next microinstruction to be

executed is called sequencer.

Address Sequencing
Process of finding address of next micro-instruction to be executed is called address

sequencing. Address sequencer must have capabilities of finding address of next micro-

instruction in following situations:

 In-line Sequencing

 Unconditional Branch

 Conditional Branch

 Subroutine call and return

 Looping

 Mapping from instruction op-code to address in control memory.

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 39

Fig: Block diagram of address sequencer.

 Control address register receives address of next micro instruction from different

sources.

 Incrementer simply increments the address by one

 In case of branching branch address is specified in one of the field of

microinstruction.

 In case of subroutine call return address is stored in the register SBR which is

used when returning from called subroutine.

Conditional Branch

If Condition is true, set the appropriate field of status register to 1. Conditions are

tested for O (overflow), N (negative), Z (zero), C (carry), etc.

Then test the value of that field if the value is 1 take branch address from the next

address field of the current microinstruction)

Otherwise simple increment the address.

Unconditional Branch

Fix the value of one status bit at the input of the multiplexer to 1. So that always

branching is done

Instruction code

Mapping Logic

Multiplexers

Control memory (ROM)

Subroutine
register
(SBR)

Branch

 logic

Status
bits

Microoperations

Control address register
 (CAR)

Incrementer

MUX
 select

select a status
 bit

Branch address

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 40

Mapping:

Mapping from the OP-code of an instruction to the address of the Microinstruction

which is the starting microinstruction of its subroutine in memory

Direct mapping:

Directly use opcode as address of Control memory

Another approach of mapping:

Modify Opcode to use it as an address of control memory

Mapping function implemented by ROM or PLA

Use opcode as address of ROM where address of control memory is stored and than use

that address as an address of control memory.

ADD Routine
AND Routine

LDA Routine

STA Routine
BUN Routine

Control
Storage

0000
0001
0010
0011
0100

OP-codes of Instructions

 ADD
 AND
 LDA
 STA
 BUN

0000
0001
0010
0011
0100

.

.

.

Address

OP-code

Mapping bits

 Microinstruction
 address

 0 x x x x 0 0

 0 1 0 1 1 0 0

 Machine
Instruction

1 0 1 1 Address

OP-code

Mapping memory
 (ROM or PLA)

Control address register

Control Memory

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 41

 Microinstruction Format

 F1, F2, F3: Microoperation fields

 CD: Condition for branching

 BR: Branch field

 AD: Address field

Description of CD

Description of BR

Symbolic Microinstruction

Symbols are used in microinstructions as in assembly language. A symbolic

mcroprogram can be translated into its binary equivalent y a microprogram assembler.

Format of Microinstruction:

Contains five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic address terminated with a colon

Micro-ops: consists of one, two, or three symbols separated by commas

CD Condition Symbol Comments
00 Always = 1 U Unconditional branch
01 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC
11 AC = 0 Z Zero value in AC

F1 F2 F3 CD BR AD

3 3 3 2 2 7

BR Symbol Function

00 JMP CAR  AD if condition = 1

 CAR  CAR + 1 if condition = 0

01 CALL CAR  AD, SBR  CAR + 1 if condition = 1

 CAR  CAR + 1 if condition = 0

10 RET CAR  SBR (Return from subroutine)

11 MAP CAR (2-5)  DR (11-14), CAR (0, 1, 6)  0

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 42

CD: one of {U, I, S, Z}, where U: Unconditional Branch

 I: Indirect address bit

 S: Sign of AC

 Z: Zero value in AC

BR: one of {JMP, CALL, RET, MAP}

AD: one of {Symbolic address, NEXT, empty (in case of MAP and RET)}

Symbolic Microprogram (example)
Sequence of microoperations in the fetch cycle:

AR  PC

DR  M[AR], PC  PC + 1

AR  DR(0-10), CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Symbolic microprogram for the fetch cycle:

 ORG 64

FETCH: PCTAR U JMP NEXT

 READ, INCPC U JMP NEXT

 DRTAR U MAP

Binary equivalents translated by an assembler

Binary

Address F1 F2 F3 CD BR AD

1000000 110 000 000 00 00 1000001

1000001 000 100 101 00 00 1000010

1000010 101 000 000 00 11 00000

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 43

Microprogram Sequencer

3 2 1 0

S1 MUX
1

External
 (MAP

)

SB
R

Load

Incrementer

CAR

Input
 logic

I0

T

MUX2

Select

1
 I
S
Z

Test

Clock

Control memory

Microops C
D

B
R

A
D

L

I1

S0

.

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 44

MUX-1 selects an address from one of four sources and routes it into a CAR

 - In-Line Sequencing  CAR + 1

 - Branch, Subroutine Call  Take address from AD field

 - Return from Subroutine  Output of SBR

 - New Machine instruction  MAP

MUX-2 Controls the condition and branching as below

Input Logic

I0I1T Meaning Source of Address S1S0 L

 000 In-Line CAR+1 00 0
 001 JMP CS (AD) 10 0
 010 In-Line CAR+1 00 0
 011 CALL CS (AD) and SBR <- CAR+1 10 1
 10x RET SBR 01 0
 11x MAP DR (11-14) 11 0

S0 = I0

S1 = I0I1 + I0’T

L = I0’I1T

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 45

F Field Decoding

Since there are three microoperation fields we need 3 decoders. Only some of the outputs

of decoders are shown to be connected to their output. Each of the output of the decoders

must be connected to the proper circuit to initiate the corresponding microoperation. For

example when F1=101 the next clock pulse transition transfers content of DR(0-10) to

AR (Symbolized by DRTAC). Similarly other operations are also performed.

 microoperation fields

3 x 8 decoder

7 6 5 4 3 2 1 0

F
1

3 x 8 decoder

7 6 5 4 3 2 1 0

F
2

3 x 8 decoder

7 6 5 4 3 2 1 0

F
3

Arithmetic
 logic and
 shift unit

AND
ADD

DRTAC

AC
Load

From
 PC

From
 DR(0-10)

Select 0 1

Multiplexers

AR
Load Clock

AC

DR

D
R
T
A
R

P
C
T
A
R

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 46

Chapter 5

CENTRAL PROCESSING UNIT

Bus System and CPU

A bus organization for 7 CPU registers can be shown as below:

All registers are connected to two multiplexers (MUXA and MUXB) that select the

registers for bus A and bus B. Registers selected by multiplexers are sent to ALU.

Another selector (OPR) connected to ALU selects the operation for the ALU. Output

produced by CPU is stored in some register and the destination register for storing the

result is activated by the destination decoder (SELD).

Example: R1  R2 + R3

– MUX A selector (SELA): BUS A  R2

– MUX B selector (SELB): BUS B  R3

– ALU operation selector (OPR): ALU to ADD

– Decoder destination selector (SELD): R1  Out Bus

MUX A SELA { MUX B } SELB

ALU OPR

R1

R2

R3

R4

R5

R6

R7

Input

3 x 8
 decoder

SELD

Load
 (7 lines)

Output

A bus B bus

Clock

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 47

Control word

Combination of all selection bits of a unit is called control word. Control Word for above

CPU is as below

Examples of Microoperations for CPU

Register Stack

It is the collection of finite number of registers. Stack pointer (SP) points to the register

that is currently at the top of stack.

SELA SELB SELD OP
R

3 3 3 5

R1  R2  R3 R2 R3 R1 SUB 010 011 001 00101

R4  R4  R5 R4 R5 R4 OR 100 101 100 01010

R6  R6 + 1 R6 - R6 INCA 110 000 110 00001

R7  R1 R1 - R7 TSFA 001 000 111 00000

Output  R2 R2 - None TSFA 010 000 000 00000

Output  Input Input - None TSFA 000 000 000 00000

R4  shl R4 R4 - R4 SHLA 100 000 100 11000

R5  0 R5 R5 R5 XOR 101 101 101 01100

 Symbolic Designation
Microoperation SELA SELB SELD OPR Control Word

A

B

C

0

1

2

3

4

6
3

Address

FULL EMPTY

SP

D
R

Flags

 Stack pointer

stack

6 bits

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 48

/* Initially, SP = 0, EMPTY = 1(true), FULL = 0(false) */

Push Pop

SP  SP + 1 DR  M[SP]

M[SP]  DR SP  SP  1

If (SP = 0) then (FULL  1) If (SP = 0) then (EMPTY  1)

EMPTY  0 FULL  0

Memory Stack

A portion of memory is used as a stack with a processor register as a stack pointer

PUSH:

SP  SP - 1

M[SP]  DR

POP:

DR  M[SP]

SP  SP + 1

400
1

400
0

399
9

399
8

399
7

300
0

Data
 (Operands)

Program
 (Instructions)

100
0

P
C

AR

S
P Stack

Stack grows
In this direction

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 49

PROCESSOR ORGANIZATION

 In general, most processors are organized in one of 3 ways

– Single register (Accumulator) organization

» Basic Computer is a good example

» Accumulator is the only general purpose register

» Uses implied accumulator register for all operations

 E.g.

 ADD X // AC  AC + M[X]

 LDA Y // AC  M[Y]

– General register organization

» Used by most modern computer processors

» Any of the registers can be used as the source or destination for

computer operations

 e.g.

 ADD R1, R2, R3 // R1  R2 + R3

 ADD R1, R2 // R1  R1 + R2

 MOV R1, R2 // R1  R2

 ADD R1, X // R1  R1 + M[X]

– Stack organization

» All operations are done with the stack

» For example, an OR instruction will pop the two top elements from

the stack, do a logical OR on them, and push the result on the stack

 e.g.

 PUSH X // TOS  M[X]

 ADD // TOS=TOP(S) + TOP(S)

Types of instruction:

The number of address fields in the instruction format depends on the internal

organization of CPU. On the basis of no. of address field we can categorize the

instruction as below:

• Three-Address Instructions

 Program to evaluate X = (A + B) * (C + D):

 ADD R1, A, B // R1  M [A] + M [B]

 ADD R2, C, D // R2  M[C] + M [D]

 MUL X, R1, R2 // M[X]  R1 * R2

 Results in short programs

 Instruction becomes long (many bits)

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 50

• Two-Address Instructions
 Program to evaluate X = (A + B) * (C + D) :

 MOV R1, A // R1  M [A]

 ADD R1, B // R1  R1 + M [A]

 MOV R2, C // R2  M[C]

 ADD R2, D // R2  R2 + M [D]

 MUL R1, R2 // R1  R1 * R2

 MOV X, R1 // M[X]  R1

 Tries to minimize the size of instruction

 Size of program is relative larger.

• One-Address Instructions

 Use an implied AC register for all data manipulation

 Program to evaluate X = (A + B) * (C + D):

 LOAD A // AC  M [A]

 ADD B // AC  AC + M [B]

 STORE T // M [T]  AC

 LOAD C // AC  M[C]

 ADD D // AC  AC + M [D]

 MUL T // AC  AC * M [T]

 STORE X // M[X]  AC

 Memory access is only limited to load and store

 Large program size

• Zero-Address Instructions

 Can be found in a stack-organized computer

 Program to evaluate X = (A + B) * (C + D):

 PUSH A // TOS  A

 PUSH B // TOS  B

 ADD // TOS  (A + B)

 PUSH C // TOS  C

 PUSH D // TOS  D

 ADD // TOS  (C + D)

 MUL // TOS  (C + D) * (A + B)

 POP X // M[X]  TOS

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 51

On the basis of type of operation performed by instruction we can categorize

instructions as below:

 Data transfer instructions

Used for transferring data from memory to register, register to memory,

register to register, memory to memory, input device to register and from

register to output device.

Load LD  Transfers data from memory to CPU

Store ST  Transfers data from CPU to memory

Move MOV  Transfers data from memory to memory

Input IN  transfers data from input device to register

 Data manipulation instructions

Used for performing any type of calculations on data.

Data manipulation instructions can be further divided into three types:

 Arithmetic instructions

Examples

Operation Symbol

Increment INC

Decrement DEC

Add ADD

Subtract SUB

 Logical and bit manipulation instructions

Some examples:

Operation Symbol

Complement COM

AND AND

OR OR

Exclusive-OR XOR

 Shift instructions

Some examples:

Operation symbol

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 52

 Program Control Instructions

 Used for controlling the execution flow of programs

 Some examples:

 Branch BR

 Jump JMP

 Skip SKP

 Call CALL

 Return RTN

Addressing Modes
Specifies a rule for interpreting or modifying the address field of the instruction

before the operand is actually referenced.

We use variety of addressing modes:

 To give programming flexibility to the user

 To use the bits in the address field of the instruction efficiently

Types of addressing modes:

• Implied Mode

 Address of the operands are specified implicitly in the definition of the

instruction

 - No need to specify address in the instruction

 - Examples from Basic Computer CLA, CME, INP

 ADD X;

 PUSH Y;

• Immediate Mode

Instead of specifying the address of the operand, operand itself is specified in the

instruction.

 - No need to specify address in the instruction

 - However, operand itself needs to be specified

 - Sometimes, require more bits than the address

 - Fast to acquire an operand

• Register Mode

 Address specified in the instruction is the address of a register

 - Designated operand need to be in a register

 - Shorter address than the memory address

PC

+1
In-Line Sequencing (Next instruction is fetched from
the next adjacent location in the memory)

Address from other source: Current Instruction, Stack,
etc; Branch, Conditional Branch, Subroutine, etc

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 53

 - Saving address field in the instruction

 - Faster to acquire an operand than the memory addressing

• Register Indirect Mode

 Instruction specifies a register which contains the memory address of the operand

– Saving instruction bits since register address is shorter than the memory

address

– Slower to acquire an operand than both the register addressing or memory

addressing

– EA= content of R.

• Autoincrement or Autodecrement Mode

– When the address in the register is used to access memory, the value in the

register is incremented or decremented by 1 automatically. i.e in case of

register indirect mode.

• Direct Address Mode

 Instruction specifies the memory address which can be used directly to access the

 Memory

– Faster than the other memory addressing modes

– Too many bits are needed to specify the address for a large physical

memory Space

– EA= IR(address)

• Indirect Addressing Mode

– The address field of an instruction specifies the address of a memory

location that contains the address of the operand

– When the abbreviated address is used large physical memory can be

addressed with a relatively small number of bits

– Slow to acquire an operand because of an additional memory access

– EA= M[IR (address)]

• Relative Addressing Modes

 The Address fields of an instruction specifies the part of the address which can be

used along with a designated register to calculate the address of the operand

 - Address field of the instruction is short

 - Large physical memory can be accessed with a small number of address bits

 3 different Relative Addressing Modes:

 * PC Relative Addressing Mode

 - EA = PC + IR(address)

 * Indexed Addressing Mode

 - EA = IX + IR(address) { IX is index register }

 * Base Register Addressing Mode

 - EA = BAR + IR(address)

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 54

Addressing modes (Example)

 200

 201

 202

 399

 400

 500

 600

 702

 800

Direct address 500 // AC  M[500]

Value = 800

Immediate operand // AC  500

Value = 500

Indirect address 500 // AC  M[M[500]]

Value = 300

Relative address 500 // AC  M[PC+500]

Value = 325

Indexed address 500 // AC  (IX+500)

Value = 900

Register 500 // AC  R1

400

Register indirect 500 // AC  M[R1]

Value = 700

Autoincrement 500 // AC  (R1)

Value = 700

Autodecrement 399 /* AC  -(R) */

RISC and CISC

LOAD TO AC mode

Address = 500

Next Instruction

450

700

800

900

325

300

PC =200

R=400

IX =100

AC

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 55

Complex Instruction Set Computer (CISC):

Computers with many instructions and addressing modes came to be known as Complex

Instruction Set Computers (CISC).One goal for CISC machines was to have a machine

language instruction to match each high-level language statement type so that job of

compiler writer becomes easy. Characteristics of CISC computers are:

– The large number of instructions and addressing modes led CISC machines to

have variable length instruction formats

– Multiple operand instructions could specify different addressing modes for each

operand

– Variable length instructions greatly complicate the fetch and decode problem for a

processor

– They have instructions that act directly on memory addresses due to which

multiple memory cycle are needed for executing instructions.

– Microprogrammed control is used rather than hardwired

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computers (RISC) were proposed as an alternative The

underlying idea behind RISC processors is to simplify the instruction set and reduce

instruction execution time. Characteristics of RISC are:

– Few instructions

– Few addressing modes

– Only load and store instructions access memory

– All other operations are done using on-processor registers

– Fixed length instructions

– Single cycle execution of instructions

– The control unit is hardwired, not microprogrammed

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 56

Register Overlapped Windows:
The procedure (function) call/return is the most time-consuming operations in typical

HLL programs. The depth of procedure activation is within a relatively narrow range.

If we use multiple small sets of registers (windows), each assigned to a different

procedure, a procedure call automatically switches the CPU to use a different window

of registers, rather than saving registers in memory. Windows for adjacent procedures

are overlapped to allow parameter passing.

R31

R26

R15

R10

R25

R16

Common
to D and A

Local to D

Common to C and D

Local to C

Common to B and C

Local to B

Common to A and B

Local to A

Common to A and D

Proc D

Proc C

Proc B

Proc A R9

R0

Common to all
 procedures

Global

R31

R26

R41

R32

R47

R42

R47

R42

R57

R48

R63

R58

R63

R58

R73

R64

R15

R10

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 57

There are three classes of registers:

– Global Registers

» Available to all functions

– Window local registers

» Variables local to the function

– Window shared registers

» Permit data to be shared without actually needing to copy it

Only one register window is active at a time. The active register window is indicated by a

pointer. When a function is called, a new register window is activated. This is done by

incrementing the pointer. When a function calls a new function, the high numbered

registers of the calling function window are shared with the called function as the low

numbered registers in its register window. This way the caller’s high and the called

function’s low registers overlap and can be used to pass parameters and results

The advantage of overlapped register windows is that the processor does not have to push

registers on a stack to save values and to pass parameters when there is a function call.

This saves

– Accesses to memory to access the stack.

– The cost of copying the register contents at all

And, since function calls and returns are so common, this results in a significant savings

relative to a stack-based approach

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 58

Chapter 7

Input-Output Organization
I/O subsystem

The input-output subsystem (also referred as I/O) proves an efficient mode of

communication between the central system and outside environment. Data and programs

must be entered into the computer memory for processing and result of processing must

be must be recorded or displayed for the user

Peripheral devices

Any input/output devices connected to the computer are called peripheral devices.

Input Devices

- Keyboard

- Card Reader

- Digitizer

- Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

-

Input-Output Interface

• Provides a method for transferring information between internal storage (such as

memory and CPU registers) and external I/O devices

• Resolves the differences between the computer and peripheral devices

– Peripherals - Electromechanical Devices, CPU or Memory - Electronic

Device

– Data Transfer Rate

» Peripherals - Usually slower

» CPU or Memory - Usually faster than peripherals

• Some kinds of Synchronization mechanism may be needed

– Unit of Information

» Peripherals – Byte, Block, …

» CPU or Memory – Word

– Data representations may differ

Output Devices

- CRT

- Printer (Impact, Ink Jet, Laser, Dot Matrix)

- Plotter

- Voice input devices

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 59

I/O bus and interface modules

I/O bus from the processor is connected to all peripheral interfaces. To communicate with

a particular device, the processor places a device address on the address lines. Each

peripheral has an interface module associated with its interface. Functions of an interface

are as below:

- Decodes the device address (device code)

- Decodes the I/O commands (operation or function code)

- Provides signals for the peripheral controller

- Synchronizes the data flow and

- Supervises the transfer rate between peripheral and CPU or Memory

Types of I/O command

Control command:-Issued to activate the peripheral and to inform it what to do?

Status command:-Used to check the various status conditions of the interface before a

transfer is initiated

Data input command:-Cause the interface to read the data from the peripheral and place it

into the interface buffer.

Data output command:-Causes the interface to read the data from the bus and save it into

the interface buffer

I/O bus and memory bus

Memory bus is used for information transfers between CPU and the MM (main memory).

I/O bus is for information transfers between CPU and I/O devices through their I/O

interface

Physical Organizations
Many computers use a common single bus system for both memory and I/O interface

units

- Use one common bus but separate control lines for each function

- Use one common bus with common control lines for both functions

Processor

Interface

Keyboard and

Display

terminal

Interface

Printer

Interface

Magnetic

dsk

Interface

Magnetic

Tape

Data

Address

Control

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 60

Some computer systems use two separate buses,

- One to communicate with memory and the other with I/O interfaces

I/O Bus

Communication between CPU and all interface units is via a common I/O bus. An

interface connected to a peripheral device may have a number of data registers, a control

register, and a status register. A command is passed to the peripheral by sending to the

appropriate interface register

Isolated vs. Memory mapped I/O

Isolated I/O

- Separate I/O read/write control lines in addition to memory read/write control

lines

- Separate (isolated) memory and I/O address spaces

- Distinct input and output instructions

Memory-mapped I/O

- A single set of read/write control lines (no distinction between memory and I/O

transfer)

- Memory and I/O addresses share the common address space

 reduces memory address range available

- No specific input or output instruction

 The same memory reference instructions can be used for I/O transfers

- Considerable flexibility in handling I/O operations

IO Interface Unit

Interface communicates with the CPU through the data bus. The chip select and register

select inputs determine the address assigned to the interface. Control lines I/O read and

write are used to specify the input and output respectively. Bidirectional lines represent

both data in and out from the CPU. Information in each port can be assigned a meaning

Chip select

Register select

Register select

I/O read

I/O write

CS

RS1

RS0

RD

WR

Timing
 and

 Control

Bus
 buffers

Bidirectional
 data bus

Port A
 register

Port B
 register

Control
 register

Status
 register

I/O data

I/O data

Control

Status

In
te
rn
al
b
us

CPU I/O
Device

 0 x x None - data bus in high-impedence
 1 0 0 Port A register
 1 0 1 Port B register
 1 1 0 Control register
 1 1 1 Status register

CS RS1 RS0 Register selected

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 61

depending on the mode of operation of the I/O device: Port A = Data; Port B =Command;

Port C = Status. CPU initializes (loads) each port by transferring a byte to the Control

Register. CPU can define the mode of operation of each port

Modes of I/O transfer
Three different Data Transfer Modes between the central computer (CPU or Memory)

and peripherals;

- Program-Controlled I/O

- Interrupt-Initiated I/O

- Direct Memory Access (DMA)

Program-Controlled I/O (Input Dev to CPU)

- Continuous CPU involvement

- CPU slowed down to I/O speed

- Simple

- Least hardware

Interrupt Initiated I/O

- Polling takes valuable CPU time

- Open communication only when some data has to be passed -> Interrupt.

- I/O interface, instead of the CPU, monitors the I/O device

- When the interface determines that the I/O device is ready for data transfer, it

generates an Interrupt Request to the CPU

- Upon detecting an interrupt, CPU stops momentarily the task it is doing, branches

to the service routine to process the data transfer, and then returns to the task it

was performing

DMA (Direct Memory Access)
Large blocks of data transferred at a high speed to or from high speed devices, magnetic

drums, disks, tapes, etc.

- DMA controller (Interface) provides I/O transfer of data directly to and from the

memory and the I/O device

- CPU initializes the DMA controller by sending a memory address and the number

of words to be transferred

Polling or Status Checking

Read status register

Read Data register,Transfer data to

Operation
 Complete?

Continue with
 program

=

=

ye

n

Check flag bit

flag

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 62

- Actual transfer of data is done directly between the device and memory through

DMA controller freeing CPU for other tasks

- DMA works by stealing the CPU cycles

Cycle Stealing:

- While DMA I/O takes place, CPU is also executing instructions

- DMA Controller and CPU both access Memory which causes memory Access

Conflict

- Memory Bus Controller is responsible for coordinating the activities of all devices

requesting memory access by using priority schemes

- Memory accesses by CPU and DMA Controller are interwoven; with the top

priority given to DMA Controller which is called cycle Stealing

- CPU is usually much faster than I/O(DMA), thus CPU uses the most of the

memory cycles

- DMA Controller steals the memory cycles from CPU for those stolen cycles, CPU

remains idle

- For those slow CPU, DMA Controller may steal most of the memory cycles which

may cause CPU remain idle long time

DMA Transfer

BG

BR

CPU

RD WR Addr Data

Interrupt

Random-access
 memory unit (RAM)

RD WR Addr Data

BR

BG

RD WR Addr Data

Interrupt

DS

RS DMA
 Controller

I/O
 Peripheral

 device

DMA request

DMA ack.

Read control

Write control

Data bus

Address bus

Address
 select

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 63

CPU executes instruction to

 Load Memory Address Register

 Load Word Counter

 Load Function(Read or Write) to be performed

 Issue a GO command

Upon receiving a GO Command DMA performs I/O operation as follows independently

from CPU

Input

– Send read control signal to Input Device

– DMA controller collects the input from input device byte by bye and assembles

the byte into a word until word is full

– Send write control signal to memory

– Increment address register (Address Reg <- Address Reg +1)

– Decrement word count (WC <- WC – 1)

– If WC = 0, then Interrupt to acknowledge done, else repeat same process

Output

– Send read control signal to memory

– Read data from memory

– Increment address register (Address Reg <- Address Reg +1)

– Decrement word count (WC <- WC – 1)

– Disassemble the word

– Transfer data to the output device byte by byte

– If WC = 0, then Interrupt to acknowledge done, else repeat same process

I/O Processor (I/O Channel)
Processor with direct memory access capability that communicates with I/O devices is

called I/O processor (channel). Channel accesses memory by cycle stealing. Channel can

execute a channel program stored in the main memory. CPU initiates the channel by

executing a channel I/O class instruction and once initiated, channel operates

independently of the CPU.

PD PD PD PD

Peripheral devices

I/O bus

Input-output
 processor
 (IOP)

Central
 processing

 unit (CPU)

Memory
 unit

Mem
ory
Bus

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 64

Channel- CPU communication

Data Communication Processor
Read your self

Send instruction
 to test IOP.path

If status OK, then send
 start I/O instruction

 to IOP.

CPU continues with
 another program

Transfer status word
 to memory

Access memory
 for IOP program

Conduct I/O transfers
 using DMA;

 Prepare status report.

I/O transfer completed;
 Interrupt CPU

Request IOP status

Transfer status word
 to memory location Check status word

 for correct transfer.

Continue

CPU operations IOP operations

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 65

Chapter 8

Computer Arithmetic

Addition and Subtraction with Signed Magnitude Data

AVF: Addition overflow Flip-flop

= 0 = 0 = 1 = 1

As = Bs

As = Bs As  Bs

As  Bs

E

A A A

A A + 1

As  As

= 0 = 1

A<B
A  B

As 0

Minuend in A

Subtrahend in

END

Result in A and

AVF  E

= 0

0

Subtract Operation

EA A + B + 1

Minuend in A

Subtrahend in

Augends in A

Addend in B

 As  Bs As  Bs

EA A + B + 1

 Add Operation

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 66

Perform 45 + (-23)

Operation is add

45 = 00101101

-23 = 10010111

As = 0 A=0101101

Bs = 1 B=0010111

As  Bs =1

EA=A + B’ + 1 = 0101101 + 1101000 +1 = 10010110

AVF=0

=> E=1 A= 0010110

Result is AsA= 0 0010110

Exercise

Perform

(-65) + (50), (-30) + (-12), (20) + (34), (40) – (60), (-20) – (50)

Addition and Subtraction with Signed 2’s Complement Data

AC  AC + BR + 1

V  overflow

AC  AC + BR

V  overflow

EN

D

EN

D

Minuend in AC

Subtrahend in

Augends in AC

Addend in BR

Subtract Operation Add Operation

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 67

Example:

 33 + (-35)

AC = 33 = 00100001

BR = -35 = 2’s complement of 35 = 11011101

AC + BR = 11111110 = -2 which is the result

Multiplication with Signed Magnitude Data

Multiplicand in B

Multiplier in Q

As = Qs  Bs

Qs = Qs  Bs

A = 0, E = 0

SC = n-1

Q

n

EA = A + B

Shr EAQ

SC = SC -1

S

END

= 0 0

= 0 = 1

Multiply operation

Product is in AQ

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 68

Example:

Perform 5 x – 4

Bs B = 5 = 0 0101

Qs Q = - 4 = 1 0100

 As = 1

 Qs = 1

 E A Q SC

 0 0000 0100 4

Step1

Qn =0

Shr 0 0000 0010 3

Step2

Qn =0

Shr 0 0000 0001 2

Step 3

Qn=1 0 0000 0001

 0101

 0 0101 0001

Shr 0 0010 1000 1

Step 4

Qn = 0

Shr 0 0001 0100 0

As AQ = 0001 0100 = - 20

Question:

Perform the operation 4 x 3, 6 x -7, -9 x 8 by using 5-bit representation

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 69

Booth Multiplication Algorithm
Booth multiplication algorithm is used to multiply the numbers represented in signed 2’s

complement form.

Multiplicand in

BR

AC = 0

Qn +1 = 0

 Sc = n

Qn

AC = AC + BR AC = AC + BR + 1

Shr AC & QR

SC = SC -1

= 01 = 10

= 00

= 11

 SC

EN

D

= 0  0

Multiply operation

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 70

BR = 10111

BR + 1 = 01001

Qn Qn+1 AC QR Qn+1 SC

1 0 00000 10011 0 5

Step 1

Subtract BR 01001 10011

AShr 00100 11001 1 4

Step 2

 1 1 00100 11001 1 4

AShr 1 1 00010 01100 1 3

Step 3 0 1 00010 01100 1 3

Add BR 0 1 +10111

 11001 01100 1 3

Shr 11100 10110 1 2

Step 4

 0 0 11100 10110 0 2

AShr 0 0 11110 01011 0 1

Step 5

 1 0 11110 01011 0 1

Subtract BR 01001

 00111 01011 0 1

AShr 00011 10101 0 0

Terminate: Result in AC & QR = 117

]

Prepared By: Arjun Singh Saud

Downloaded from: http://www.bsccsit.com/ Page 71

Division of Signed Magnitude Data

A  B

Dividend in

AQ

Divisor in B

Qs = As Bs

SC = n-1

E

EA = A+B+1

EA=A+B

DVF=0

EA=A+B

DVF = 1

Shl EAQ

E

EA=A+B+1 EA=A+B+1

Qn = 1

E

EA=A+B

SC = SC -1

S

C

END

Quotient in Q

remainder in A

END

Divide overflow

= 0 = 1

A < B

= 0  0

= 0 = 1

= 1

= 0 A < B A  B

Divide Magnitude

Divide Operation

