Compilers

Principles, Techniques, & Tools

SI19[1dWO))

Aho

Lam

Sethi
Ullman

Second f ‘
Edition

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

Second Edition

Alfred V. Aho
Columbia University

Monica §. Lam
Stanford University

Ravi Sethi
Avaya

Jeffrey D. Ullman
Stanford University

PEARSON

Boston San Francisco Noew York
Tondon ‘torento Sydney Tokya Singapore Madrid
Mexico Ciry Munich Paris Cape Town Hoog Kong Montieal

Publisher

Exceutive Editor

Acquisitions Edilor

Project Rditor

Associate Manapging Editor

Cover Designer

Digital Assets Manager

Media Producer

Senior Marketing Manager

Marketing Assistant

Senior Author Support/
Technology Specialist

Senior Manutacturing Buyer

Cover Image

Greg Tobin

Michael [lirsch

Matt Goldstein
Katherine Harutunian
Jeffrey Holcomb
Joyee Cosenling Welly
Marianne Groth
Bethany Tidd
Michelle Brown

Sarah Milmore

Joe Vetore
Carol Melville

Scott Ullman of Strange Tonic Productions
{www.strangelonic.com}

Many of the designations used hy manufacturers and scllers to distinguish their
producis are claimed #s trademarks. Where those designations appear in this
hook, and Addison-Wesley was aware of a {rademark claim, the designations
have been printed in initial caps or all caps.

This iterior of this hook was composed in LAT:X.

Library of Congress Cataloging-in-Publication Data

Compilers ; principles. teehniques, and tools / Alfred V. Abo ., [et al.]. -- 2nd ed.

p. cm,

Rev, ed. of: Compilers, principles, techniques, and tools / Alfred V. Aho, Ravi

Sethi, Jeffrey D. Ullman. 1986,

{SBN (-321-48681-1 {alk. paper)

1. Compilers (Computer programs} 1. Aho, Alfred V. II. Aho, Alfred V.
Compilers, principles, Wehniques, and toels.

QAT6.76.C65A37 2007

Q05 4'53--de22
2006024333

Copyright € 2007 Pearson Tiducation, Tne, All rights reserved. No part of this
publication may be reproduccd, stored iv a retrieval system, or fransmitled, in
any form or by any means, elecironic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the
United States of America. For information on oblaining permission for use of
material in this work, please submit a written request to Pearson Educalion,
Inc., Rights and Contracts Department. 75 Arlington Street, Suite 300, Boston,
MA 02116, Tax vour request to 617-848-7047, or e-mail al

hitp:/farww . pearsoned.com/legal/permissions. him.

23456789 10—CW- -1009 08 07 06

Preface

Tn the time since the 1986 edition of this book, the world of compiler design
has changed significantly. Programming Jangnages Lave evolved to present new
compilation problems. Computer architectures offer a variery of resources of
which the compiler designer must take advantage, Perhaps most interestingly,
the venerable technology of code optimization has found use outside compilers.
It is now used in tools thai find bugs in software, and roost importancly, find
scenrity holes in existing code. And much of the “front-end” technology
grammars, regilar expressions, parsers, and syotac-directed translators — are
still in wide use.

Thus, our philosophy from prevdous versions of the hook has not changed.
We recognize that lew readers will build, or cven maintain, a compiler for a
major programming language. Yei the models, theory, and algorithms assoc-
ated with a compiler can be applied Lo a wide range of problems in software
design and software development. We thevefore empliasize problems thal are
most comonly encountered in designing a language processor, regavdless of
the source language or target machine.

Use of the Book

It takes ar least two quuarters or even two semesters to cover all or most of the
material in this book. It s common 1o cover the fivst half in an undergraduate
course and the second half of the book stressing code oplimization — in
a secomd course at the graduate or mezzanine level. Here is an outline of the
chaplers:

Chapter 1 containy motivational malerial and also presenfs some background
isgues in comwputer archilecture and programming-language principles.

Chapter 2 develops a miniature compiler and introduces many of the impor-
tani. concepds, which are then developed in lator chaplers. The compiler itself
appears i the appoendix.

Chapter 3 covera lexical analysig, regular expressions, Anite-srate machines, and
scatmer-generator {ools. This material 18 fandamenial (0 text-processing of all
SOTLE.

vi PREFACE

Chapter 4 cavers the major parsing methods, top-down (recursive-descent, LL)
and bottom-up (LR and its variants).

Chapter 5 imrodnces the principal ideas in syntax-directed definitions aud
syniax-directed translations.

Chapter 6 takes the theory of Chapter 5 and shows how to use it 1o generate
intermediate eode for a typical programining language.

Chapter 7 covers run-time enviromments, cspecially management. of the run-time
stack and garbage collection.

Chapter 8§ is on object-code gencralion. It covers consticetion of basic blocks,
generation of code from expressions and basic blocks, and register-allocation
techuiguey.

Chapter 9 introduces the technology of code optimization, inclnding How graphs,
dala-low [rameworks, and iterative algorithms for solving these frameworks.

Chapter 10 covers instrction-leve] optimization. The emphasis is on the ex-
traction of parallalism from small sequences of instruetions and scheduling them
o ingle processors that can do more than onc thing at once.

Chapter 11 tallks about larger-seale parallelisin defection and exploitation. Tlere,
the emphasis is on wuneric codes that hiave many tight loops that range over
multidimensional arrays,

Chapter 12 is on Interprocedural analysis. [L covers peinter analvsis, aliasing,
and data-How analysis that takes into aceount the sequence of procedure calls
that reach a given point in the code.

Courses from material in this book have been tunght ab Columbia, Harvard,
and Stanford. At Columbia, a senior/first-year graduate course on program-
ming lanpguages and translalors has been regularly offered using rmaterial from
the first ofght chapters. A highlight of this course is a semester-long project
in which students work in small tcams to creale and implement a little lan-
guage of Lheir own design. The student-created languages have eovered diverse
applicalion domains including quantum computation, wusic synthesis, com-
puter graphics, gaming, matrix operations and many other arcas. Stucdents use
cormpiler-component generators such as ANTLR, Lex, and Yace and the syptax-
direcied sranslation technigues discussed in chapters two and five to build their
compilers. A follow-on graduaste course has foensed on material in Chapters 9
through 12, cmphasizing code gencration and oplimization for contemporary
machines including network processors and multiprocessor architectires.

At Stanford, a one-quarter introductory course covers roughly the mate-
rial in Chaplars 1 throngh &, although there is an introduction to global code
optiniration from Chapter 9. The second compiler course covers Chaplers 9
through 12, plus the more advanced material on garbage collection from Chap-
ter 7. Studenls use a locally developed, Java-based system called Jeeq for
tnplementing data-low analysis alporithis.

PREFACE | vii

Prerequisites

The reader should possess some “computer-science sophistication,” including
at least a second course on programming, and courses in data structures and
discrete mathemalics. Knowledge of several different programming languages
is useful,

Exercises

The book contains cxtensive exerciges, wilh some for almost every section. We
indicate harder exercises or paris of cxercises with an exclamasion point. The
hardest exerciscs have a double exelamalion point.

Gradiance On-Line Homeworks

A feature of the new edition is that there is an accompanying set of on-line
homeworks uging a technology developed by Gradiance Corp. Instructors may
assign these homeworks to thelr class, ot studeuts not corolled in a class may
enroll in an “omnihus elass” that allows them to do the homeworks as a tutorial
(without an mstructor-created class). Gradiance questions look like ordinary
gquestions, but vour solutions are sampled. If vou make an lncorreet cholee you
are given apecific advice or feedback 1o help vou correct yvour aolution. If your
instruetor permiis, you are allowed Lo try agaln, unlil you gei a perfect score.

A subseriprion to the Gradiance serviee Is oflered with all now copies of this
text sold in North America. For more informuafion, visit the Addison-Wesley
web fite wuw.aw. com/gradiance oy send cmaif to computing@aw. com.

Support on the World Wide Web
The book’s home page is

dragonbook.stanfoerd. edu
Here, you will find errata ag we learn of them, and backup materials. We hope
to make available the notes for cach ollering of compiler-relatod courses as we
teach them, including homesworks, solutions, and exams. We also plan to post
degcriptions of important eompilers wrikten by vheir inplemoiters.

Acknowledgements

Cover art is by 8. D. Ulhaan of Strange Tonic Productions,
Jon Bentley gave us extepsive comrnents on a number of chapters of an
earlier drafl of this book. Tlelplul comiments and orrata were received from:

viii PREFACE

Domenico Bianenlli, Peter Bosch, Marcio Buss, Mare Eaddy, Stephen Edwards,
Vibhay Garg, Kim Hazelwood, Ganray Ke, Wel Ti, Milke Seith, Art Stamness,
Krysta Svore, (Mivier Tardieu, and Jia Zeng, The help of all these people is
gratefully acknowledged. Remaining errors are ours, of course.

In addition, Monica would like to thank her colleagucs on the SUIF com-
piler teamn for an 18-vear lesson on compiling: Gerald Aigner, Drintars Avofs,
Saman Amarasinghe, Jennifer Anderson, Michaet Carbin, Gerald Cheong, Amer
Diwan, Robert French, Anwar Ghuloum, Mary Hall. John Hennessy, David
Heine, Shih-Wei Liao, Amy Lim, Benjamin Livshils, Mickacl Martin, Dror
Maydan, Todd Mowty, Brian Murphy, Jeffrey Oplinger, Karen Pieper, Mar-
tin Rinard, Olatunji Ruwase, Constantine Sapuntzakis, Patrick Sathyanathan,
Michael Smith, Steven Tijiang, Chau-Wen Tscng, Christopher Unkel, John
Whaley, Robert, Wilson, Christopher Wilsow, and Michael Wolf.

A V. A, Chatham NJ
b S. L., Menlo Park CA
R. 8., Far Ilills NJT

J. D. U, Stanford CA
June, 2006

Table of Contents

1 Imtroduction

1.1 Language Processors 0 . oo oo oo e
1.1.1 Exercises [or Section 1.1
1.2 The Structurc of a Compiler
121 Texeal Analysis00 oo oo
1.22 Synfax Analysls L oo o e
1.2.3 Semantic Analysis Lo
1.2.4 Intermediste Code Generation
1.25 Code Optinization
1.2.6 Code Generationo oL
1.2.7 Sywmbol-Table Mansgement
1.2.8 The Grouping of Phases into Passes
1.2.9 Compiler-Construelion Tools .. 0. 000000000 L
1.3 The Evolution of Programming Languages
1.3.1 The Move to Higher-level Languages
1.3.2 Tmpacts on Compilers o . . . 0
1.3.3 ExereisesforSection 1.3 . 0 0oL
1.4 The Science of Building a Compilero ...
1.1.1 Modeling in Cormpiler Desipn and Tinplemertation
1.42 The Sclence of Code Optimization
L.5 Applications of Compiler Technology .. 00 0 0o 0000000
1.5.1 Implemeniation of High-Level Programming Dangnages
1.5.2 Optimizations for Computer Archalectres
1.5.3 Design of New Computer Architeetures
1.54 Program Translations
1.5.5 Softwarc Productivity Tools
1.6 Programining Language Basics
1.6.1 The Siatic/Dypamic Distinction . . .,
1.6.2 Tnviromments and States 0 L. L .
1.6.3 Siatie Scope and Block Structure o
1.6.4 Explicit Access Control . .0 L 00 0oL L
165 Dypamic Scope oL Lo
1.6.6 Parameter DPagsing Mechanisms

ix

15
13
15
17
17
19
21
22
23
25
25

TABLE OF CONTENTS

LET Allasing L., 35
1.6.8 Excrcisesfor Seetion 1.6 L. L. 33
1.7 Summery of Chapter 1. . . 00 . . L L 36
1.8 References for Chapter 1. 38
A Simple Syntax-Directed Translator 39
21 Imivoduction 40
2.2 Syntax Definition oL 0o 12
2.2.1 Definition of Crammars 42
222 Dervations o 44
223 Parse'lrecs o . .o o o o 45
224 Ambigmityo Lo o 47
2.2.5 Associalivity of Operators 48
22,6 Precodeneo of Operators . . . 0. . - _ . L. L. 48
227 FExercisesfor Section 2.2 &1
2.3 Syotax-Directed Translation L. 52
2.3.1 Postfix Notation 53
2.3.2 Synthesized Attributes Lo Lo L L G4
2.3.3 Simple Syntax-Directed Definitions 56
234 Tree Traversals 56
2.3.5 Trapglation Schemes 0 .. 0oL 57
2.3.6 Exerciscs for Section 2.3 Lo 60
24 Parsigo e 60
241 Top-Down Parsingo oL 6]
242 Predictive Parsingo 64
243 When to Use e-Productions 63
244 Desiguing a Predictive Parser 000 0oL 66
2.4.5 Left Recursion 67
2.4.6 Exercises for Section 2.4 . - . . o000 68
2.5 A Translator for Simple Expressions 68
251 Abstract and Concrete Syntax L. GO
2.3.2 Adapting the Translation Scheme . . . o0 00 oL 70
2.3.3 Procedures for the Nonterminalso 72
2.54 Simplilying the Translator 73
2.5.5 The Complete Program o ... 74
26 Lexieal Analysis o Lo 7
26.1 Removal of White Space and Comments i
262 Realing Ahead .. 0.0 oo L 8
2.6.3 Constamts .« . . . v e e e e e e e e e T8
2.6.4 Recognizing Kevwords and Tdemtiflers £
265 ALexical Analywero 81
2.6.6 Exercises for Seetion 2.6o oL &4
2.7 Symhol Tables oL 83
271 Symbol Table Per Scope oo 86

2,72 The Uscof Symbol Tables 85

TABLE OF CONTENTS X

28 Imlermediate Code Generatlon oo 9
281 Two Kinds of Inlermediate Bepresentarions . . . - 91
282 Construction of Syntax Trees o .o oL 92
283 Satic Chedkingo o7
284 Threc-Address Code - - . . 0 o 0 C oo oo o 99
9853 Fxovelses for Seetlom 28 000 000 oo 103

29 Summaryof Chapter 2.o o 103

Lexical Aunalysis 109

31 The Role of the Lexical Analyzer o0 0L oo o 109
3.1.1 Texical Analysis Vorsug Paxsing o ..o 110
3.1.2 Tckens, Pattorns, and Lexemes .. 00 o L0 oL 111
3.1.3 Astributes for Tokens oo 0oL 112
314 Texical Errors. . . . 0 0 0 oo o e 113
3.1.5 Exercises [or Section 3.1o 114

2.2 Inpul Bufferingo L 115
321 Buffer Pairs o 115
322 Sentincls L. 116

3.3 Specification of Tolkenso oo o o 116
331 Sirings and Languages oo 117
3.3.2 Operations on Languages 119
3.3.3 Regular Expressions L 120
334 Repular Definitions0 oL 123
3.3.5 [atensions of Regular Exprossions 124
3.3.6 Exeveises for Seetion 3.3 0. 0 00000000 125

34 Recognitiom of Tokens Lo oL 128
341 ‘lrapsition Diagramso 130
3.4.2 Becognition of Beserved Words and Tdentifiers . .0 132
3453 Completion of the Runping Example . 0 000 000 L. 135
344 Architecture of a Transition-Diagram-Based Lexical An-

alyser . L 134
345 Exercises for Section 3.400 o0 L. 136

3.5 The Lexical-Analyser Generator Lex o v v v .. 140
200 UseofLex. 140
3.8.2 Struclure of Lex Promrams 14
3.3 Conflict ResohitioninLex . ., 144
J.8.4 'T'he bookakead Operator oL 114
3.5.5 Exercises for Section 3.3 000 L 116

3.0 Finite Automata Lo L 147
A.6.7 Nondeterministic Finite Aulomala . - 147
3.6.2 Transition Tables 0 . 0 ..o 148
3.6.3 Acceptance of Input Strings by Aulomata 149
3,61 Deterministic Finite Automala L L. 119
365 ExerciscsforScculon 3.6 Lo o L. 151

3.7 TFrom Regular Expressions to Automata 152

xii

TABLE OF CONTENTS

371 Conversionofan NFAtoaDEA 152
3.7.2 Simulationolan NFA L L. 106
3.7.3 Efficieney of NFA Simuladion, 1h7
3.74 Construction of an NFA from a Regular Expression 159
3.7.5 Efficiency of String-Frocessing Algovichms 163
3.7.6 Exerciges for Section 3.7 0. 0oL oo oo 166
3.8 Design of a Lexical-Analyeer Generator 166
381 The Storucture of the Generated Analyeer 167
3.8.2 Pattern Matching Based on NFA's © L. 168
383 DI'ACs for Lexical Analyzers . . 0 0 000 0oL 0 L 170}
3.8.4 Twplemeniing the Lookabead Operalor 171
3.8.5 Exerciscs for Section 3.8o L. 172
3.9 Optimization of DEFA-Based Paitern Marchers . . . 0 0 .. 0 . . 173
3.9.3 Twmportant States of an NFA 173
3.9.2 TFunctions Computed From the Syvotax Tree 175
3.9.3 Computing nullable, firstpos, and lastpes 176
3.84 Computing follewpos0 0 177
3.9.5 Converting a Regular Expression Direetly to o DFA 179
3.0.6 Minimizing the Number of States of a DEA L. 180
3.9.7 Stale Minimization in Lexical Analyzors 134
3.9.8 Trading Tine for Space in DFA Simulation 1R85
3.0.0 Exercises for Seclien 3.9 oo oo 186
3.10 Summary of Chapter 3. o o L o o L&7
3.11 References for Chapter 3. oo L. 1R9
Syutax Analysis 191
41 Imtreduoction oo e e 102
411 TheRoleofthe Parser 192
4.1.2 Representalive Grammard oo o 193
4.1.3 Syntax Error Handling 194
4.1.4 lrvor-Becovery Strategies o oo oo 192
4.2 Context-Free Graminars o v v v v v v v 197
421 The Formal Definition of a Context-Free Grammar 197
4.2.2 Notational Conventions . . -o 198
423 Derivations . . - oo .o o e e e e 199
424 TParse Trees and Derivations . .« oo oo oo 201
425 Ambigullyo e 203
4.2.6 Verifying the Langnage Generated by a Grammar . . 204
127 Context-Free Grammars Versus Regular Gxpressions . . 205
1.2.8 Exercises for Section 42 o000 206
1.3 Writing o Grammar e 209
4371 Lexical Versus Syntactic Analysig 209
4.3.2 Eliminating Ambipnity o000 o 210
4.3.3 EBlimination of Left Becuwvslon . . 0 . - o - o o0 00 o 212
434 Left Factoring e 214

TABLE OF CONTENTS

il

4.3.5 Non-Context-Iree Language Constructs 215
436 Exercises for Section 43o Lo 216
4.4 Top-Down Parsing« 217
447 Recnrsive-Degeent Parging 0 219
442 FIRST and FOLLOW 291}
4.4.3 LL{1) Grammars - b v o e e e 222
4.4.4 Nonreoursive Prediclive Parsing, . . . 000000 L 226
4.4.5 Error Recovery in Prodictive Pasing 0. .o L. 228
1.4.6 lixercises for Section 4.4 oL L o000 231
4.5 Bottom-Up Parsing o o 233
451 Reductions 0 o 234
45.2 Handle Pruwingo oL 235
453 Shift-Reduce Paxsing . -o 236
4.5.4 ConBicts During Shife-Beduee Parsing 238
43535 Exercises for Section 4.5 L o000 240
4.8 Introduction to LR Paysing: Smple TRo .00 241
460 Why LR Parsers? 0 . 0oL oo 241
4.6.2 Tiems and the LR{O) Amlomaton - 242
463 The LR-Parsing Algorithm 000 248
4.6.4 Constructing SLBE-Parsing Tables . . o .0 0000 0 0L 252
465 Viable Prefixes .. . o0 .o oo 236
4.66 Exerclaesfor Section 46 o oL oL, 257
47 More Powerfll LR Parsers oo 239
471 Canonieal LR{1) Iterns . o0 0 o0 00 0oL oL L. 260
472 Construeting LR(1) Sets of tems, .. 261
4.7.3 Canonical LI{1Y Parsing Tables, 265
474 Constructing DALR Pazsing Tables 266
4.7.5 Efficient Construction of LATR Parsing Tables 270
4.7.6 Compaction of LR Parsing Tables 275
4.7.7 Exerciscs [or Section 4.7, 257
48 Using Ambiguons Grammars 278
481 Precedence and Associativily 1o Resolve Conflicts 279
4.8.2 The “Dangling-Elsc” Ambiguity 28]
4.8.3 Error Recovery In LR, Parging 283
4.8.4 Hxercises for Seetion 4.8o L L. 2R3
4.9 Parser Generators oL L L 287
4.9.1 The Parser Generalor Yace L, 287
4.2 Using Yace with Ambiguous Crammars 291
4.9.3 Creating Yace Lexical Analyzers with Lex 264
494 Drror Recovery in Yace .. ., 255
4.9.5 Exercises for Section 49 297
410 Sumnaty of Chapter 4. L 297
4.11 Relerences for Chapter 4. 360

xiv TABLE OF CONTENTS
5 Syntax-Dirccted Transiation 303
5.1 Syntax-Dirccted Delinitions 304
a.1.1 Tnherited and Synthosired Avbribates 304

5.1.2 Bvaluating an SDD at the Nodes of a Parse Tree 306
5.1.3 Exercises for Section 5.1 L. L. 309

5.2 DEvaluation Orders for SDDs 30
5.2.1 Dependeney Graphs o L oL al0
5.22 Ovdering the Evaluation of Attributes 312
5.23 S-Atioribnted Definitionso Lo 312
5.2.4 L-Attribuied Definlitons . . -o oo oL L 313
3.2.5 Bemantic Rnles with Controlled Side Effects 314
226 Exercisesfor Section 5.2 317

5.3 Applications of Syntax-Directed Translation 318
5.4.1 Construetion of Syntax Trees . . o . . 0 0o o o oo Lo 318
0.5.2 TheStruckwre of o Type 0,032
5.3.3 Exercises lor Section 5.3 . 0. 0. ..o oL 323

5.4 Byntax-Directed Tranglation Schemes . .0 000000000 0L 324
0,41 Postlix Trapslation Schemes . . . 0 0 00 000 oL 324
5.4.2 Tarser-Stack Implementation. of Postfix SDT's 325
4.3 SDT’s With Aetions Inside Productions 327
5.44 LEliminating Lelt Recursion From SDT's L. 328
5.4.5 SDT’s for L-Attributed Defnitions 35
546 Exercisesfor Section 3.4 o 000 336

3.5 Implementing L-Attributed SDD'so o .o L oL 33T
5.5.1 Translation During Recursive-Descent J*arsing 338
5.5.2 On-TheFly Code Generaliono .. 340
3.5.8 L-Attributed 3DD’s and LI: Parsing 343
5.54 Bottom-Up Parsing of L-Altributed SDTVs 348
5.5.5 Exercises for Section 3.0 o0 oo 3a2

56 Summaryof Chapler 5. 353
5.7 Teferences for Chapter 5. . . . -3
6 Intermediate-Code Generation 387
6.1 Variapts of Syntax Trecs oo o e o 358
6.1.1 Directed Acyclic Graphs for Fxpressions 359
6.1.2 The Value-Number Method for Construeting DAGS ., . 360
6.1.3 Faxercises for Section 6.1+ . .. 000 362

6.2 Three-Address Code o o . o oL 363
6.2.1 Addresses and Instroctions . . . 0 o000 364
6.2.2 Quadruplos L 366

6,23 Triples e 367

6.2.4 Static Single-Assignment Vot 360
6.2.5 FExercises for Section 8.230

6.3 Types and Declarations oo ar

TABLE OF CONTENTS x¥
632 TypeEquivalence.o oo 372
6.5.3 Declarations. - . v« o v e e BT
6.3.4 Storage Layout for Local Nameso o000 - 373
6.3.5 Scguences of Declarations . - . .00 0o I76
6.3.6 Tields in Records and Classeso o 376
6.3.7 Exercisesfor Section 6.3o o 378

6.4 Translation of Fxpressions oo o 3ms
.11 Operalions Within Expressions378
6.4.2 Incremental Translation 330
6,43 Addressing Array Elemenuso oL 381
6.1.4 Translation of Array Referetces - 383
6.4.3 Excrcises for SBection 6.4 e 381

6.5 Type Checking 0. o o 386
6.5 Tles for Type Checkingo 0o oo 87
6.5.2 Tvpe Conversiong 388
6.5.3 Overloading of Functions and Operators 300
6.5.4 Tvpe Inferonce and Polymorphie Functions 391
6.5.5 An Algorithin for Unification e 3495
6.56 Dxerclies for Section 6.5 L0000 398

6.6 Comirol Flow o oo 390
6.6.1 Boolean Expressionso 369
6.6.2 Short-Circuit Code oo o o oL, 400
6.6.3 Flow-al-Control Statements 401
6.6.4 Control-Iow Translation of Boolean Expressions 403
6.6.5 Avoiding Redundant Gotos o oo oo oL 405
6.6.6 Booleau Values and Jumping Code . . . 0 0 00 0 000 L 408
6.6.7 PExcreises for Section 6.6o 408

6.7 Backpatching L 410
6.7.1 One-Pass Code Generation Using Backpatching 410
6.7.2 DBackpatching for Boolean Expressions 411
6.7.5 Flow-of-Control Statements 413
§.7.4 Break-, Continue-, and Goto-Slatemenis 116
6.7.5 Excreiscs for Seelion 6.7 L. L. 417

6.8 Switch-Slatements 418
6.8.1 Translation of Switch-Statements o oL L 419
6.8.2 Syutax-Directed Translavion of Switch-Stalements 420
6.8.3 Excrcises for Section 6.8 421

6.9 Intermediate Code for Procedmres. 422

6.10 Sumnmary of Chapter 6 oL 424

6.11 References for Chapter 6 :

xvi

TABLE OF CONTENTS

7 Run-Time Envirommnents 427
7.1 Storage Orvganization 427
7.1.1 Static Versus Dynamic Storage Allocatlon 129

7.2 Siack Allocation of Space 430
721 Activation Trees L, 430
722 Activation Records 433
723 Calling Scquenees oL 136
7.2.4 Variable-Length Daia on the Stack e 438
7.25 Exercises for Section 7.2 140

7.3 Access to Nonlocal Dataon the Stack . .0 441
7.3.1 Data Access Without Nested Procedures, . | 442
7.3.2 Issucs With Nested Procedures 442
.33 A Language With Nested Procedure Declarations 443
T34 NestingDepth L L 443
T35 AccessTinkso Lo o 445
7.3.6 Manipulating Aceess Links 00000 447
7.3.7 Access Links for Procedure Parameters 448
738 Displays . . . o o o L e 449

7.3.9 Exercises for Section 7.3 L. 451

7.4 Heap Management e e 452
7.4.1 The Memory Manager . . ., 433
7.4.2 The Memory Hierarchy of & Compuler ., L. 4534
743 Locality in Programs L 155
7.4.4 Reducing Fragmentation . - 437
7.4.5 Mamnal Deallocation Requests 460
7.4.6 Exercises for Section 7.4 463

7.5 Totroduction to Garbage Collection -o 463
7.5.1 TDesign Goals for Garbage Collectors 464
7.5.2 Reachability oo 466
7.5.3 Reference Counting Garbage Collectors 468
T.5.4 Exeoreises for Scetlon 7.5 . . 0 o .o 0oL 470

7.6 Introduction to Trace-Based Collection 470
7.6.1 A Basic Marl-and-Sweep Collector 171
76.2 Basic Abstraction 173
7.6.3 Optimizing Mark-and-Sweep . . 0 . . o o0 o000 L 475
7.64 DMark-and-Compact Garbage Colleclors L. 476
7465 Copyingeallselors L oo 475
TH6 Comparing Costs o .. v v v oo 482
7.6.7 Exercises for Section 7.6 Lo 482

7.7 Short-Pauge Garbage Colleetion o .0 0 0oL 483
7.7.1 Incremcntal Garbage Collection 483
7.7.2 Incremental Reachability Amalysis o0 . 485
7.7.8 TDartial-Collection Basies . -0 .o o0 o000 487
774 Gensrational Garbage Collection . . o oL . 418
7.7.5 The Train Algorithm 49()

TABLE OF CONTENTS Xvid

776 DExerciges for Seetion 7.7 - . . 0 .o oo 493

7.8 Adwvanced Topics in Garbage Collection 194
781 TParallel and Conecurrent Garbage Colleetion . . - - . .. 195
7.8.2 Partial Object Relocation oo o0 0o oo 497
783 Conservative Colleciion for Unsafe Languages . - 498
TRA Weak References oL oo 198
785 FExercisesfor Section 7.8 oL 489

7O Swmmary of Chapier 7o oo oo 300
7.10 References for Cliaptor 7. 0 - o o 0 o o o o oo oo Lo o 502
8 Code Generation 505
8.1 [lssues in the Design of o Code Generator 206
811 Impui tothe Code Generator oL 507
8.1.2 The Target Pvogram - - o oo 0ot oot a0r
8.1.3 Instruction Selection 0. oo oL oo 508
8.1.4 Register Allocation oo 510
#.1.5 Dvaluation Order - oo 311

8.2 The Target Lamguage . . L 0 Lo oo 212
8.2.1 A Simple Targel Machine Model .0 00000000000, 212
8.2.2 Program and Instmmetion Costs - . 0 o o 0 0oL oo hl1a
B.2.3 Exercises for Seclion 8.2 oL 516

8.3 Addresses in the Targer Code .. o o o0 oo 00000 518
8321 Static Allocation Lo 518
8.3.2 Stack Allocationo 0oL a20

8.3.3 BRun-Tine Addresses for Names 522
834 Fxereiges for Seetiom 83 .0 0 0o Lo o oL 524

8.4 Basic Blocks and Flow Graphs . . . 0.0 o000 00000 525
R4.1 DBasicDlocks o oL o 526
R.4.2 Next-Use Information 528

843 Flow Graphs oL 528
8.4.4 Representation of Flow Graphs50
BAA Loops Lo e 331
R.4.6 Fxercisesfor Scetlon 84 . . 0 . Lo 331

8.5 Optimisation ol Bagie Blocks a33
.31 The DAG Representation of Basic Blacks 533
8.5.2 Tinding Local Common Subexpressioms . .0 o . .. L. 531
833 Dead Code Elimination0 .o . 0oL, 23
834 The Use of Algebraic Identities 536
8.5.5 Roprosentation of Array References 337
854 Polmter Assignments and Procedure Calls .0 L0 0L L L 539
8.5.7 Roeassombling Basic Blocks From DAGs h39
R.5.8 Exercises for Section 85 L5l

8.6 A Simple Code Gencrator L. 542
8.6.1 Register and Address Degeriplors 0.0 oL L. HEN)

8.6.2 The Code-Generation Algorithm

xviil

TABLE OF CONTENTS

8.6.3 Duosign of the unction getfeeg 547
8.6.4 Exercisesfor Section 8.6 548
8.7 Peephole Optimization540
8.7.1 Rliminating Rednndant Loads and Stores 550
8.7.2 Eliminating Unreachable Code, . aho
8.7.3 Flow-of-Control Optimizations 511}
874 Algebraic Simplilicaiion apd Reduction in Strength 552
875 Useof Machine Idioms ah2
876 Hxwercisesfor Section 87 oL L an3
B8 Iegister Allocation and Assignment L. L. .. 353
8.8.1 CGlobal Register Allocation. 553
B.82 Usage Coumbs 0. o e e 534
8.8.3 Register Assignment for Outer Toopy 556
B.8.4 Register Allocation by Graph Coloring, 536
8.8.5 Exercises for Scction 8.8 e, 557
8.9 Instruction Sclection by Tree Rewriting 558
8.9.1 Tree-Translation Schomeso L. 5a8
8.9.2 Code Generation by Tiling an Input Tree, . . . 56()
8.9.3 Pattern Matching by Parsing 0L 563
894 Routines for Semantic Checking 565
8.9.5 General Tree Matehingo 5G5
896 FExerciges {for Section 89 L. L L0807
8.10 Qptimal Code Generation for Expresgions 367
B.A0.1 Ershov Numbers L. e 267
8.10.2 Generating Code From Labeled Expression Trees 68
#.10.3 LCvalnating Exprossions with an Insufficient Supply of Reg-
Iaters. e e e e e e e e 370
8.10.4 Excrcises for Scetion 810 .., . .. oL 0L a72
8.11 Dynamic Programming Code-Gencration. a73
8.11.1 Contiguows Evaluationo 0 57
%.11.2 'The Dynamic Programming Algorithm 5E7H
8,11.3 Exerciscs for Section 8.11 C e ¥
812 Summary of Chiapler & . . © o o o Lo o oo 578
8.13 Reforemees for Chapter 8,o oo oo a79
9 Machine-Independent Optimizations 583
0.3 The Principal Sources of Optimization h84
9.1.1 Causes of Redundaney o . o 000000 h34
9.1.2 A Runping Example: Quicksort 583
9.1.5 Semantics-Preserving Transformations 586
0.1.4 QGlobal Common Subexpressions 288
9.1.5 Copy Propagation Lo 3430
9.1.6 Dead-Code Dlimination - .« v v v v v o v oo .. 501
917 CodeMotion e 592

9.1.8 Indoction Variables and Reduction in Strenggh L 592

TABLFE OF CONTENTS wix

9.2

8.3

8.6

9,30 Faercises for Section 90 . . .0 oo L oo oo 296
lptroduction to Data-Flow Analysis 00 0000 o 597
0.2.1 The Data-Flow Abstraction 297
4.2.2 The Data-Flow Analvsis Schema .. 000 0 00 0 oL 599
9.2.3 Data-Flow Schemas on Basic Bloeks . . 0. oo o000 600
824 Reaching Definitions oo 0 oo 601
0.2.5 Live-Vuriable Analysis © L 608
9.2.6 Available Exprossions00 e s 610
Q0.7 SUMIIATY - o o v e e e e e e e e e 611
9.28 Exercises for Section 8.2o L oL 615
Foundations of Data-Flow Analvsiso 0.0 00000 618
0.3.1 Semilattices oL Lo 618
9592 Trapsfer Vunctions Lo L oL 623
9.3.3 The Iteralive Algorvithmt for Geneval Frameworks H26
934 Meaning of a Data-Tlow Salutten o000 00 L 628
93,5 Fxercises for Sectlon 8.3 L. 31
Conslant Propagation 632
941 Data-I"low Valoes for the Consiant-Propagation Frame-
work . . e e e e 633

9.4.2 The Meen for the Constant-Propagation Framework . . . 633
0.4.3 Trausler Funclions for the Comstant-Propagation Frame-

WOTK -« o e 634
9.4.4 Monolonicity of the Constan-Propagation l'ramework . . 635
9.4.5 Nondistribiriviey of the Constant-Propagation Framework 635

9.4.6 Intcrprelation of the Results . o . o o o o . oo L G837
0.4.7 Fzxereiseg for Sectiom 94 o0 o Lo L. 637
Partizl-Redundancy Elimination0 .. 63

9.5.1 The Sowreas of Redhindaney . . . o L. 639
8.5.2 Can All Redundaney Be Eliuminated? f42
9.32.3 The Lazy-Code-Motion Problem .0 00 0 000000 L. 644
054 Anticipation of Expressions (YIS
.55 The Lawy-Code-Motion Algorithme - . .. 0 o .. oL L. 644
9.5.6 [xorcises for Section 8.5 0L, 653
Loopsin Flow Graphs 655
9.6 Dominators L L Lo 656
9.6.2 Depth-Fiese Ordeving 0 660
8.6.3 Edges in a Depth-Iirst Spanning Tree 561
B.6.4 Back Bdges and Reducability L L. G652
8.6.5 Depth ofa Flow Graph 663
9.6.6 Nabural Loopso L 0L L 664
9.6.7 Speed of Convergence of Tterative 1Jarta-Flow Algorithims . 667
968 Exercises for Seetfon 8.6 . . . L Lo, 669
Begion-Based Analysis 0 0L L. 672
071 Reglomuso G7d

9.7.2 Region Micrarchies for Reducibie Flow Graphs

XX TABLE OF CONTENTS
8.7.3 Ovorview of u Region-Based Analysis)
8.71 Necessary Assumptions About Transfer Funerions 678
9.7.5 An Algorithm for Region-Based Analvsis 80
9.7.6 Handling Nowredhicible Flow Graphs ., 684
9.7.7 Exercisegfor Sectiom 9.7 L. ... 686

9.8 Symbolic Analysis L G386
3.8.1 Affine Expressions of Reference Varables BET
9.8.2 Data-Flow Problem Formulation G685
.83 Region-Based Symbolic Analysis 694
.84 FExercigesfor Section 9.8 699

9.9 Summary of Chapter 9 L. 700

010 Neferences for Chapter 9. 703

10 Instruction-Level Parallelism 707

10.1 Procegsor Architectures L L L. L. 708
10.L.1 Tnstruction Pipetines and Branch Delays 708
10.1.2 Pipelined Execution 709
10.1.3 Muliiple Tnstruectlon Issue o o o o0 L L L L .. 710

10.2 Code-Schednling Constraints 710
10.2.1 Data Dependenee . . . 0 0o L0 Lo oo Lo oL 711
10.2.2 Finding Dependences Among Mewmory Accosses T12
10.2.3 Tradeoff Between Regisver Usage and Pazallelisin 713
13.2.4 Phase Ordering Detween Register Allocalion and Code

Scheduling .. . 0. L oo oo 7146
10.2.5 Control Dependence . . 0 L0 0o o 0oL 716
10.2.6 Speenlative Execution Support L oL L L riki
10.2.7 A Baslc Machine Model 0. . L0 Lo 719
10.2.8 Exerciscs for Section 102 . . _ oL 720

10.3 Basic-Block Scheduling oo L Lo 721
10.3.1 Data-Dependenee Graphs - . o 722
10.3.2 TLigl Scheduling of Bagic Blocks 723
10.3.3 Prioritized Topological Orders . . . o0 o 0 0 000 L 725
10.3.4 Fxercises for Sectlon 103 Lo 726

10.4 Global Code Schedulingo o o T27
10.4.1 Primitive Qode Motion T28
10.4.2 Upward Code Motion o .o o 000 o oo T30
10.4.3 Downward Code Motionno oL 731
10.1.4 Updating Data Dependenceso oo o0 732
10.4.5 Glohal Selieduling Algorithms - o0 . 732
10.4.6 Advanced Code Motion Techniques o 736
10.4.7 hileraction with Dyvnamic Schedulers . . . 0 . 0 00 oL ., a7
10.4.8 Exercises for Section 104o 737

10.5 Sofiware Plpelining - o oo 0 000 o o T3R8
10.5.1 Introduction . - . . o . . Lo oo 738
10.5.2 Software DPipelining of Loops 740

TABLE OF CONTENTS by |

10.5.3 Register Allocation and Code Generation 743
10.5.4 Do-Across Loops L oo o oo o e 713
10.5.5 Goals and Conslraints of Software Pipelining 745
10.5.6 A Software-Pipelining Alporithm 0o .. oo 749
10.5.7 Scheduling Acyclic Data-Dependence Graphs - 749
10.5.8 Schoduling Cyclic Dependence Graphs 7al
10.5.9 Tmprovements to the Pipelining Algorithms TH8
10.5. 10 Modular Variable Fapangion -o 758
10,511 Conditional Statements 0 oL L. 761
10.5. 12 Hardware Support for Software Pipelining 762

0.5 13 Exereises for Section 05 . .0 . o ..o oo 763

106 Summary of Chapter 10 Lo T65
10.7 Reflerences for Chapter 10 . . . - oo oo oo T66
11 Optimizing for Parallelism and Loeality 76D
11.1 Bagic Coucepla 77l
TE1LT Mulliprocossors - .« o o v o v v v v o i e e e 772
11.1.2 Parallelism in Applications 77
11.1.3 Loop-Level Parallelism, 774
11.1.4 Duata Locality 0.0 TTT
11.1.5 Introduction to Affine Transform Theory . .0 0 0 . . TR

11.2 Malrix Multiply: An Tn-Depih Example . . 00 .0 00000 TH2
11.2.1 The Marriz-Mulliplicalion Algorithm TR2
11.2.2 Optimidzalions . . o v v v v v v e vt e e e s e e e e T8RS
11.2.3 Cache Interference T&E
11.2.4 Exercises lor Seclion 11.2 THE

113 ltovalion Spaces . . o o o 0 0 o i o e 88
11.3.1 Construering Iteration Spaces from Loop Nests 788
11.3.2 LExcenvion Order for Boop Nests 0 0000000000 7al
1135 Matrix Formulation of Inequalities0 o L0 L L. ¥91
11.2.4 Incorporating Symbolic Constants 793
11.3.5 Controlling the Order of Execution o .. 703
1136 Changing Axcso 0o o e 798
11.3.7 Exercises for Section 11.3, ... L. 799

1.4 Affine Arvay Indexes o . . . L Lo L 801
1141 AHine Acessses o o0 i e B2
11.4.2 Affine and Nonaffine Accesses in Practice . . . L . L L L. B3
11.4.3 Exercises for Section 11.4 804

.3 Data Reuse L 0 o 804
1151 Typesol Reuse oo 805
1152 Self Rewse oL 0 o000 L 806
1153 Self-Spatial Bense 0. .0 o0 0L 809
1154 Growp Bewse .. . _ .0 .0 .0 L L 511

11.6

1154 Exercises for Secvlon 113 . . .00 0o oL L L 814
Array Data-Dependence Analysis 000 0 0L L. "15

xxH

TABLE OF CONTENTS

1L6.1 Definiiion of Data Dependence of Array Aceosses 816
11.6.2 Integer Linear 'rogramming 817
1183 The GCD Test 0 818
11.8.4 Heuristics for Solving Inteper Linear Programs 820
11.6.5 Solving General Integer Lincar Programs 823
T1E6 Sumtany o . v e e e e 825
1L&6.7 Hxcreiges for Seetion 116o oL 826
11.7 Finding Synchronization-Free Parallelism .. 0 828
11.7.1 An Introduclory Example _ ..o 0oL 828
11.7.2 Affine Space Partitions 830
11.7.3 Spuce-PPartition Constraints =31
11.7.4 Solving Space-Partition Constraioss . 00 .00 L . 835
11.7.5 A Simple Code-Gencration Algorithm 838
11,76 Eliminating Empty Nerations 341
11.7.7 Elimivating Tests from Inpermost Loops 0 0 . 0 o 544
11.7.8 Source-Clode Transforms 248
1L79 Exerciges for Sectlon 117 0. 851
11.8 Synehronization Bevween Pavallel Loops © . . L 0000000 0L 833
11.8.1 A Congtant Number of Synchronizations o0 L. . 853
11.8.2 Program-Dependence Graphs 854
11.8.3 Hierarchical Time . . .0 000000 oo 357
11.8.4 The Parallelizalion Algorithm 830
11.8.5 Exerelses for Section 118 R60
11.8 Pipelining o o e 261
11.9.1 Whal s Pipelining? 861
11.9.2 Snceessive Over-Helaxation (SORY: An Exainple 563
11.9.3 Fully Permmutable Loopso ..o 864
11.9.4 Pipelining Fully Permutable Loops 864
1195 General Theory . . . 0 0 000 o o000 oo 867
11.9.6 Time-Partition Constraints« o - o0 oL 868
11.9.7 Solving INme-Partition Congiraints by Farkas’ Lemma . . 872
11.5.8 Code Transformations 87H
11.5.9 Parallelisin With Minimum Synchronization 880
11.9.10 Exercises for Section 11.9 882
11.10 Locality Optimirations« o 0o e 881
11.10.1 Temnporal Tocality of Computed Data . . -o L. &35
11.10.2 Array Confraction oo oo oo 8&b
11.10.3 Partition Inderleaving . . .« . . o ..o oo 887
11.10.4Pufting il All Togethero v oo a0
11.10.5 Fxercises for Section 11200, . 0 . 0. 00 00 o oL 862
11.11 Other Uses of Afline Transforus . . . o0 o 000 00 o000 o 363
11.11.1 Distribuied memory machines 294
11.11. 2 ulti-Instruction-Issue Processors . . 0 o o 0 o 0 o 205
11.31.3 Vertor and SIMD Instructions o oo o 895

1104 lrefetching .« o o o o e e 506

TABLE OF CONTENTS xxiii
1112 Summary of Chapter 11 o000 207
11.13 References for Chapter 11, 0 . 0 0 00 0 oo oo oo o0 oL 849

12 Interprocedural Analysis 03
12.1 Bagic Comeepsts . . . o v i o e e e 204

1231 Call Geaphs o o o Lo o L 904
12.1.2 Conlext Sensitdvivy © . . . 0 . .. Lo 946
1213 CallSurings . . o . . o v e 908
12.1.4 Cloning-Based Contoxt-Sensitive Analysis oo 0000 910
12.1.5 Smnmary-Based Context-Sengitive Analysis 911
1216 Fxercises for Seclion 121 oL 914
12.2 Why Interproceduval Analvais? © 0 0000 L0000 916
12.2.1 Virtnal Method Iuvocation o o oL 916
12.2.2 Pointer Alias Analyvsis L. Q17
12.2.53 Parallelization oo a1y
12.2.4 Detection of Software Ervors and Voloerahilivies 317
12.2.8 SQL Injection« Lo a18
1226 Buffer Overflow 0 .. oo o .. 020
12.3 A Logical Represenlation of Data Flow a921
12.3.1 Intvoduction to Datalog . .0 . 000 o000 oo 0921
1232 DatalogRules. o oo 922
12.3.3 Intensional and Fxtensional Predicates 624
12.3.4 Execution of Datalog Programs 0927
12.3.5 Incremental Fvaluation of Datalog Programs 928
12.3.6 DProbleraaric Datalog Rules . 0 0 0, 930
12.3.7 Exercises for Section 123 L. 032
12.4 A Simple Pointer-Analysis Algorithm 933
12.4.1 Why ig Pointer Analysis Dillicull 0934
12.4.2 A Model lor Pointers and References - 0 .., . ., 93h
1243 Viow Insensitivity o0 L oL 936
124.4 The Formulation in Daralog0 937
1245 Using Type Inlormation, 938
12.4.6 Exercises for Seetion 1240 o000 930
12.5 Context-Ingensitive Interprocedural Aualvsis 941
12.5.1 Dtfecls of & Method Invoration 041
12.5.2 Call Graph Discovery in Datalog 943
12.5.3 Dynamic Loadiug and Refleetion 0 o000 0L, L. 944
12.9.4 Fxercises for Section 125 945
12.6 Context-Sensitive Pointer Analvsis 945
12.6.1 Contexts and Call Strdngs 0. 046
12.6.2 Adding Coniext to Datalog Bales 0. 049
12.6.3 Additional Observatlons About Sensibiviey 048
12.6.4 Exercises for Seclion 126 950
12.7 Datalog Tmpicmemation by BDDs 651

12,71 Binary Decision Diagrams 051

XXiv TABLE OF CONTENTS
12.7.2 'Transformations on BDD's L. 953

12.7.3 Representing Relations bw BDDs 9hd

12.7.4 Relational Operations as BDD Operations - 954

12.7.5 Using BDIDYs for Points-to Analysis 957

12.7.6 Exercises lor Sectlon 12.7 a58

12.8 Summary of Chapter 12 . . 0 0 0.0 0oL 58
12.9 References for Chapter 12 0 o0 oo oo oL 951

A A Complete Front End 965
Al The Source Language 0 oo o e 955
AZ Naln o ... e e 066
A3 Texical Analyzer oL oo oL [967
A4 Symbol Tables and Types . . .0 000000 oo oo 970
A5 Imtermediale Code for Expressions 0 a7l
AG Jumping Code for Boolean Expressions L. a74
A7 Intermediate Code for Staterments . . - Lo 978
AR Tarser e e e e e 051
AS Creating the Yront End . .. 0 . oo o0 086

B Finding Linearly Independent Solutions 989

Index a993

Chapter 1

Introduction

Programming languages are notations for describing eomputations to people
and o machines, The world as we know it depends on programiming languages,
because all the software runuiug on all the compulers was written in some
programming language. But, hofore & program can be rub, it first must be
tramslated inre a form in which it can be exceuted by o computer.

The software systems thal do this translation arc called compilers.

This book is aboul how 1o design and implement compilers. We shall dis-
cover that o fow basic ideas can be nsed to construct franslators for a wide
varicty of languages and machines. Besides compilers, the prineiples and tech-
niques for compiler design are applicable to so many ouhcr domains that they
are likely to be reuged many titues in the earser of a computer scientist. The
study of compiler writing touches upon programming langnages, machine ar-
chitecture, language theory, algorithms, and sofrware enpinecering.

In this prelimivary chapter, we introduce the diffevent forms of language
franslators, eive a high level overview of the structure of a typical compiler,
and diseuss the trends in programming languages and macline architectire
that are shaping compilers. We include some observations on the relationship
between compiler design and computer-science theory and an outline of the
applications of compiler lechuology that go beyvond compilation. We end with
@ brief outline of key programming-language concepts that will be needed for
our study of corupilers.

1.1 Language Processors

Simply gtated, a compiler & a program that can read a program in one lan-
guage — the somwree language — and trenglace It into an equivalent program in
another language - the target language; sec Fig. 1.1, An importaut role of the
cotnpiler is Lo report any errovs in the source program thai it detecis during
the translation process,

2 CHAPTER 1. INTRODUCTION

SOTECR ProgElal il
|

Compiler

target program

Tigure 1.1: A compiler

Tf the targel program is an cxecuiable machine-language program, it can
ther be called by the user to process inputs and produce outputs; see Fig. 1.2,

T

Target Program {_-._ iy gitd

input

Figure 1.2: Running the target program

Avinterpreter is another common Lkind of langnage processor. Instead of
producing a target program as a transiation, an interpreter appears Lo directly
execute the operations specified in the source program on inputs supplied by
the user, as shown in Fig. 1.3.

AOITCE pr'ogrmn -~
Inkerproter - == outpul
input —e= |

Fipure 1.3: Ap interproter

The machine-language target program produced by a compiler is usually
much faster than an interpreler al mapping inputs to ontputs . An interpreter,
however, can usually give bettor crror diagnostics than a compiler, becanse it
executes the source program statement by statemment,

Example 1.1: Java language processors combine compilation and intcrpreta-
tion, as shown in Fig, 1.4, A Java souree program may firsi be compiled into
au intermediate form called byteendes. The bytecodes are then interpreted by a
virtual machine. A bencfit of this arrangenient s that bytecodes compiled on
one machine can be interpreted on another machine, perhaps across a network.,

In order to achieve faster processing ol inputs to outputs, some Java cormpil-
ers, called jusi-in-time compilers, tranglae the hytecodes into machine language
immediately before they run the intermediate program to process the input. &

L1, LANGUAGE PROCESSORS 3
SOUTUE PTOZIAIm

-

Translator
o R
intermediate program w Virtual
Macki |—l'" output
nput Lachine

Figure 1.4: A hvbrid compiler

In addition to & compiler, several other programs may he reqnived to create
an execulable target program, as shown in Fig. 1.3. A source program may be
divided into madales stored in separate {iles. The task of collecting the source
program is somcrimes entrusted to a separate program, called a preprocessor.
The preprocessor may also expand shorthands, called macros, into source lan-
guagoe statements.

The modified souree program 1s then fed 1o & compiler. The compiler 1nay
produce an assembly-language program as its ootput, becanse assembly lan-
guage s cagicr to produce as outpir and is casier to debug. The assembly
language 18 then processed by o program called an assembler that produces
relocatable machine code a8 118 ottput.

Larpe programs are often compiled in picees, so the relocatable machine
code may have 1o be linked togelther with other relocatable object files and
library files into the code that actually s on the machine. The finker resolves
external memory addresses, where the code in onn file may refer to a location
in another Gle. The feader then puls together all of the cxceutable objoct les
into memory {or execution.

1.1.1 Exercises for Section 1.1

Exercise 1.1.1: What is the diffcronce between a compiler and an inlerpreter?

Exercise 1.1.2: Whar are the advantages of (a} a compiler over an interpreter
(b} an interpreler over a compiler?

Exercise 1.1.3: What advantages arc thore to a language-processing system in
which the compiler produces agsembly langnage rather than machine langnage?

Excreise 1.1.4: A compiler thal translates a bigh-level language into another
high-level langnage is called a seurre-to-source translator. What advantagoes are
there Lo using C as a target language for a compiler?

Exervcise 1.1.5: Describe sote of the tasks that an assemblor needs to per-
form.

4 CHAPTER 1. INTRODUCTION

SOMTON program
— T

" Proprocessor J

modified source program
-)— Comypiler _‘

target assembly program

[Assemhblor h‘

relocatable toachine code

t

Linker/Loader !_.._

-

target nmachine code

library files
relocalable ohject files

Figire 1.5: A language-processing systemn

1.2 The Structure of a Compiler

Up to this point we have treated 4 compiler ag a gingle hox that maps a source
program into a scmantically cauivalent target program. Jf we open up this box
a little, we see that, there are two parts to this mapping: analysis and synthesis.

The anolysis part breaks up the source program into constituent pleces and
Imposes a grammalical structure on them, It then uses this structure 1o cre-
ate an intermediate representation of the source program. If the analysis part
detects that the source program is either syntactically i)l formed or semanti-
eally unsound, then it must provide informative messages, 50 the user can take
corrective action. The analygis part also collects information about the source
program and stores it in a data structure called a symbol fable, which is passed
along with the intermediate representation to the synthesis part.

The synthesis part constructs the desired targel program from the nterme-
dinte representation and the information in the syinbol table. The analysis part
is often called the frond end of the compiler; the synthesis parl is the back end.

If we examine the compilarion process in more detail, we see that it operates
as a sequence ol phases, cach of which transforms one representation of the
source program to another. A typical decomposition of a compiler into phases
is shown in Fig. 1.6. In practice, several phases may be grouped together,
and the intermediate representations between the grouped phases need not be
consiructed explicitly. The symbol table, which stores informalion abont the

1.2. THE STRUCTURE OF A COMPILER b

character stream

¥ _

Lexical Analyzer

- —
toloen 8iroam

Syniax Analyzer

- = -
synbax troe

Semantic Aualyzer

BYTITAX Gren
.

— T

Sywbol Table | Tntermodiate Code Generator

- . 1
intermmediate representation

" Machine-In dependent
Code Oplimizer

"
intormediate representation

' Code Generator i
L - - - - - —
target-machine code

Machiue-Dependent |
Code Optimizer

target-nrachine code

L

Figire L.6: Phases of a compiler

entire souree program, is used by all phases of the compiler.

Some cowmpilers have a mackine-independent. optimization phase belween
the front etd and the back end. The purpose of this optimizalion phase is to
perform transformations on the intermediate representation, so that the back
cnd can produce a betler targer progvam than it would have otherwise pro-
duced from an nroptimized intermediate representation. Since optimization is
optional, one or the other of the two optimization phages shown in g, 1.6 may
be missing.

1.2.1 Lexical Analysis

The flrst phase of a compiler is called lezical analysis or seenning. The lex-
ical analyser reads the stream ol characters making up the sonrce progratn

6 CHAPTER 1. INTRODUCTION

and groups the characters inlo meaningful sequences called fewevnes. Tor cach
lexeme, the lexical analyzer produces ag output a teken of the form

{token-name, atiribute-value)

that it passes on to the subscquent phage, syntax analysis. n the token, the
first componecnt teken-nome is an abstract symbol thal is used during syniax
analysis, and the second component ettribute-velue points to an cntry i the
symubo] table for this token. Information from the symboltable eniry is needed
for semantic analysis and code generation.

For example, suppose a souree program contains the assignment statement

position = initial + rate * 60 (1.1}

The charseters in this ssgignment copld he grovped into the following lexomes
and mapped into the following tokens passed on to the syntax analyzer:

1. positionis a lexems that would be mapped into a tokon {id. 1), where id
is an abatract svmbol standing for identifier and 1 poinis lo the symbol-
tabic entry for position. The svinbol-table eptry for an identifier holds
information about the idenlilier, such as ils name and type.

2. The assignment s¥mbol = 5 a loxeme that i3 mapped into the token (=).
Sinee this foken needs no attribule-value, we have omitied the second
component. We could have nged any abstract symbol such as assign for
the oken-name, but for notational cornvenience we have chosen to use the
Jexeme itself as the name of the abstract symbol.

3. initial is a lexeme that s mapped into the woken (id, 2}, where 2 points
to the symbol-table cntry for initial.

4. + is a lexeme that is mapped into the Loken {+).

. Tate iv o lexeme that is mapped into the token (id, 3), where 3 poiuts to
the symhbaol-table entry for rate.

14

6. * is o Joxeme thai is mapped into the token {+).
7. 60 ia a lexeme that is mapped into the token {60).

Blanks separating the lexeines would be discarded by the lexical analyzer.
Fignre 1.7 shows the representation of the assipument statement (1.1) afier
lexical analysis as the sequence of tokens

{id, 1) {=} {id, 2} (+} (id,3) {+} (60) (1.2

1n this represomtation, the token pames =, +, and * are abstract symbols for
the assignment, addition, and multiplication operators, respectively.

LTuchnigally speaking, for the lexeme 60 wo should make up a token lilke {nmmber, 13,
wherc 1 points 1o Lhe symbol table for 1he Internal representation of integer 80 but wo shall
defer Lhe discussion of tokena for numbers until Chapter 2. Chapler 3 discugses techniques
for building lexdical analvzers.

1.2, THE STRUCTURE OF A COMPILER

pesiticen = Ilnitial + rate * 60
_ Y
' Lexical Analyzer |
—_ i

(A, 1) (=) (ia,2) {+) (id,3) (=} (60)

LI
E Hyntax Analyzer

aday T

(i, 25 Tw
fid, 35 T 60

1 posj:tiop
imitial
3 | rate

[

) | Semantic Analyser
I R n

SYMBOL TARLE (id. 1} T
{id, 2} T
{id, 3y inttofloat
|
| 6
| Tutermediate Code Generanor |

t1 = inttofloat(60)
t2 = id3 * 1

t3 = id2 + t2

ial = t3

Code Op Timizor _‘

T

tl = 1d3 * 60.0
idl = i42 + t1

¥
Code Gennvator J

1

LBF RZ, id3

MULF R2, R2, #50.0

LDF R1, idZ

ABDF Ri, Ri, R2

STF id1l, Rl

™

Figure 1.7 Translation of an assignient statement

! CHAPTER 1. INTRODUCTION

1.2.2 Syntax Analysig

The second phage of the comptler Is syntax analysis or porsing. The parser uscs
the first components of the tokens produced by the lexical analyzer to croate
a tree-like intermediate representation that depicts the grammadical structure
of the tolen siream. A {ypical representation is a syniaz tree In which each
interion node represents an operation and the children of the node represent the
arguments of the operalion. A syntax tree for the token stroam (1.2) is shown
as the ontput of the syntactic analyzer in Fig. 1.7.
This tree shows the order in which the operations in the assigniment

position = initial + rate * G0

are 1o be performed. The tree has an interior node labeled * with {id,3) as
itg lefl child and the integer 60 ax its right child. The node {id, 3) represents
the identifier rate. The node labeled = makes it explicit that we must first
rutltiply Lthe value of rate by 60. The node labeled + indicates that we must
add the result of this multiplication to the value of initial. The root of the
tree, labeled =, indicates thal we must store the result of this addition into the
ocation for the identifier position. This ordering of operalions is consistent
with the nsual conveulions of arithmetic which tell us that mitiplication has
higher precedence than addition, and hence that the multiplication is to be
performed before the addition.

The subsequertt phases of the compilor use the grammatical structure to help
apalvze the source program and generate the tavget program. In Chapter 4
we ghall use comtext-froe prammars to specily the gramunatical structure of
programing lanpuages and discuss algorithmos for constructing efficient. syntax
analyzers automatically [rom certain classes of gramanars. Tn Chapters 2 and 5
we shall see that syntax-directed definitions can help specify the lranslation of
programming language constructs.

1.2.3 Semantic Analysis

The semanlic analyzer uses the syntax wee and the information in the symbol
rable to check the source program for semantic consisteney with the language
definition. Tt also gathers type information and saves it in either the syntax tree
or the symbal table, for subsequent nse during intermediate-code generation.

An important part of seantic analysis is fype checking, where the cornpiler
checks that cach operator has matching operands. Vor example, many prograin-
ming Llanguage definitions require an array index to be an integer; the compiler
must report an ervor if a floating-polnt number is used to index an array.

The language specification may permit some type CONVersions called coer-
cions. Vor example, 2 binary arithretic operator may be applied to either a
pair ol integers or to a pair of {loating-point numbers. If the operator is applicd
to a floating-point nunber and an infeger, the compiler may convert or coorce
the inlcger into a floaling-point number. '

.

1.2. THE STRUCTURE OF A COMPILER g

Such a coercion appears in Fig. 1.7. Suppose that position, initial, and
rate have becn declared to be floating-point numbers, and that the Iexeme 60
by itself forms an integer. The type checker in the semantic analyzer in Fig. 1.7
discovers that the operator = is applicd to » floating-point number rate and
an integer 60. [n this case, the jnteger may be converted into a floating-point
mumber. In Fig. 1.7, notice that the output of the semantic analyzer has an
extra node for the operator imttofloat, which explicitly converts its integer
argument into a Hoating-point number. Type checking and semantic analysis
are discussed in Chapter 6.

1.2.4 Intermediate Code Generation

In the process of translating a source program inlo target code, a compiler may
construct one or more intermediate representations, which can have a variety
of forms. Syntax trees arve a form of intermediste representation; they are
comeouly used during syntax and sernantic analysis,

After syntax and scmantic analysis of the source program, many compil-
org generate an explicit low-level or machine-like intermediate representation,
which we can think of ag a program for an abstract machine., This intermedi-
ate representation shonld have two imporlant. properties: it should be easy to
produce and it should he easy to translate into Lhe target machine,

In Chapter 6, we consider an intermediate form called [hree-address code,
which consists of a sequence ol assembly-like instructions with three operands
per instruction. Each operand can act like a register. The oulpui of the inver-
mediate code generator in Fig. 1.7 consists of the three-address code sequence

t1 = inttofloat(80)

t2 = id3 * t1 ;
t3 = id2 + 2 (1.3)
idl = £3

There are several points worth noting about Uhree-address instractions.
First, each threc-addross assignment fustruction has at most one operator on the
right side. Thus, these instructions fix the order in which opevations arc to be
done; the multiplication precedes the addilion in the source program (1.1). Sec-
oud, the compiler st generate a lemporary name to hold the value eompuoted
by a three-address instruction. Thivd, some “three-address insituctions” like
the first and last in the scquence {1.3), above, have fewer than three operands.

In Chaptor 6, we cover the principal intermodiate representations used in
compilers. Chapters 3 introduces lechnigues for synlax-directed translation
that are applied in Chapter 6 to type checking and intermediate-code pencration
for typical programming language constracts such a5 expressions, low-of-coutrol
construets, and procedure calls,

10 CHAPTER 1. INTRODUCTION

1.2.5 Code Optimization

The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result. Usually better means
faster, but other objectives may be degired, such as shorter code, or target code
that consumes less power. For example, a straightforward algorithm generates
the intermediate code (1.3), using an instruction for each operator 1n the tree
representation that comes from the scmantic analyzer.

A simple intcrmediate code generation algerithm followed by code optimiza-
tion s a reasonable way to generate good target code, The optimizer can deduce
that the conversion of 60 from integer to floating poind can be done onee and for
all at compile time, 5o the inttofloat operation can be climinated by replacing
the integer 680 by the Noating-point munber 60.0. Moreover, t2 is used only
once to transmit its value to 1d1 so the optimizer can transform (1.3) into the
shortor scquence

t1 = 1d3 * 60.0 ;
idi = id2 + t1 (14)

There is a great variation in the amount of code optimization different com-
pilers parform. In those that do the most, the so-called “optimizing compilers,”
a significant amount of thne is gpent on this phase. There are simple opti-
mizations that significantly improve the riunning time of the target program
without slowing down compilation too much. The chapters from 8 on discuss
machine-independent and machine-dependent opiimizations in detail.

1.2.6 Code Generation

The code generator takes as inpuat an intermediate reprosentation of the sonrce
program and maps it into the target language. If the target language is machine
code, registers or memory locations are sclected for each of the variables nsed by
the program. Then, the intermediate instructions are translated into sequences
of mackine instructions that perform the same task. A crucial aspect of code
gencration is the judicious assignment of registers to hold variables,

For example, using registers R1 and R2, the intermediate code in (1.4} might
get translated inio the machine code

LDF RZ, 1d3
MULF R2, R2, #60.0

LDF R1, id2 (1.5)
ADDF Ri, Ri, R2
STF idl, Rl

The firsl, operand of each instriction specifies a destination. The F in each
ingtruction tolls us that it deals with floating-point numbers. The code in

1.2, THE STRUCTURE OF A COMPILER 11

{1.5) loads the contents of address id3 into register R2, then multiplies it with
Aoating-point constant 60.0. The # signifies that 60.0 is w be treated as an
immediate constant. The third instruction moves 142 luto register B1 and the
fourth adds to it the value previcusly computed in register RZ. Finally, the value
in register R1 is stored into the address of 1d1, so Lhe code correctly implements
the agsipument statement {1.1). Chapter 8 covers code generation.

This discugsion of code generasion has ignored vhe important issue of stor-
age allocation for the identifiers in the source program. As we shall scc in
Chapter 7, the organization of slorage at run-time depends on the language be-
ing compiled. Storage-allocation decisions are made either during intermediate
code generation or during code generation.

1.2,7 Symbol-Table Management

An essential function of a compiler is to record the variable names used in the
sonrce program and collect information about various attributes of each name.
These attributes may provide information about the storage allocased for a
name, its type, its scope (whore in the program its value may be uged), and
in the casc of procedurc names, such things as the number and types of its
arguments, the method of passing each argument (for cxample, by value or by
reference), and the typo returned.,

The symbol table is a data structure containing a record for each variable
name, with fields for the attributes of the name. The data structure should be
deslgned to allow the compiler to find the vecord {or each name quickly and to
slore or relrieve data from that record quickly. Synbol tables are discussed in
Chapter 2.

1.2.8 The Grouping of Phases into Passes

The discussion of phases deals with the logical organization of & compiler. In
an implementation, activities {rom seversl phases may be grouped together
into a paess that reads an input file and writes an output file. For example,
the front-end phases of lexical analysis, syntax analysis, semantic analysis, and
intermedtate code generation might be grouped together into one pass. Code
optimization might be an opticnal puss. Then there could be a back-end pass
consisting of code generaiion for & particular target machine.

Some compiler coltections have been ercated around carefully designed in-
tertnediate represontations that allow the front end for & particular language to
trerface with the back end for a cerlain target machine. With these collections,
we can produce compilers for different source Janguages for one target machine
by combining different front ends with the back end for that target machine.
Similarly, we can produce compilers for different target machines, by combining
a fronl end with back ends for different target machines.

12 CHAPTER 1. INTRGDUCTION

1.2.9 Compiler-Construction Tools

The compiler writer, like any sofiware developer, can profitably use modern
software development envivonments conlaining tools such as language editors,
debuggers, version managers, profilers, test harnesses, and so on. In addition
to these general softwarc-development tools, other more specialized tools have
been created to help irnplement varicus phases of a compiler.

Thesge tools use specialized langnagoes for specilying and implementing spe-
cific components, and many tse quite sophisticated algorithms. The most suc-
cesstul tools are those that hide the details of the generation algorithm and
produce components that can be casily intcgrated inte the remainder of the
compiler. Some commounly nsed compiler-construetion tools include

1. Parser generators that automaticully produce syntax analyzers from a
graminatical description of a programming language.

2. Scanner generators that produce lexical analyzers from a regular-expres-
sion description of the tokens of a language.

3. Syniaz-directed translation engines that produce collections of routines
for walking a parse trec and generating intermediate code,

4. Code-yenerator generators that produce a code generator from a collection
of rules for translating each operation of the intermediate language into
the machine language for a target machine.

5. Dute-flow anelysis engines that facilitate the gathering of information
about how values arc transmitted from one part of a program to each
other part. Data-flow analysis it s key parl of code optimization.

6. Compiler-construction toolkits that provide an integrated set of routines
for constructing various phascs of a compiler,

We shall describe many of these tools throughout this book.

1.3 ‘The Evolution of Programming Languages

The first electronic computers appeared in the 1940’s and were programmed in
machine language by sequences of (’s and 1's that explicitly told the computer
what operations to cxecute and in what order. The operations themselves
were very low level: move data from one location to another, add the contents
of two registers, compare two values, and so on. Needless to say, this kind
of programming was slow, tedious, and error pronc. And once written, the
programs were hard to understand and modify.

1.3. THE EVOLUTION OF PROGRAMMING LANGUAGES 13

1.3.1 The Move to Higher-level Languages

The first step towards more people-friendly programming languages was the
development of mnenonic assembly languages in the carly 1950%. Initially,
the instructions in an agsembly language were just mnernonic representations
of machine instructions. Later, macro insiructions were added to assembly
languages so that a programmer could define parametcrized shorthands for
frequently uscd sequences of machine instructions.

A major step towards higher-level languages wag made in the laiter half of
the 1950°s with the development of Fortran for scientific computation, CGobol
for business data. processing, and Lisp for symbolic computation. The philos-
ophy behind these languages was to create higher-level notations with which
programmers could more casily write numerical computarions, husiness appli-
cations, and symbolic programs. These languages were so successtul that they
are gtill in use today.

In the following decades, many more lanzuages were created with innovative
features Lo help make programming casior, more natural, and more robust.
Later in this chapter, we shall discuss some kev features thai arc common to
many madern programming langnages.

Today, there arc thousands of programming languages. They can be claggi-
fied 1 a varlety of ways., One clagsification is by generation. First-generation
fangruaeges are the machine languages, second-generation the assembly langnages,
and third-generation the hghor-level languages like Fortran, Cobol, Lisp, C,
CH++, G, and Java. Fourth-generntion [anguages are langnages desigued
for specific applications like NOMAD for report gencration, SQL for database
queries, and Postseript for Lext formalting, The term fifth-generntion language
has becn applied to logic- and constraint-based languages like PProlog and OPSS,

Another classification of langnages uses the term imperntive for langnages
in which a program spocifics how a computation is to be done and declerative
for languages in which a program specifies whet computation is o be done.
Languages such ag C, C4++4, C#, and Java are imperative languames. In imper-
alive langnages there is s notion of program state and statements that change
the state. Functional languages such as ML and Haskell and constraint logic
languages snch as Prolog are olten considered to be declarative langnages.

The term von Newmann languuge is apphied o programming langnages
whoge computational model s based on the von Newmann computer archi-
tecture. Many of loday's languages, such as Fortran and € are von Newmann
languages.

An object-oriented language is one that supports object-oriented program-
ming, a programming style in which a program consists ol a eollection of objects
that interact with one ancther. Simnla 67 aud Smalltalk arc the earliesi major
object-oriented languages. Languages such as C++, Cg, Java, and Ruby are
more recent ohject-oricnted languages.

Scripting languages are interpreted languages with high-level operators de-
signed for “gluing together” computations. These computations were originaily

14 CHAPTER 1. INTRODUCTION

called “scripis.” Awk, JuvaScript, Perl, PHP?, Python, Ruby, and Tel are pop-
ular cxamples of seripting languages. Programs writlen in seripting, languages
are often much shorter than sgquivalent programs written in langnages like C.

1.3.2 TImpacts on Compilers

Since the design of programming languages and compilers are intimately related,
the advances in programming languages placed new demands on compiler wril-
ers. They had to devise algorithms and representations to translate and support
the new langnapge features, Since the 1940, compuiter architecture hag evolved
as well. Not only did the compiler writers have to track new langnage fea-
tures, they also had to devise translation algorithms that would take masximal
advantage of the new hardware capabilities.

Compilers can help promote the use of high-level langnages by minimizing
the execution overhead of the programs written i these languages. Compilers
are also critical in making hipgh-performance computer architectures effective
on users’ applications. In fact, the performance of a computer system is so
dependent on eompiler terhnology that corpilers are used as a tool in evaluating
architectural concepts before a computer is built.

Compiler writing is challenging. A compiler by itself is a large program.
Maoreover, many modern langnage-processing systems bandle several source Jun-
guages and target machines within the same framework; thal is, they serve as
coblections of compilers, possibly consisting of millions of lines of code. Con-
sequently, pood software-engineering icchnigues are essential for creating and
evolving modern language processors.

A pompiler must translate correctly the potentially infinlie sct of programs
that could be written in the source language. The problem of generating the
optimal targel code from a source program is vndecidable in general; thus,
compiler writers must cvaluate tradeoffs about what problems o fackle and
what heuristics to use to approach the problem of generating cfficient code.

A study of compilers is also a study of how theory mects practice, as we
shall see in Section 1.4.

The purpose of this text is to teach the methodology and fundamental ideas
used in compiler degign. I is not the intention of this text to teach all the
algorithms and techniques that could be used for building a state-of-the-art
language-processing system. However, readers of this text will acquire the basie
knowledge and nnderstanding to learn how to build a compiler relatively easily.

1.3.3 Exercises for Section 1.3

Exercise 1.3.1: Indicalc which of the following terms:

a) imperative by declarative ¢) von Nenmann
d} object-oriented) funciional [} third-generation
g) lourth-generation b)) scripting

14, THE SCIENCE OF BUILDING A COMPILER. 15

apply to which of the following languages:

1y C 2) C++ 3) Cobol 4) Fortran 5 Java
6)Lisp 7) ML &) Pl 9) Python 10} VB.

1.4 The Science of Building a Compiler

Compiler design is full of beautiful examples where complicated real-world prob-
lems are solved by absiracting the essence of the problem mathemarically. These
gerve as cxcellent illustralions of how abstractions can be used to solve prob-
lems: Lake a problem, formmlate a mathematical absiraction that ¢aptures the
kev characteristies, and solve it using mathematical techniques. The problem
formulation must be grounded in a solid understanding of the characteristics of
computer programs, and the golution must be validated and refined cmpivically.

A compiler must accept all sonrce programs that conform to the specification
of the langnage; the set of source programs is infinite and any program can be
very large, consisting of possibly millions of lincs of code, Any transfoirmation
performed by the compiler while translating a source program must preserve the
meaning of the program being compiled. Compiler writers thus have mfluence
over not just the ecompilers they ereate, but all the programs thal their com-
pilers compile. This leverage makes wriling corpilers particularly rewarding;
however, it also makes compiler development challenging.

1.4.1 Modeling in Compiler Design and Implementation

The study of compilers is mainly o study of how we design the right mathe-
matical models and choose the right algorithms, while balancing the need for
generalily and power against gimplicity and efficiency.

Some of most fundamental models are finjte-state machines and regular
cxpressions, which we shall meet in Chapter 3. These models are useful for de-
seribing the lexical units of programs (keywords, identifiors, and such) and for
describing the algorithms nsed by the compiler to recognize those units. Also
among the most fundamental models are context-free grammars, used to de-
scribe the syntactie structure of programming languages such ag the nesting of
parcntheses or contrel constructs. We shall study prammars in Chapter 4. Sim-
ilarly. trees are an imporiant madel for representing the strecinre of programs
and their translation into object code, as we shall see in Chapter 5.

1.4.2 The Science of Code Optimization

The term “optimization” in compiler design refers to the attempts that a com-
piler makes to produce code that is more efficient than the obvious code, “Op-
timization” is thus a misnomer, since there is no way that the code produced
by a compiler can be guaranteed Lo be as fast or faster than any other code
that performs the same task.

14 CHAPTER 1. INTRODUCTION

In modern times, the optimization of code that a compiler performs has
become both more important, and more complex. [is more complex because
proecssor architectures huve becoms move complex, vielding more opporiunities
to improve the way code executes. 1t 1s more important. because massively par-
allel computers require suhstantial optimization, or their performance suffers by
orders of magnitude. With ihe likely prevalence of mulsicore machines {com-
puters with chips that have large nymbers of processors on them), all compilers
will have to face the problem of taking advantage of multiprocessor machines.

It is hard, if net mopossible, to build a robust compiler our of “hacks.”
Thus, an extensive and uscful theory has been built up arcound the problem of
optimizing code. The use of a rigorons mathematical foundation allows us to
show that an optimization is corrcet and that it produces the desirable cffect
for all possiblc inputs. We shall see, starting in Chapter 9, how models such
as prapls, matrices, aud linear programs arc necessary i the compiler is to
produce well optimized code.

Un the other hand, pure theory alone is insnfficient. Like many real-world
problems, there are no perfect answers. In fact, most of the questions that
we ask in compiler optimizalion are undecidable. Oue ol the most important
skilld in compiler desipgn is the ability to formulate the right. problem to solve.
We need a pood understanding of the behavior of programs to start with and
thorough experimentation and evaluation to validate our intuitions.

Compiler optimizations must moeet the following design objectives:

e The optimizaiion musi be correcl, that is, prescrve the meaning of the
compiled program,

¢ The optimization must improve the performance of many programs.,
o The compilation time must be kept reagsonable, and
s The cnginecring effort required musl be manageable.

i is impossible to overemphasize the importance of correctness. It is trivial
to write a compiler that penerates fasi code if the generated code need not
be correct! Optimizing compilers ave so difficult Lo got right that we dare say
that no optimizing compiler is completely ervor-free! Thus, the most imporiant
objective in writing a compiler is that it is correct.

The second goal is that the compiler must be effective in improving the per-
formance of many input programs. Nermally, performance moans the speed of
the program excention. Euspeciaily in embedded applications, we may also wish
to minbmize the size of the generated code. And in the case of mobile devices,
it is also desivable that the code minimizes power consumption. Typically, the
same optimisations that speed up execution time also conserve power. Besides
performance, usability aspoets such as error reporting and debugging are ;llso
important.

‘I'hird, we need to keep the compilation time short to support. a rapid devel-
opment. and debugging cycle. This requirement hag hocome easier to moeet as

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 17

machines gel Taster. Ofter, a program is first developed and debugged without
program optimizations, Not only is the compilation time reduced, bul more
importantly, unoptimized programs are casier to debug, becanse the optimiza-
tions introduced by a compiler often obscure the relationship between the source
code and the object code. Turning on optimizalions in the compiler sometimes
exposes new problemy in the source program; thus testing must again be per-
formed on the optimized code. The need for additional testing somerimes devers
the nse of ophimizations in applications, especlally if their performance is not
critical. .

Finally, & compiler is a complex syster; we wmst keep the system gim-
ple to assurc that the engineering and maintenance costs of Lthe compiler are
manageable. There is an infinite number of program optimizations that we
comnld itnplemen, and it takes a nontrivial amount of effort to create o correct
and effective optimization. We must prioritize the optimizations, implementing
only thosc that lead to the greatest benefits on source programs encountered in
praciice,

Thuts, in studying ecompilers, we learn not only how to build a compiler, but
also the gemeral methodology of solving complex and open-ended problems. The
approach used in compiler development involves both theory and experimenta-
tion., We normally start by formulating the problem based on our intuitiond on
what the important issues are.

1.5 Applications of Compiler Technology

Compiler design is not only about compilers, and many people use the fechnol-
ogy lcarned by studying eompilers in school. yet have never, strictly speaking,
written (even part of} a compller for a major programming language. Compiler
technology hag other Important uses as well. Additionally, compiler design im-
pacts several other areas of compuier science. In thig scetion, we review the
most important interactions and applications of the technology.

1.5.1 Implementation of High-Level Programming
Languages

A high-level programming language delincs a programining abstraction: the
programmer cxpresses an algorithm using the langnage, and the compiler must
translate that program to the target language. Gencrally, higher-level program-
ming langnages are casier Lo program in, but are less efficient, that is, the farget
programs run tnore slowly, Programimers using a low-level language have more
control over a computation and can, in principle, produce more officient code.
Unfortunately, lower-level programs are harder to write and - worse still —
less portable, more prone to errors, and harvder to maintain, Qpiimizing com-
pilers include techniques to finprove the performance of generated code, thus
ollsetiing the inefficiency introduced by high-level abstractions.

18 CHAPTER 1. INTRODUCTION

Example 1.2: The register keyword in the C' programming language is an
carly example of the interaction between compiler technology and language cvo-
lution. When the C language was ¢rested in the mid 1970s, it was considered
nceessary (o let a programmer control which program variables reside in regis-
ters. This control became unnecessary as effective register-allocation techniques
were developed, and mosi modern programs no longer use this langnage feature,
In fact, prograins that use the register keyword may lose efficiency, because
programmers often are not the best judge of very low-leve) matters like register
allocation. The optimal cholce of register allocation depends greatly on the
specifics of a machine architecture. Hardwiring low-icvel resource-management,
decizions like register allocation may in fact hurt performance, especially if the
program is riun on machines other than the one for which it was written. O

The many shifis in the popular choice of programming languages have becn
in the direction of increased levely of abstraction. C was the predeminant
systems programming language of the 80°s; many of the new projects started
in the 90°s chose C4++; Java, introduced in 1993, gained popularity quickly
in the late 90%s. The new programming-laneuage features introduced in each
round spurred new research in compiler optimization. In the following, we give
an overview on the main language features that have stimulated significant
advances in compiler technology.

Pracrically all common programuning languages, including €, Fortran and
Cobol, support user-defined aggregate data types, such as arrays and structnres,
and high-level control flow, such as loops and procedure iInvocations, I we just
talke each high-level construet or data-aceess operation and translate it directly
to machinc code, the result would be very inefficient. A body of compilex
optimizations, known as defa-flow optimizations, hag been developed to analyze
the flow of data through the program and removes redundancies across these
construets. They are effective in generating code that resembles code written
by a skilled programmer at a lower level.

Ohject. orientation was first introduced in Simula in 1967, and has becn
incorporated in languages such as Smalltalk, C4++, C#, and Java. The key
ideas behind object orientation arc

1. Data abstraction and
2. Inheritance of properties,

hoth of which have been found lo make programs more modular and easier to
maintain. Object-oricnted programs are different [rom those written in many
other languages, in that they consist of many more, but smaller, procedures
(called methods in object-oriented terms). Thus, compiler optimizations st
be able to perform woll acrogs the procedural boundaries of the source program.
Procedure inlining, which is the replacement of a procedure call by the body
of the procedure, is partibular]y useful here, Optimizations to speed up virtual
method dispatches have also been developed.

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 15

Java has many featurces that make programming easier, many of which have
heen introduced previously in other languages. The Java language is type-safe;
that s, an objeci cannot be nsed as an object of an unrelated type. All array
actesses arce checled to ensurc Lhat they lie within the bounds of the array.
Java has no pointers and does not allow pointer arithmetic. It has a built-in
parbage-collection facility that anvomarically frees the memory of variabies that
are no longer in use. While all these features make programming easier, they
ineur a vun-time overhead. Compiler optimizations have been developed to
reduce the overhead, for example, by eliminating unnecessary range checks and
by allocating objects that are not accessible beyond a procedure on the stack
instead of the heap. Effective algorithing also have been developed to minimize
the overhcad of garbage collection,

In addilion, Java iz designed to smpport. portable and mobile code. Programs
are distributed as Java bytecode, which must erther be lnterpreted or compiled
into native code dynamically, that is, at run time. Dyuamic compilation has also
been studied in other contexts, where information is exiracted dynamically at
run litme and used to produce better-optimized code. In dytaanic opltimization,
it ig important ta minimize the compilation time as it is part of the execution
overhead. A common technique nsed 1% to only cotnpile and optimize those
parts of the program that will be frequenily executed.

1.5.2 Optimizations for Computer Architectures

The rapid cvolution of computer archifectures has alse led to an insatiable
demand for new compiler technology. Almost all high-performance systerns
take advantage of the same two hasic techniques: parallelissn and mernory hi-
erarchies, Paorallelism can be found at several levels: at the instruction leveal,
where multiple vperations are oxceuted simultaneously and at the processor
fevel, where different threads of the same application are run on different pro-
cessors. Momory hierarchies are a respouse to the bagic limitaltion thal we can
haild very [asl storage or very large storage, but not storage that is hoth fast
atid large.

Parallelism

All modern microprocessors exploit instruction-level parallelism. However, this
parallelism can be hidden from the programmer. Programs are written as if all
instructions were exccuted in sequence; the hardware dynamically checks for
dependencies in the scquential nstruction strecam and igsues them in paraijel
when possible. In some cases, the machine inclides a hardware scheduler that
can change the instruction ordering 16 increage the parallelism in the program.
Whether the hardware reorders the instructions or not, compilers can rearrange
the instruerions to make instruction-level parallclism more effective.
Instruction-level parallelism can also appear cxplicitly in the instruction sct,
VLIW (Very Long Instruction Word) machines have instructions thar can issue

20 CHAPTER 1. INTRODUCTION

multiple operations in parallel. The Intel [A64 is a well-lmown example of such
an architecture, All high-performance, general-purpose microprocessors also
include instructions that can operate on a vector of data at the same Cime.
Compiler techniques have heen developed to generate code automatically for
such machines from sequential programs.

Multiprocessors have also become provalent; even personal computers of-
ten have multiple processors. Programmers can write mmltithreaded code lor
mtutltiprocessors, or parallel code can be antomatically gencrated by & com-
piler from conventional sequential programs. Such a compiler hides from the
programmers the details of finding parallelism in a program, digtributing the
computation acress the machine, and minimizing synchronization and com-
munication among the processors. Many scientific-computing and engineering
applications are computation-intensive and can benefit greatly from parallel
processing. Parallelization techniques have been developed to translate auto-
matically sequential scientific programs into multiprocessor code.

Memory Hierarchies

A memory hierarchy congists of several levels of storage with different speeds
and sizes, with the level closest to the processor being the fastest but small-
est. The average memory-aceess time of a program is reduced if most of its
accesses are satistied by the faster levels of the hierarchy. Both parallelism and
the existence of a memory hierarchy improve the potential performance of a
machine, bt they must be harncssed cffectively by the compiler to deliver real
performance on an application.

Memory hierarchies are found u all machines. A processor usually hag
a small number of registers consisting of hundreds of bytes, several levels of
caches containing kilobytes 1o megabytes, physical memory containing mega-
bytes to gigabytes, and finally secondary storage that contains gigabyies and
heyond. Correspondingly, the speed of accesses between adjacent levels of the
hierarchy can differ by two or three orders of magnitude. The performance of a
system is often limited not by the speed of the processor but by the performance
of the memory subsysiem. While compilers traditionally foeus on optimizing
the processor execution, more emphasis is now placed on making the memory
hierarchy more effective.

Using registers effectively is probably the single most important problemn in
optimizing a program. Unlike registcrs that have to be managed explicitly in
software, caches and physical memorics are hidden from the instruction set and
are managed by hardware. It has been fonnd that cache-management policies
implemented by hardware are not effcctive in some cases, cspecially in scientific
code that has large data structures (arrays, typically}. It is possible to improve
the effectiveness of the memory hierarchy by changing the layout of the data,
or changing the order of instructions accessing the data. We can also change
the layoul of code to improve the cffectiveness of instruction caches.

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 21

1.5.3 Design of New Computer Architectures

In the early duys of computer architecture design, compilers were developed
after the machines were built. That has changed. Since programming in high-
level languages Is the normy, the performanee of a computer systemn is determined
not by its raw speed but also by how well compilers can cxploit its features.
Thus, in modern computer architecture development, compilers are developed
in the processor-design stage, and compiled code, running on simulators, s used
to evaluate the proposed architectural features.

RISC

One of the best known examples of how compilers influenced the design of
computer architecture was the invention of the RISC (Reduced Ingtraction-Set
Computer) architceiurc. Prior to this inveution, the trend was to develop pro-
gressively complex instruction scts intended to make assemnbly programming
eagler; these architectures were ktiown as CISC (Complex Instruction-Set Com-
puter). For example, CISC instruction scts inelude complex memory-addressing
muxdes o support data-structure acecsses and procedure-invocation instructions
that gave registers and pags parameters on the stack.

Compiler optianisations often can reduce these insuuelions wo a small nm-
ber of simpler operations by eliminating the redundancies across complex in-
siruetions. Thus, it is degirable to build simple ingtruction sets; compilers can
use them cllectively and the hardware is much easier to optimize.

Most general-purpose processor architectures, including PowerPC, SPARC,
MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the
x88 architecture—the most popular microprocessor— has a CISC inatruction
set, many of the ideas doveloped for RISC machines are nsed in the imple-
mentation of the processor itself. Moreover, the most effective way to use a
high-perforinance x86 machine iz to use just its simple inslructions.

Specialized Architectures

Ovwer the lagt three decades, many architeclural concepts huve heen proposed.
They include data flow machines, veclor machines, VLIW (Very Long Instruc-
tion Word) machines, SIMD (Single Instrnction, Multiple Dala) arrays of pro-
cessors, systolic arrays, mulliprocessors with shared mernory, and maliproces-
sors with distributed memory. The developruent of each of these architectural
concepls wag accompanied by the research and devclopment. of corresponding
compiler technology.

Some of rhese ideas have made their way into the desipns of cmbedded
machines. Since cntire systems cav fit on a single chip, processors need no
longer be prepackaged commodity units, but can be tailored to achicve better
cost-effcetiveness for a particular application. Thus, in contrast to general-
purpose processors, where cconomies of sesle have led computer architectures

22 CHAPTER 1. INTRODUCTION

Lo converge, application-specific processors exhibit a diversity of computer ar-
chitectures. Compiler technology is needed not only to support programming
for these architectures, but also to evaluate proposed architcctural designs.

1.5.4 Program Translations

While we normally think of compiling as a translation from a high-level lan-
gnage to the machine lovel, the same technology can be applied to translate
between different kinds of languages. The following are semne of the important
applications of program-translation techniques.

Binary Translation

Compiler technology ean be used to translate the hinary code for one machine
to that of another, allowing a machine to run programs originally compiled for
another instruction set. Binary translation technology has been used by varions
cotputer companies to increase the availability of software for their machines.
In particular, because of the domination of the %86 personal-computoer mar-
ket, most software titles are available as x86 code. DBinary translators have
been developed to convert x86 code into both Alpha and Sparc code. Binary
tranglation was also used by Transmeta Inc. in their immplementation of the x86
instruction set. Tnstead of executing the complex x86 instruction set directly in
hardware, the Transmeta Crusoe processor is a VLIW processor that relies on
binary translation to convert x86 code into native VLIW code.

Binary translation can alse be used to provide backward compatibility.
When the processor in the Apple Macintosh was changed from the Motorola MO
68040 to the Power?C in 1994, binary translation was used to allow PowerPC
processors run legacy MC 63040 code.

Hardware Synthesis

Xot only is most software written in high-level languages; even hardware de-
signs are mostly deseribed in high-level hardware description languages like
Verilog and VHDT.: (Very high-speed integrated circuit Hardware Description
Language). Hardware designs arc typically described at the register trans-
fer level (RTL), where variables represent registers and expressions roprosent
combinational logic. Hardware-synthesis tools translate RTL descriptions auto-
matically into gates, which arve then mapped to transistors and eventually to a
physical layout. Unlike compilers for programming languages, these tools often
take hours optimizing the circuit, Techniques o iranslatc designs at higher
levels, such as the behavior or functional level, also exist.

Database Query Interpreters

Besides specifying sofiware and hardware, languages are useful in many other
applications. For example, query languages, especially SQL (Structured Query

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 23

Language), are uscd 1o search databases. Database qucries consist of predicates
containing relational and boolean operators. They can be interpreted or com-
piled into commands to search a database for records satisfying that predicate.

Compiled Simulation

Simulation i3 a general technique used tn many scientific and engineering disci-
plines to understand a phenomenon or Lo validate a design. Inputs to a simula-
tor usually include the description of the design and specific input parameters
for that partienlar sitnulation run. Simulations can be very expensive, We typi-
cally need to simulate many possible design alternatives on many different input
sets, and each cxperimoent may take days 10 complote on a high-performance
raachine. Instead of writing a simulator that nterprets the design, it is faster
to compile the design to produce machine code that simulates thar parvticular
design nacively. Compiled simnlation can ran orders of magnitude faster than
an interpreter-based approach. Compiled simulation is used in many state-ol-
the-art tools that simulate designs written in Verilog or VHDL.

1.5.5 Software Productivity Tools

Programs are arguably the most complicated engineering artifacts ever pro-
duced; they consist of many many details, every one of which must be correct
hefore the program will work completcly. As a result, errors arc rampant in
programs; crrors may crash a system, produce wrong results, render a system
vuluerable to security attacks, or even lead to catastrophic failures in critical
gyvatems. Testing is the primary technique for locating errors In programs.

An interesting and promising compleroenuacy approach s 1w use data-How
analysis to locate errors stalically {that is, before the program is run). Data-
How analysis can lind errors along all the possible exccution paths, and not
just those exercised by the input daty sets, as in the case of program testing.
Many of the data-flow-analysis techniques, originally developed for compiler
opfimizations, can be used to create tools that assist programrners in their
software enginecring tasks.

The problem of finding all program errors is undecidable. A data-{low anakby-
s18 may be designed to warn the programmers of all possible statemnents violating
a particular catogory of errors. But if most of these warnings are false alarns,
users will not use the tool, Thus, practical error detectors are often neither
sound nor complele. That is, they may nol find all the errors in the program,
and not all errors reported are guaranteed to be real errors. Nonctheless, var-
ious static analyscs have been developed and shown to he offective in finding
errors, such as dercferencing null or freed pointers, in real programs. The fact
that error delectors may be unsound makes them significantly different from
compiler optitnizations. Optimizers must be conservasive and cannot alter the
semnantics of the program under any circumstances,

24 CHAPTER 1. INTRODUCTION

In the balance of this scetion, we shall mention several ways in which pro-
gram analysis, building upon techuiques originally developed to optimize code
in compilers, have improved softsare prodictivity. Of special ituportance are
techniques that detect staticslly when a program might have a sceutity vulner-
ability.

Type Checking

Type checking is an effective and well-established technique to catch inconsis-
tencies in programs. It can be used to catch errors, for example, where an
opcration is applied to the wrong type of object. or if parameters passed to a
procedire do not match the signature of the procedure. Program analysis can
go beyond finding tvpe errors by analyzing the flow of data through a pragram.
For example, if a pointer is assipned null and then immedialely dereferenced,
the program is clearly in error.

The same techuology can be used to catch a variety of sceurity holes, in
which an aitacker supplies a string or other data that is used carelessly by the
program. A user-supplied string can be labeled with a type “dangerous.” If
this string is not checked for proper format, then it remains *dangerous,” and
if a giring of thig type is able to influence the control-flow of the code at some
point in the program, then there is a potential security flaw.

Bounds Checking

It is easier to make mistakes when programming in 4 lower-level langunage than
a higher-level one. For example, many security breaches in systems arc caused
by bufer overflows in programs written in €. Because C docs not have array-
bounds checks, it is up Lo the user to ensure that the arrays are nol accessed
out of boiinds. Failing to check thai the data supplied by the user can overflow
a buffer. the program may be tricked into storing user data outside of the
buffer. An atfacker can manipulate the nput data that causes the program (o
mishehave and compromise the seeurity of the system. Technigquos have been
developed to find buffer overflows in programs, but with limited success.

Had the program been writien in a sale language that includes antomatic
range checking, this problem would noi have ocowrred. The same data-flow
analysis that is used to eliminate redundant range checks can also be used to
locate bufler overflows. The major difference, howevor, is that failing to elimi-
nate a range check would only result in a small run-time cosf, while failing to
identify a potential buffer overflow may cotnpromise the security of the system.
Thna, while it is adequate to use simple techniques to optimnize range checks, so-
phisticated analyses, such as tracking the values of pointers across procedures,
are needed (o get high-quality results ip error detection tools.

1.6. PROGRAMMING LANGUAGE BASICS 25

Memory-Management Tools

Garbage collection is another excellent example of the tradeoff between effi-
ciency and a comhbination of easc of programming and software reliability. Au-
tomatlic memory management obliterates all memory-management crrors {e.g.,
“mermory loaks™), which are a major source of problems in C and C++ pro-
grats, Various tools have been developed to help programmers find memory
management crrors. For example, Purify is a widely nsed tocl that dynamically
tatches memory management crrors as they oceur. Tools that help identify
some of these problems statically have also been developed,

1.6 Programming Language Basics

In this section, we shall cover the most important terminology and distinctions
that appear in the study of programming languages. It is not our purpose to
cover all concepts or all the popular programming languages. We assume that
the reader 18 familiar with at least one of O, C4+4, C#, or Java, and may have
encountered other languages as well.

1.6.1 The Static/Dynamic Distinction

Among the most important issues that we face when designing a compiler for
a language is what decisions can the compiler make about a program. If a
language uses a policy that allows the compiler to decide an issue, then we suy
that the langnage uscs a static policy or that the issuc can be decided at compile
time. Om the other hand, a policy that only allows a decision to be made when
wr cxecute the program i3 said to be a dynamic policy or to require a decigion
at run fime. '

One issue on which we shall concentrate is the scope of declarations. The
scope of a declaration of x is the region of the program in which uses of x refer to
this declaration. A language uses static seope or lewieal gcope if it is possible to
determine the scope of a declaration by looking only at the program. Otherwise,
the language uses dynumic scope. With dynamic scope, as the program runs,
the same use of x could refer 10 any of several different. declarations of .

Most languages, such as C and Java, use static scope. We shall discuss static
scopiug in Scction 1.6.3.

FExample 1.3: As anolher example of the static/dynamic distinetion, consider
the use of the term “siatic” as it applies to data in a Java class doclavation. In
Java, a variable is a name for a location in memory used to hold a data valae.
Here, “static” refers not to the scope of the variable, bul rather to the ahility of
the compiler to determine the location in memory where the declared variable
can be found. A declaration like

public static int x;

26 CHAPTER 1. INTRODUCTION

makes 1 a class variable and says that there is only one copy of 2, no matter how
many objects of this class are created. Morcover, the compiler can determine a
location in memory where this integer will be held. In contrast, had “static”
been omitted from this declaration, ther each ohiject of the class would have its
own location where & would be held, and the compiler conld not determine all
these places in advance of rnning the program. O

1.6.2 Environments and States

Another important distinction we must make when discussing programming
languages is whether changes occurring ag the program runs affcet the values of
data elements or affect the interpretation of names for that data. For example,
the execulion of an assignment such as x=y +1 chauges the valne denoted by
the name x. More specifically, the assignment changes the value in whatever
location is denoted by a.

It may be less clear that the location denoted by @ can change at run time.
For instance, as we discussed in Example 1.3, if 2 is not a static {or “class™)
variable, then every object of the class has its own location for an instance
of variable . In that case, the assignment to # can change any of those “in-
stance”™ variables, depending on the object to which a method containing that
assignment. is applied.

enuironment state
e —_—
NAmeS locations valnues
(variables)

Figure 1.8: Two-stage mapping from names to values

‘The association of names with localions in memory (the store) and then
with values can be described by two mappings that change as the program runs
(see Fig. 1.8):

1. The environment iz a mapping from names to locations in the store. Since
variables refer to locations (“l-values™ in the terminclogy of C), we could
alternatively define an environment as o mapping from names to variables,

2. The state is a mapping from Jocstions in gtore to their values. Thal is, the
state maps I-values to their corresponding r-values, in the terminology of

C.
Frvironments change according to the scope riles of a langnage.
Example 1.4: Consider the C program fragment in Fig. 1.9. Integer i is

deelared a global variable, and also declared as a variable local to function f.
When f is executing, the environment adjusts so that name 4 refers to the

1.6. PROGRAMMING LANGUAGE BASICS 27

I

int i; /* global i ®/
;r.o.id (-3 o
int 1i; /* local i */
i=3; /* use of local £ */
} .-
‘ =1+ 1; 7+ use of global ¢ */

Figure 1.9: Two declarations of the name 4

location reserved for the f thal is local to f, and any use of 4, such as the
assignment i = 3 shown cxplicitly, refers to that loeation. Typically, the local
% Is given a place on the run-time stack.

Whenever a function g other than f is executing, uses of ¢ cannot refer to
the 5 that is local to f. Uses of name ¢ in ¢ must be within the scope of some
other declaration of 2. An example is the explicitly shown statement x = i+1,
which is inside some procedure whose definilion is not shown. The ¢ iné 41
prosumably refers to the global 7. As in most languages, declarations in © must
precede their use, so a function that comes before the global i cannot refer to
it. O

The environment and state mappings in Fig. 1.8 are dynamic, but there are
a few oxceptions:

1. Static versus dynumic binding of names to locations. Most binding of -
uames to locations i3 dynumic, and we discuss several approaches to this
binding thronghout the section. Some declarations, such ag the global 4
in Fig. 1.9, can be given a localion in the store once and for all, as the
compiler gencrates object code.?

2. Stetic versus dynamic Winding of locations to values. The binding of lo-
cations to values (the sccond stage in Fig, 1.8), is generally dynamic as
well, since we cannot tell the value in a location until we run the program.
Declared constants are an exception. For instance, the € definition

#define ARRAYSIZE 1000

¥lechnically, the C compiler will assign & locstion in virtual mamory for the global 1,
leaving it 1o the loader and the operating system to determine where in the physical memory
of the machine ¢ will e Jocated. However, we shall not, worry shout “relocation” issuos such
as these, which have ne impact on corapiling. Instead, we treal the address space that the
compiler uses for its output code aq if it gave physical memory locations.

28 CHAPTER 1. INTRODUCTION

Names, Identifiers, and Variables

Although the terms “name” and “variable,” often refer to the same thing,
we use them carefully to distinguish between compile-time names and the
run-time locaiions denoted by names.

An identifier is a string of characters, typically letters or digits, that
refers 1o (identifics) an entity, such as a data object, a procedure, a class,
or a type. Al identifiers are nmames, but not all names are identifiers.
Names can also he expressions. For example, the natne 2.y might denote
the fleld y of a structure denoted by x. Here, © and 4 are idensifiers, while
ay is & name, but not an identifier, Composgite names like z.y are called
gualified names.

A warioble refors to a particular location of the store. It is commeon for
the same identifier to he declared more than once; each such declaration
infroduces a new variable. Even if each identifier is declared just once, an
identifier local io 4 recurdive procedure will refer to different locations of
the store at different times.

binds the name ARRAYSIZE to the value 1000 statically. We can detcrmine
thiz hinding by looking at the statemeut, and we know that it is impossible
for this binding to change when the program exccutes.

1.6.3 Static Scope and Block Structure

Most languages, including C and its family, use static scope. The scope ules
for ¢ are based on program structure; the scope of 3 declaration is determined
implicitly by shere the declaration appears in the program. Later languages,
guch as C++4, Java, and C4t, also provide explicil control over scopes through
the use of keywords like public, private, and protected.

In this section wo consider static-scope rules for a language with blocks,
where a block is a grouping of declarations and statements. C uses braces { and
} to delimit a block; the alternative use of begin and end for the same purpose
dates back to Algol.

Example 1.5: To a first approximation, the C static-scope policy is as follows:

1. A C program consists of a scquence of top-level declarations of variables
and functions.

2, Functions may have variable declarations within them, where variables
include local variables and parameters. The scope of each such declaration
is restricted to the function in which it appears.

1.6. PROGRAMMING LANGUAGE BASICS 29

Procedures, Functions, and Methods

To avold saying “procedures, functions, or methods,” each time we want
to talk abont a subprogram that may be called, we shall nsnally refer to
all of them as “procedures.” The exception ig that when talking cxplicitly
of programs in languages like C thal have only functions, we shall refer
to them as “functions.” Or, if we are discussing a langnage like Java that
has only methods, we shall use that term instead.

A function generally returns a valuc of some type (the “return type”),
while a procedure does not return any valuc, C and similar languages,
which have only functions, treat procedures as functions that have a special
return type “void,” to signify no return value. Objeci-oriented languages
like Java and C++ use the term “methods.” These can behave like cither
functions or procedures, but are associated with a particular class,

3. The scope of a top-leval declaralion of a name & consists of the entire
program thal follows, with the excepilon of lhose statements that lie
within a function that also has a declaration of .

The additional detail regarding the © static-seope policy deals with variable
declarations within statements. We examine such declarations next and in
Example 1.6. O

In C, the syntax of blocks iz given by

1. One type of statement i3 a block. Blocks can appear anywhere that other
types of statements, such as assigniwent statements, can appear.

2. A block is 4 sequence of declarations followed by a scquence of statements,
all surrounded by hraces.

Note that this syntax allows blocks to be nested inside each other. This
nesting property is referred to as block structure. The C family of languages
has block structure, except that a function may not be defined inside another
function.

We say that a dectaration D “belongs” to a block B if B is the most closely
nested block containing D; thar is, D is located within B, but not within any
block that i3 nested within B.

The static-scope rule for variable declarations in a block-structured lan-
guages i¢ ag follows, If declaration D of name = belongs to block B, then the
scape of D 15 all of B, except for any blocks B' nested to any depth within B3,
in which « 15 redeclared. Here, x is redeclared in B il some other dectaration
I of the same name = belongs to BY.

30 CHAPTER 1. INTROGUCTION

An equivalent way to cxpress this rule is 1o focus on a use of a name .
Let D, Bz, ..., By he all the blocks that surround this use of @, with By the
smallest, nested within B_q, which is nested within By _s, and so on. Scarch
[or the largest ¢ such that there is a declaration of 2 belonging to B;. This use
of x refers to the declaration in B;. Alternatively, this use of @ is within the
scope of the declaration in B;.

main{) { -
int a = 1;
irt b = 1; B
{ ——— e —— —
int b = 2; ;-;Ii
1 S
] Gt a = 3; a i
} \cout << a €< by
+ A _
(Hﬁ?:i;'“'_“_‘_ﬁj
\cout << a<<by
‘ i
cout << a << by
} o
cout << a << b;

Figuye 1.10: Blocks in a C4+ program

Example 1.6: The C++ program in Fig. 1.10 has fowr blocks, with several
definitions of variables o and b. As a memory aid, each declaration initializes
its variable to the number of the block Lo which it belongs.

For instance, consider the declarationl int a = 1 in block By, Iis scope
is all of By, except for those blocks nested (perhaps deeply) within B, that
have their own declaration of a. B, nested immediately wivhin By, does not
have a declaration of a. hut By does. B, does not have a declaration of o, so
block Bs is the only place in the entire program that is outside the scope of the
declaration of the name o that belongs to By. That is, this scope includes 12,
and all of Ba except for the part of By shai is within Bs. The scopes of all five
declarations are summarized in Fig. 1.11,

From another point of view, lot us consider the ouiput stalement in hlock
By and bind the variables ¢ and b used there to the proper declarations, The
list of surrounding blocks, in order of increasing size, s By, By, By. Note that
B does not surround the point in question. B4 has a declaration of b, so it
is 1o this declaration that this use of b refers, and the value of b printed is 4.
However, By does not have a declaration of g, so we next look ab Bz, That
bloek does not have a declaration of g either, so we proceed to B, Fortunately,

1.6. PROGRAMMING LANGUAGE BASICS 31

DECLARATION | SCOPLE
int a = 1; B]_ - Bg
int b = 1; P By — Iy
int b = Q; Bg — B4
int a = 3; B
int b = 4; Iy

Figure 1.11: Scopes of declarations in Example L6

there i a declaration int a = 1 belonging to that block, so the value of o
printed is 1. Had there been no such declaration. the program would have been
erroneous. [

1.6.4 Explicit Access Control

Classes and structurcs introduce a new scope for their members. If p is an
obiect of a class with a ficld (member) z, then the use of z in p.s refers to
field = in the ¢lass definition. In analogy with block structure, the scope of a
member declaration x in & clasé O extends to any subelags C7, except if O has
a local declaration of the same name .

Through the use of keywords like publie, private, and protected, object-
oriented languages such as C4+-+ or Java provide explicit control over access
to member names in a superclass. These kevwords support encapsulotion by
restricting access. Thus, private names are purposely given a scope that includes
only the mothed declarations and definitions associated with thart class and any
“friend” classes {the {44 term). Protected names arc accessible 1o subclasses.
Public names are accessible from outside the class.

In C++, a class definition may be separated from the definitions of some
or all of its methods. “Therefore, a name » assoclated with the class € may
have a region of the code that 1s oulside its scope, followed by another region (a
method definition) that is within ity scope. In faci, repions inside and outsicle
the scope may alternate, nntil all the methods have heen defined.

1.6.5 Dynamic Scope

Technically, any scoping policy js dynamic if it is based on factor(s) that can
be known only when Lhe program execntes. The term dynamic scope, however,
usually refers to the following policy: a use ol a name 2 refors to the declaratrion
ol # in the most recontly called procedure with such a declaration. Dytamic
scoping ol this bype appears only in special situations. Wo shall consider twa ex-
amples of dynamic policics: macro expansion in the C preprocessor and method
resolusion in objeet-oriented programming.

32 : CHAPTER 1. INTRODUCTION

- Declarations and Definitions

The apparcently similar terms “declaration” and “definition” for program-
ming-language concepts arc actually quite different. Declarations tell us
about the types of things, while definitions telf us about their values. Thus,
int iis a declaration of £, while + = 1 is a delinition of 4. '

The difference is more significant whien we deal with methods or other
procedures. In C++, a method is declared in a clags definition, by giving
the 1ypes of the arguments and result of the method (often called the
signoture for the method. The method is then defined, i.e., the code for
executing the merhod is given, in another place. Similarly, it is common
t0 define a C function in one file and declarc it in other files where the
funciicn is used.

Example 1.7: In the C program of Fig. 112, identifier o i3 a mwacro that
stands for expression (# + 1), But what is 27 'We cannot resolve z statically,
that is. in terms of the program texdt.

#defineg a (z+1)

int x = 2;

void b() { int x = 1; printf("%d\n", a); }
void ¢() { printf{"%d\n", a}; }

void main{} { b(); <O; 3}

Figire 1.12: A macro whose names must be scoped dynamically

In fact, in order to inteypret x, we must use the usual dynamie-scepe rule.
We exainine all the fiunction calls that are currently active, and we take the most
recently called function that has a declaration of 2. I is to this declaration that
the use of & refers.

In the oxample of Fig. 1.12, the function main first calls function & As
execules, it prints the valuc of the macro e, Since (& + 1) must be substituted
for ., we resolve this usc of z to the declaration int x=1 in function b. The
rodson is that b has a declaration of «, so the (x + 1) in the printf in b refers
to this #. Thus, the value printed is 1,

After b finishes, and e i3 called, we again need to print the value of macro
¢. However, the only 2 accessible to ¢ is the global x. The printf statemend,
in ¢ thus refers to this declaration of x, and value 2 is printed, O

Dynamic scope resolution js also essential for polymorphic procedures, these
that have two or more definitions for the same name, depending only on the

1.6. PROGRAMMING LANGUAGE BASICS 33

Analogy Between Static and Dynamic Scoping

While there conld be ary number of statie or dynamic pelicies [or scoping,
there is an interesting relaiionship between ihe normal (block-structured)
static scoping rule and the normal dynamic policy. In a sense, the dynamic
rule is to time as the static rule is to space. While the static rule asks us to
find the declaration whose unit (block) most closcly surrounds the physical
location of the nse, the dynamie rule asks us to find the declaration whose
unit {procedure invocation) most closely surrounds the time of the use.

tvpes of the argnments. In some languages, such as ML (see Section 7.3.3), it
is possible to determine statically iypos for all uses of names, in which casc the
compiler can replace each nse of a procedure name p by a reference 1o the code
for the proper procedure. However, in other languages, such as Java and C-++,
there arc times when the compiler cannot make that determination.

Example 1.8: A distinguishing feature of object-oriented programming is the
ability of cach object to invoke the appropriate mothod in responge o a message.
[other words, the procedure called when x.amn() is cxecuted depends on the
class of the object denoted by & at that time. A typical example is as foliows:

1. There is a class ¢ with a method named m().
2. D is a subclass of €, and D has its own method naned m().
3. There is a usc of m of the form @.am(), where 2 Is an object of class .

Normally, it is impossible to tell at compile time whether & will be of class
€7 or of the subelass 0. I the method application occurs several times, it 15
highly likely that some will be on objects denoted by & that are in class C but
not i3, while others will be in class £, Tt is not until run-time that it can be
decided which definition of wn is the right one. Thus, the code generaied by the
compiler must determine the class of the object &, and call one or the other
mecthod named . O

1.6.6 Parameter Passing Mechanisms

All programming languages have a notion of a procedure, but they can differ
in how these procedures gel their arguments. In this scetion, we shall consider
how the eclual parameters ({the parameters used in the call of a procedure)
are assoclated with the formael paremeters (those used in the procedure defi-
nition). Which meehanism is used dotermines how the ealling-sequence code
treats parameters. The great majority of langnages use cither “call-by-value,”
or “call-by-refercnce,” or both. We shall explain these torms, and another
method known as “call-hy-name,” that is primarily of historical intorest.

34 CHAPTER 1. INTRODUCTION

Call-by-Value

In call-by-value, the actual parameter is evaluated (if it is an cxpression) or
copied (if it is a variable). The value is placed in the location belonging to
the cotresponding formal parameter of the called procedurs. This method is
used i C and Java, and is a common option in C++, as woll as in most
other languages. Cill-by-value has the effect that all computation involving the
formal parameters done by the called procedurce is local to that procedure, and
the avtual parameters themselves cannot be changed.

Note, however, that in C we can pass a pointer to a variable to allow that
variatile to be changed by the callee. Likewise, array namcs passcd as param-
eters in C, G4+, or Java give the called procedurs what is in ellect a pointer
ot refarence to the array itself. Thus, if @ is the name of an array of the calling
procedure, and it is passed by value to correspondinig formal parameter z, then
an assigniment such as x[d] = 2 really chianges the array element a[2]. The
reason ig that, although x gote a copy of the value of a, thai value is really a
pointer to the begirining of the area of the store where the array named o is
Iocated.

Similarly, in Java, many variables are reallv refercnces, or pointers, to the
things they stand for. This observation applies to arrays, sirings, and objects
of all ¢lasses. Even though Java nses call-by-value exclugively, whenevér we
pass the itame of an object to a called procedure, the value recetved by that
procedure is in effect a pointer to the objecl. Thus, the called procedure is able
to affect the vahe of the object itgelf.

Call-by-Reference

In call-by-refercnce, the address of the actual parameter is pagsed to the callee as
the value of the corresponding formal parameter. Uses of the formal parameter
in the code of the callee are inplemented by following this pointer to the location
indicated by the caller. Changes to the formal parameler thus appear as changes
to the detual parameter.

If the actual parameter is an expression, however, then the expression is
evaluated before the call, and its value stored in a location of its own. Changes
to the formal parameter change this location, but can have no effect on the
data of the caller.

Call-by-relerence is nsed for “ref™ parameters in C++ and fs an option in
many other languages. It is almost essential when the formal parameter is a
large cbject, array, or structure, The reason is that strict call-by-value requires
that the caller copy the entire aciual parameter into the space belonging to
the corresponding formal parameter. This copying gets expensive when the
paramcter is Jarge. As we noted when discussing call-by-value, languages such
as Java solve the problem of passing arrays, strings, or other cbjocts by copying
only a reference to those objects. The cffect is that Java behaves as if ib used
call-by-roference for anything other than a basic type such as an integer or real.

1.6. PROGRAMMING LANGUAGE BASICS 35

Call-by-Name

A third mechanism — call-by-name wag used in the early programming
language Algol 60. It requires that the callee execute as if the aclual parameter
were substituted literally for the formal paramefer in the code of the callee, as
if the formal parameter werc a macro standing [or the actual parameter {with
rénanming of local names in the called procedure, to keep them distinet). When
the actual parameler is an expression rather than a variable, some unintuitive
behaviors oveur, which is onc reason this mechanism is ot favored today.

1.6.7 Aliasing

There is an interesting conscouence of call-by-reference parameter passing or
its simulation, as in Java, where refersnces Lo objects arce passcd by wvalue. It
is possible that two formal parameters can refer o the same location; such
variables are said to be alisses of onc another. As a result, any two variables,
which may appear to take thelr values [rom lwo distinel formal parameters, can
become aliases of cach other, ag well.

Example 1.9: Supposc a is an array belonging (o a procedure p, and p calls
another procedure g(r, i) with a call ¢la, a). Suppose also that parameters
are passed by value, but that array names are really references to the location
where the arrav s stored, as In C or similar lanpuages. Now, & and y have
bhecoine aliases of each other. The important point 1s that if within ¢ there is
an assignment 2[10] = 2, then the value of ¥[10] also becomes 2. O

It turns out that understanding alissing and the mechanisms that create it
15 essential if a compiler 1s to optimize a program. As we shall see starting in
Cliapfer 9, there are many siluations where we can only optimize code if we
can he sure certain variables ave not alissed. For instance, we might determine
that x = 2 is the enly place that variable ® is ever assigned. If so, then we can
replace a use of & hy 4 use of 2; for example, replace a = x+3 by the simpler
a = 5. But suppose there were another variable y thai was aliased to «. Then
an assignment y = 4 might have the nnexpocted elfeet of changing . Tt might
also mean that roplacing a = x+3 by 2 = & was a mistake: the proper value of
a could be 7 there.

1.6.8 Exercises for Section 1.6

Exercise 1.6.1: For the block-structured C code of Fig. 1.13(a), indicate the
values assigned to w, x, ¥, and z.

Exercise 1.6.2: Repeat Exercise 1.6.1 for the code of Fig. 1.13(b),

Exercise 1.6.3: For the block-structured code of Fig. 1.14, assuming the usnal
static scoping of declarations, give the scope for cach of the twelve declararions.

36 CHAPTER 1. INTRODUCTION

int w, %, y, 2; int w, =, ¥, =z;
int i = 4; int j = b5; int i = 3} int j = 4,
{ imtj=7; { int i = 5;
i=46; w=1i+ J;
w=1+j; }
} =1+ j;
x =1+ j; { int j = 6;
{ int i = 8; i=17;
y =i+ =i+
¥ }
Z =1+ 33 z =1+ j;
{a) Code for Exercise 1.6.1 {1) Code for Exercise 1.6.2

Figure 1.13: Block-structured code

{ intw, %2, 7, Z; /% Block Bl =/
{ int x, z; /* Block B2 #/
{ int w, x; /% Block B3 %/ }
}
{ int w, x; /* Block B4 #/
{ int y, z; /% Block BB %/ }
¥

Figure 1.14: Block structured code for Exercise 1.6.3

Exercise 1.6.4: What is printed by the following C code?

#define a (x+1)

int % = 2

void b{) { x = a; printf("%d\n", x}; }
void ¢{) { int x = 1; printf("¥d\n"), a; }
void main() { h{); cO; }

1.7 Summary of Chapter 1

4 Longuoge Processors. An lntegratod software development environment
ineludes many different kinds of language processors such as compilers,
interpreters, assemnblers, linkers, loaders, debuggers, profilers.

¢ Compiler Phases. A compiler operates as a sequence of phases, cach of
which transforms the source program from one intermediate represcnta-

tion to another.

1.7. SUMMARY OF CHAPTLR I a7

4 Machine and Assembly Languages. Machine languages were the first-
generation progranmming languages, followed by assembly languages. Pro-
gramming in these Janguages wag time consuming and error prone.

¢ Modeling in Compiler Design. Compiler design is onc of the places where
theory has had the most impact on practice. Models that have been [ound
useful include antomata, prammars, regular expressions, trees, and many
okhers.

4+ Code Optimization. Although code cannat truly be “optimized,” the sci-
ence of improving the cofficiency of code is both complex and very impor-
tant. It is a major portion of the study of compilation.

4 Higher-Level Longuages. As time goed on, programming languages take
on progressively mare of the tasks that formerly were left to the program-
mer, such as memory nanagement, type-consisteney checking, or parallel
exscution of code.

4 Compilers and Computer Architeclwre. Compilor technology inflnences
computer architectnre, ag well as being influenced by the advances in ar-
chilecturc. Many modern innovations in architecture depend on compilers
being able to exiract {rom source programs the opportunities to use the
hardware capabilities efflectively.

+ Software Productivity and Seftware Security. The same technology that
allows eompilers Lo optimize code can be used for a variety of program-
analysis tasks, ranging from detecting common program bugs to discov-
ering that a program is vulnerable 1o one of the many kindg of Intragions
thal “hackers™ have discovered.

4 Seope Rules. The scope of a declaration of x is the context in which uscs
of @ refer to this declaration. A language uscs stalic seope or lexical scope
it it is possible to determine the scope of a declaration by looking only at
the program. Otherwise. the langhage uses dynamic scope.

4 Invironments. The association of names with locations in memory and
then with values can be described in terms of environments, which map
names to locations in store, and sfetes, which map locations to their
values,

4 Block Structure. Langnages that allow blocks o be nosted are said to
have block structure. A name 2 in a nested block B is in the scope of g,
declaration J2 of z in an enclosing block if there is no other declaralion
of & in an intervening block.

+ Parameter Passing. Parameters ave passed from a calling procedure to
the callee either by value or by reference. When large objeels are passed
by value, the values passed are really references to the objects themselves,
resulting in an offective call-by-reference.

38 CHAPTER 1. INTRODUCTION

4 Alinsing. When parameters are (effectively) passed by reference, two for-
mal parameters can refer to the same objeet. This possibility allows a
change in one variable to change another.

1.8 References for Chapter 1

For the development of programming languages that were created and in use
by 1967, including Fortran, Algol. Lisp, and Simula, see [7]. For languages that
werc created by 1982, including C, C+4, Pascal, and Smalltalk, see [1].

The GNU Compiler Collection, gee, is a popular source of open-source
compilers for C, C4++, Fortran, Java, and other languages [2]. Phoenix is a
compiler-construction toolkit that provides an integrated framework for build-
Ing the program analysis, cade generation, and eode optimization phases of
comnpilers discussed in this book [3].

For more information about programming language concopts, we rccomm-
mend [5,6). For more on computer architecture and how it impacts compiling,
woe suggest [4].

1. Bergin, T J. and R. G. Gibson, History of Programming Languages, ACM
Press, New York, 1996.

2. http:/fgce.gnu.org/ .
3. http://research.microsoft.com/phoenix/default.aspx .

4. Hennessy, J. L. and D. A, Patterson, Computer Orgonization and De-
sign: The Hardware/Software Interfuce, Morgan-Kaufmann, San Fran-
ciseo, CA, 2004,

E. Scott, M. L., Programming Langunge Pragmatics, second edition, Morgan-
Kaufmann, San Francisco, CA, 2006.

6. Sothi, R., Programming Languages: Concepts and Constructs, Addison-
Wesley, 1996,

7, Wexelblat, R. L., History of Programming Langueges, Academnic Press,
New York, 1981.

Chapter 2

A Simple Syntax-Directed
Translator

This c¢hapter s an introducuion o the cowmpiling technigues in Chapters 3
through 6 of this book. [t illustrates the technigques by developing a working
Java program that translates reprosentative programming language statements
into three-address code, an intermediate representation. In this chapter, the
ernphasis is on the front end of a compiler, in particular on lexical analysis,
parsing, and intermediate code generation. Chapters 7 and 8 show how to
genetate machine instructions from three-address code.

We start small by creating a syntax-directed franslator that maps infix arith-
metic expressions into poslfix expressions. We thon cxtend this translator to
map code fragments as shown in Fig. 2.1 into threc-address code of the form
in Fig. 2.2

The working Java Lranslator appears In Appendix A. The use of Java is
convenient, but not essential. In fact, the ideas in this chapter predate the
creation of both Java and C.

i
int i; int j:; float[i00] a; float v; float x;
while { true) {
do 1 = i+1; while (alil < v };
de j = j-1; while (aljl > v);
if (i>=]) break;
* = alil; alil = aljl; aljl = =;
1
}

Figure 2.1: A code fragment Lo be translatoed

39

40 CHAPTER 2. A SIMPLE, SYNTAX-DIRECTED TRANSLATOR

i=1i+1
I=a[11

if t1 < v goto 1
j=3-1
t2=a [j]

if 12 > v goto 4
ifFalse i »= j goto 9
gote 14

x=afli]

10: t3=alj]

11: a (il =t3

Fafiei S U e

122 aljl-=
13: goto 1
14;

Figurc 2.2: Simplified intermediate code for the program fragment in Fig. 2.1

2.1 Introduction

The analysis phase of a compiler breaks up a source program into constituent
pieces and produces an internal representation for it, called intermediate code.
The synthesis phase translates the intermediate code into the target program.

Analysis is organized sround the “syntax” of the language to be compiled.
The syntaz of a programming language describes the proper form of its pro-
grams, while the semantics of the langnage defines what its programs mean; that
is, what cach program does when it exceutes. For specifying syntax, we present
a widely nsed notation, called context-free grammars or BNI (for Backus-Naur
Form) in Section 2.2. With the notations currently available, the semantics of
a language is much more difficult to describe than the syntax. For specifying
semantics, we shall thereforc use informal deseriptions and suggestive examples.

Besides specifying the syntax of a language, a context-free grammar can be
used to help guide the translasion of programs. In Section 2.3, we introduce
& Eraminar- -oriented compiling tcnhmquc:, known as synioz- dzmc.-:ed transiation.
Parsing or syntax analysts Is introduced in Scetion 2.4.

The rest of this chapter is a quick tour through the model of a compllcr
front end in Fig. 2.3. We hepin with the parser, For simplicity, we consider the
syntax-directed translation of infix expressions to postfix form, a notation in
which operators appear after their operands. For example, the postfix form of
the expression 9—5 4 2 i 85 — 24, Translation into postfix form is rich enough
to illnsrate syntax analysis, vet simple cnough that the transiator is shown in
full in Séction 2.5. The simple translator handles expressions like 8 — 3 4 2,
consisting of digits scparated by plug and minus signs. One reason for starting
with such simple cxpressions i3 that the syntax analyzer can work directly w 1th
the individual characters for operators and operands.

T

2.1. INTRODUCTION 41

source Lexical | tokens p yymhax Ime?‘n;dldte three-address
—= - arser e ode —
program | Analyzer tree o encrater | code
:H i
— .
- r -
symbal
Table '
I

Figure 2.3: A model of a compiler front end

A lexical analyzer allows a translator to handle multicharacter constructs
like identificrs, which are written as sequences of characters, but are treated
a3 units ealled tokens during syniax analysis; for example, in the expression
count + 1, the identifier count is treated as a unit. The lexical analyzer in
Section 2.6 allows numbers, identifiers, and “white space” (blanks, sabs, and
newlines) to appear within expressions.

Next, we consider intermediate-code generation. Two forms of intermedi-
ate code are illustrated in Fig. 2.4. One form, called abstract syntaz trees or
simply syntas trees, represents the hierarchical syntactic structure of the source
prograre. In the model in Vig. 2.3, the parscer produces a syntax tree, that
is further translaled into three-address code. Some compilers combine parsing
and Intermediate-code generalion into one component.

do-while i i=1i+1
2ttt =ali]
body = 3 if 1 < v goto 1
/
| 7 \
assign i1 v (b)
/ \ SN
7 f

/\

()
Figure 2.4: Intermediate code for “do i=i+1; while (ali]l<v);"

The root of the abstract syntax tree in Fig. 2.4{a) represcnts an entire do-
while loop. The lefl child of the root represents the body of the loop, which
consists of only the assigmment i=1i+1;. The right child of the root repre-
sents the condition afil<v. An implementation of syntax troes appears in
Section 2.8{a).

The other common intermediate representation, shown in Fig. 2.4(b), is a

42 CHAPTER 2. A S{MPLE SYNTAX-DIRECTED TRANSLATOR

sequence of “three-address” instructions; a more complcte example appears in
Fig. 2.2. This form of intcrmediate code takes its name from instructions of
the form # = g op 2, where op is a bindry operator, y and z the are addresscs
for the operands, and z is the address for the result of the operation. A three-
address instruction carrics out at most one operation, typically a computation,
a comparison, or a branch.

In Appendix A, we put the techniques in this chapter together to build a
compiler front end in Java. The front end translates statements into assembly-
level instructions.

2.2 Syntax Definition

In this scetion, we introduce a notation — the “context-free grammar,” or
“srammar” for short — that is used to specily the syntax of a language. Gram-
mars will be used throughout this book to organize compiler front ends.

A grammar naturally describes the hierarchical structure of most program-
ming language constructs, For example, an if-else statement in Java can have
the form

if { expression) staternent else staternent

That 18, an if-else statcinent is the concatenation of the keyword if, ah open-
ing parenthesis, an expresstou, a closing parenthesis, a statement, the keyword
else, amt another statement. Using the varlable expr to denote an expres-
gion and the varisble st to denote a statement, this structuring rule can be
expressed as

stmmt — if (expr) stmi else stmi

in which the arrow may be read as “can have the form.” Sueh a rule is called a
production. In a production, lexical elements like the keyword if and the paren-
theses are called terminals. Variables like expr and simt represent sequences of
terminals and are called nonterminals.

2.2.1 Definition of Grammars

A context-free grammar has four components:

1. A set of terminal symbols, sometimes referred to as “tokens.” The termi-
nals are the elementary symbols of the language defined by the grammar.

2. A set of nonterminals, sometimes called “syntactic variables.” Rach non-
terminal represents a st of strings of terminals, in & manner we shall
doseribe.

3. A set of productions, where each production consists of a nenterminal,
called the head or left side of the production, an arrow, and a sequence of

2.2 SYNTAX DEFINITION 43

Tokens Versus Terminals

In a compiler, the lexical analyzer reads the characters of the source pro-
gram, groups them into lexically meaningful units called loxemes, and pro-
duces as output tokens representing these lexemes. A token consists of two
components, a token name snd an attribute value. The token names are
abstract symbols that are used hy the parser for syntax analysis. Often,
we shall call these token names ferminals, since they appear as terminal
symbols in the grammar for a programuning language. The attribute value,
if present, is a pointer to the symbol table that contains additional infor-
mation about the token. This additional information is not part of the
grammay, so in our disctission of syntax analysis, often we refer to tokens
and terminals svnonvimousiy.

terminals and /or nonterminals, called the body or right side of the produc-
tion. The intuitive intent of a praduction is to specify one of the written
forms of a construct; if the head nonterminal represents a construct. then
the body represents a written form of the construct.

4. A designation of one of the nonterminals as the start symbol.

We specify grammars by lsting their productions, with the productions
for the start symbol listed first. We assume that digits, signs such as < and
<=, and boldfacc strings such as while are terminals. An italicized name is a
nonterminal, and any nonitalicized name ot gymohol sy be assumed to be a
terminal.’ For notational convenience, productions with the same nonterminal
ag the head can have their bodies grouped, with the alternative bodies separated
by the symbal |, which we read ag “or.”

Example 2.1: Several examples in this chapter use expressions consisting of
digits and phis and minus signs; e.g., strings such ag 9-5+42, 3-1, or 7. Since a
plus or minus sign must appear between two digits, we refer lo such expressions
as “lists of digits separated by plus or minus signs.” The following grammar
describes the syntax of these cxpressions. The productions are:

list — list + digat (2.1)
tist — list - digit 2.9)
list — digit (2.3)
digh - 0|1]2|3|4|5]|6|7|8]|9 (2.4)

Lndividual ilalic Tetters will be used fir additional purposes, especially when grammars
are studied in detall in Chapter 4, For example, we shall nse X, ¥, and Z to talk about a
svmbol that ia eliher & torminal or a nonterminal. However, any italicized name containing
two or more characters will cordinue to represent a nonyertminal,

44 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The bodies of the three productions with nonterminal lst as head equiva-
lently can be grouped:

list = st + digit | list - digit | digit
According to our conventions, the terminals of the grammar are the gymbols

+-01234587829

The nonterminals are the italicized names st and digit, with list being the start
symbol beeanse its productions are given first. O

We say a production iz for a nonterminal if the nonterminal is the head of
the prodnction. A string of terminals s a sequence of zero or more terminals.
The string of zero terminals, written as ¢, is called the empty string.”

2.2.2 Derivations

A grammar derives strings by heginning with the start symbel and repeatedty
replacing a nontermingl by the body of a production for that nonterminal. The
terminal strings that can be derived from the start symbol form the language
defined by the grammar.

Example 2.2: The language defincd by the grammar of Example 2.1 consists
of lists of digits scparated by plus and minus signs. The ten productions for the
nontermingl digit allow it to stand for any of the terminals ¢, t,...,9. From
procuction (2.3), a single digit by itself is a list. Productions {2.1) and (2.2)
expresd the rube that any list followed by a plus or minus sign und then another
digit makes up a new list.

Productions (2.1) to (2.4} are all we need to define the desired language.
For example, we can deduce that 8-542 is a list as follows.

a} 9 is a list by production (2.3), since 9 is a. digit.

b} 9-5is a #ist by production {2.2), sinee 9 is a fisf and b is a digit.

¢) 9-5+2is a list by production (2.1}, since 8-5 is a #ist and 2 is a digst.
O

Example 2.3: A somewhat differcnt sort of list is the list of parameters in a
function call. In Java, the parameters are enclosed within parentheses, as in
the call max(x,y) of function max with parameters x and y. One nuance of such
lists is that an cmpty list of parameters may be found between the terminals
(and). We may start to develop a grammar for such sequences with the
productions:

2Technically, ¢ can be a string of zero gymbols from any alphabet (collection of sy mhols).

2.2, SYNTAX DEFINITION 45

call — td (optparams)
optparams — params | €
params — params , perem | param

Note that the second possible body for aptparams (“optional parsmeter list”)
is €, which stands for the empty string of symbols. That i, optparams can be
replaced by the empty string, so a eafl can consist of a function name followed
by the two-terminal string (). Notice that the productions for parnms are
analogous to those for fistin Example 2.1, with comma in place of the arithmetic
operator + or —, and param in place of digif. We have not shown the productions
for param, since parameters are really arbitrary expressions, Shortly, we shall
discuss the appropriate productions for the various langnage constructs, such
as cxpresgions, statements, and so on. U

Parsmg is the problem of taking a string of terminals and figuring out how
to derive it from the start symbol of the grammar, and if it cannot be derived
from the start symbol of the grammar, then reporting syntax errors within the
string. Pursing is one of the most fundamental problems in all of compiling;
the main approaches to parsing are discussed in Chapter 4. In this chapter, for
simplicity, we begin with source programs like 9-5+2 in which each character
is a terminal; in general, a source program has multicharacter lexemes that are
grouped by the lexical analyzer into tokens, whose first components are the
termninals processed by the parser.

2.2.3 Parse Trees

A parse tree pictorially shows how the start symbol of a grammar derives a
string in the language. Uf nonterminal A has a production 4 — XY Z, then a
parsc trec may have an Interior node labeled A with three children labeled X,
Y, and Z, from left o right:

A
AN
X Y Z
Formally, given a context-free grammar, a parse tree according to the gram-
mar is a tree with the following properties:
1. The root. is labeled by the start svmbol,
2. Each leaf is labeled by a terminal or by e.

3. Each interior node is labeled by a nonterminal.

4. If A is the nonterminal labeling some interior node and Xy, X, X, are
the labels of the children of that node from loft to right, then there mmst
be a production 4 — X, X:-.-X,. Hore, X, Xs,. .., X, each stand

46 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Tree Terminology
Tree data structures figire prominently in compiling.

¢ A tree consigts of one or morce nodes. Nodes may have fabels, which
in this book typically will be grammar symbols. When we draw a
tree, we often ropresent the nodes by these labels only.

* Exactly onc node is the roat. All nodes except the root have a unique
porent; the root has no parent. When we draw trees, we place the
parent of a node above that node and draw an edge between them.
The root is then the highest (top) node,

o If node NV is the parent of node M, then M is a child of N. The
children of one node are called siblings. They have an order, from
the left, and when we draw trees, we order the childen of a given
node in this manner.

* A node with no children is called a leaf. Other nodes — those with
one or more children - are interior nodes.

o A descendant of a node N iy either IV itself, a child of &, a child of
a child of N, and so on, for any number of levels. We say node IV is
an ancestor of node M if M is 4 descendant of V.

for a symbol that Is either a terminal or a nonterminal. As a special case,
if A — ¢is a production, then a nodc labeled A may have a single child
labeled e.

Example 2.4: The derivation of 9-5+2 in Example 2.2 ig illustrated by the
tree in Fig. 2.5. Each node in the tree is labeled by a grammar symbol. An
interior node and its children correspond %o a production; the interior node
corresponds to the head of the production, the children to the body.

In Fig. 2.5, the root is labeled lisé, the start symbol of the grammar in
Example 2.1. The children of the root are labcled, from left to right, s, +,
and digit. Note that

list — st + digit

is a production in the graminar of Example 2.1. The left child of the root is
gimilar to the root, with o child labeled - instead of +. The three nodes labeled
digit ench have one child that iz labeled by a digit. D

From left to right, the leaves of a parse tree form the yield of the tree, which
is the string generaded or derived from the nonterminal at the root of the parse

2.2. SYNTAX DEFINITION 47

Fist
T \
st digif
SN : |
ligt digsd
|
digil

|

g - 5 + 2

Figure 2.5: Parse tree for 9-5+2 according Lo the grammar in Example 2.1

tree. In Fig. 2.3, the yield is 8-5+2; for convenience, all the leaves are shown
at the bottom level. Henceforth, we shall not necessarily line up the leaves in
this way. Any trec imparts a natiral left-to-right order 1o its leaves, based on
the ides that if X and ¥ are two children with the same paront, and X is to
the left of ¥, then all descendants of X arc to the left of descendants of ¥,

Another definition of the langnage generated by a gramnmar is a8 the set of
strings that can be generated by some parse tree. The process of finding a parse
tree for a given string of terminals is called porsing that string.

2.2.4 Ambiguity

We have 1o be careful in talking about #he structure of a string sccording to a
grammmar. A grammar can have more than oue parse tree generaling a given
string of terminals. Such a grammmai is said 1o be ambiguons. To show that a
gramimar is ambiguous, all we need to do is find 2 terminal string that is the
vield of more than one parse tree. Since a string with mote than one parse tree
usually has more than one meaning, we tieed £o design unambiguons grammars
for compiling applications, or to use ambiguous grammars with additional rules
to resolve the ambignities,

Example 2.5 : Suppose we nsed a single nonteriminal séring and did not dis-
tinguish between digits and lists, ss in Example 2.1, We eould have written the
grammar

string — string + string | string - slring | 0| 123 |4|5|6|7 |89

Merging the notion of digit and list into the nonterminal string makes superficial
sense, hecange a single digit is a special case of a list.

However, Fig. 2.6 shows that an cxpression like 9-5+2 has more than one
parse trec with this prammar. The two trees for 9-5+2 correspond to the two
ways of parenthesizing the expression: (9-85)+2 and 9-(5+2). This second
parenthesization gives the expression the unexpected value 2 rather than the
customary valuc 6. The prammar of Example 2.1 does not permit this inter-
pretation. O

48 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

sring string
PN AN
string + string atring - siring
SN | | AN
sting - siring 2 9 sfring + siring
| I l ’
9 B 5 2

Figure 2.6: Two parse trees for 9-5+2

2.2.5 Associativity of Operators

By convention, 9+5+2 is equivalent to (945342 and 9-5-2 iz equivaleni fo
(9-5)-2. When an operand like 5 has operators to its left and right, con-
ventions are needed for deciding which operator applics to that operand. We
say that the oporator + asseciates to the left, becauise an operand with plus signs
on hoth sides of it belongs to the operator to its left. In mast programming
fanguages the four arithmetic operators, addition, subtraction, multiplication,
and division are Jeft-agsociative. '

Some comimon operators such as exponentiation are right-associative. As
another example, the assignment operator = in € and its descendants is right-
associative; thal is, the expression a=b=c is treated in the same way as the
expression a=(b=c).

Strings like a=b=c with a right-associative operator arc generated by the
following grammar: '

right — letter = right | lelier
letter — a|b| - |z

The contrast between a parse tree for a left-associative operator like — and
a parse tree for a right-associative operator like = is shown by Fig. 2.7. Note
that the parse troe for 9-5-2 grows down towards the left, whereas the parse
tree for a=b=c grows down towards the right.

2.2.6 Precedence of Operators

Consider the expression 9+5%2. There are two possible interpretations of this
expression: (9+5)*2 or 9+(5%2). The assoclativity mues for + and * apply to
occurrences of the same operator, 8o they do not resolve this ambiguity. Rules
defining the relative precedence of operators are needed when more than one
kind of operator is present.

We say that #* has higher precedence than + if * takes its nperands before +
does. In ordinary arithmetic, multiplication and division have higher precedence
than addition snd subtraction. Therefore, 5 is taken by # in both 9+5%2 and
9%5+2; L.r., the expressions are cquivalent to 9+ (5+2) and (9#5)+2, respectively.

2.2. SYNTAX DEFINITION 49

fost right
RN SN
fist - digit lefter = right

AN | I N
fist - digit 2 a letfter = right
| | | '
digit 5 b letteyr
! |
9 e

Figure 2.7 Parse trees for left- and right-associative grammars

Example 2.6: A grammar for arithmetic expressions can be congtructed from
a table showing the associalivily and precedence of operators, Wo start with
the four common arithmetic operators and a precedence table, showing the
operators in order of increasing precedence. (Operators on the same line have
the same associativity and precedence:

left-associative: + -
left-associative: # /

We creatc two nonterminals expr and ferm for the two levels of precedence,
and an extra nonterminal factor for gencrating basic units in expressions, The
basic units in expressions are presently digits and parenthesized expressions.

faetor — digit | (expr)

Now consider the binary operators, * and /, that have the highest prece-
dence. Since these operators assoclate to the lell, the productions arve gimilar
Lo those for lists that associate to the left.

term = term * factor
| term / factor
| focter

Similarly, expr genetates lists of ferms separated by the additive operators.
erpr — expr + tarm
| expr - term

| term

The resulting grammar iz therefore

expr — expr+ tevmn | expr - term | term
term. — term x foetor | term / factor | factor
fuctor — digit | (expr)

50 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Generalizing the Expression Grammar of Example 2.6

We can think of a factor as an expression that cannot be “torn apart” by
any operator. By “torn apart,” we mean that placing an operator next
to any factor, on either side, does not causc any piece of the factor, other
than the whole, to beeome an operand of that operator. If the factor is a
parcnthesized expression, the parentheses profect against such “tearing,”
while if the factor 15 a single operand, it canmot be torn apart. '

A term (that is not also a factor) is an expression that can be torn
apart by opergtors of the highest precedence: * and /, but not by the
lower-precedence operators. An expression (that Is not a term or factor)
can be torn apart by any operator.

We can generalize this idea to any number 7 of precedence levels. We
need n+4 1 nonterminals. The first, like fector in Example 2.6, can never be
torn apart. Typically, the production bodies for this nonterminal are only
single operands and parenthesized expressions. Then, for each precedence
level, there is onc nonterminal representing expressions that can be torn
aparl only by operators at that level or higher. Typically, the productions
for this nonterminal have bodies representing uses of the operators at that
level, plus one body that is just the nonterminal for the next higher level.

With this grammar, an expression ig a list of terms separated by either + or
- gigns, and a term is a list of factors separated by * or / signs. Notice that
any parenthesized expression is a factor, so with parcntheses wo can develop
expressions that have arbitrarily deep nesting (and arbiirarily decp trees). O

Example 2.7: Keywords allow us to recognize statements, since most state-
ment begin with a keyword or a specisl character. Exceptions to this rule
include wssignments and procedure calls. The statements defined by the {am-
biguous) grammar in Fig. 2.8 are legal in Java, '

In the first production for stmf, the terminal id represcnts any identifier.
The productions for erpression arc not shown. The assignment statements
specified by the first production ate legal in Java, although Java treats = as an
assignment operator that can appear within an expression. For example, Java
allows a=b = ¢, which this grammar does not,

The nonterminal stnts generates a possibly empty list of statements. The
second production for stmts generates the empty list e The first production
generates a possibly empty list of statements followed by a statement.

The placement of semicolons is subtle; they appear at the end of every body
that docz not ond in stmt. This approach prevents the build-up of semicolons
after statements such as if- and while-, which end with nested substatements.
When the nested substatement, is an assignment or a do-while, a semicolon will
be generated as part of the substatement, O

2.2. SYNTAX DEFINITION al

il (cepression } stmi

if ¢ cxpression) stmi else stmi
while { expression) stmi

do sttt while { expression) ;

skt~ 1d = expression ;
|
1
|
|
| { stmis}

sttty — stmis st
| e

Figure 2.8: A grammar for a subset of Java statements

2.2.7 Exercises for Section 2.2
Exercise 2.2.1: Consider the context-free gratumar
§ = S5+ | 55| a
a) Show how the string aata* can be generafed by this grammar.
b} Construct a parse tree for this string.
¢) What langnage does this grammar gencrate? Justify your answer.

Exercise 2.2.2: What language is gencrated by the following grammars? In
each case justify your answer.

a) § =+ 081 | 01

b)) § =+ +85 | -5§5
) 8§ =+ S(8)5 | ¢
d}) S - aSbhsS | bS5as | ¢

a

e} S5 =+ a| S+8 | S8 |5*F|(SF)
Exercise 2.2.3: Which of the grammars in Execrcise 2.2.2 are ambiguous?

Exercize 2.2.4; Congtruct unambiguous context-free grammars for each of
the following langnages. In each cage show that your grammar is correct.

a) Arithmetic expressions in postfix notation.
b} Left-agsoviative lists of identifiers separated by comrmas.
¢} Right-associative lists of identifiers separated by commas.

d} Arithmetic cxprossions of integers and identificrs with the four binary
aperators +, -, %, /.

a2 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

!¢] Add unary phis and minus to the arithmetic operators of {d).

Exercise 2.2.5:

a) Show thut all binary strings generated hy the following grammar have
values divisible by 3. Hint. Use induetion on the number of nodes in a
parse free.

pum — 11 | 1001 | num O | mwm num
b) Does the grammar generate all binary strings with values divisible by 37

Exercise 2.2.6: Construct a comtext-free grammar for roman numerals.

2.3 Syntax-Directed Translation

Syntax-directed translation is done by attaching rules or program fragments to
productions in & grammar. For excample, consider an expression expr generated
by the production

gEpr -~ erpr + term

Here, expris the sum of the two subexpressions ezpry and term. (The subscript
tn ezpr, is used only to distinguish the instance of exprin the production body
frora the head of the production). We can translate expr by cxploiting its
structure, as in the following pseudo-code:

translate expry;
translate Lermy
handle +;

Using a variant of this pseudocede, we shall build a syntax tree for expr in
Section 2.8 by building syntax trees for ezpry and ferm and then handling + by
constructing a node for it. For convenience, the example in this section is the
translation of infix expressiong into postfix notation.

This section introduces two concepts related fio syntax-directed translation:

o Attributes. Au atiribute is any quantity associated with a programming
construct. Examples of attributes are data types of expressions, the num-
ber of instructions in the generated code, or the location of the first in-
struction in the generated code for s construct, among many other pos-
sibilities. Since we use grammar symbols (nonterminals and terminals)
to represent programming constructs, we cxtend the notion of attributes
from constructs to the symbols that represeni thern.

2,3, SYNTAX-DIRECTED TRANSLATION 33

o (Syntau-directed) translation schemes. A translation scheme 1s a notation
for attaching program fragments to the productions of a grammar. The
program fragments are éxecuted when the production is used during syn-
tax analysis. The combined result of all these fragment executions, in
the order induced by the syniax analysis, produces the translation of the
program to which this analysis/synthesis process is applied.

Syntax-directed translations will be used throughout this chapter to trans-
late infix expressions into postfix notation, to evaluate cxpressions, and to build
syntax trees for programiuing constructs., A more detailed discussion of syntax-
directed formalisms appears in Chapter 5.

2.3.1 Postfix Notation

The examples in this scction deal with translation into postfix notation. The
postfiz notation for an expregsion E can be defined inductively as follows:

1. If F is a variable ot constant, then the postfix notation for E is K ifself.

2. If E is an expression of the form Ky op ., where op is sny binary
operator, then the postfix notalion for E is E]) op, where E] and Ej
are the postfix notations for By and Fs, respectively.

3. If £ is u parenthesized cxpression of the form (), then the postfix
notation for F is the same as the postfix notation for £,

Example 2.8: The postfix notation for (9-5)+2 is 956-2+. That i5, the trans-
lations of 9, 5, and 2 arc the constants themselves, by rule (1). Then, the
translation of 9-6 is 95— by mle (2). The translation of (9-5) is the same
by rule (3). Having translated the parcnthesized subcxpression, we may apply
rile (2} to the entirc expression, with (9~5) in the role of Ey and 2 in the role
of E», to get the result 95-2+.

As another example, the postfix notation for 9-(5+2) is 952+-. That is, 5+2
is first transiated into 52+, and this cxpression hecomes the second argument
of the mimus sign. O

No parentheses are needed in posifix nosation, because the position and
ority (number of arguments) of the eperators permits only one decoding of 4
posthix exprassion. The “trick” is to repeatedly scan the postfix string from the
left, until you find an operator. Then, look to the left for the proper number
of operands, and group this operator with its operands. Evaluate the operator
on the operands, and roplace them by the result. Then repeat the process,
continuing to the right and scarching for another operator.

Example 2.9: Consider the postfix expression 952+-3%. Scanning from the
left, we first encounter the plus sign. Looking to its left we find operands 5 and
2. Their sum, 7, replaces 52+, and we have the string 97-3%. Nowy, the leftmost

a4 CHAFPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

operator is the minus sign, and its opcrands are 9 and 7. Replacing these by
the result of the subtraction leaves 23+, Last, the nmltiplication sign applies to
2 and 3, giving the result 6. O

2.3.2 Synthesized Attributes

The idea of associating quantitics with programming constructs—for example,
values and types with expressions can be expressed in terms of grammars. We
associate attributes with nonterminals and terminals. Then, we attach rules 1o
the productions of the grammar; these rules describe how the attributes are
computed at those nodes of the parse iree where the production in question is
used 1o relate & node to its children,

A syntax-directed definition associates

1. With each grammar symboel, a set of atiributes, and

2. With cach production, a set of semantic rules for commputing the values of
the attributes associated with the gymbols appearing in the production.

Attributes can be evaluated as follows. For a glven input string =, construct
& parse trec for 2. Then, apply the semantic rales to evaluate attributes at cach
nade in the parse tree, as follows.

Suppose a node NV in a parse tree is labeled by the grammar gymhbol X. We
write X.a Lo denote the value of attribute @ of X at that node. A parse tree
showing the attribute valucs at each node is called an anneteied parse tree. For
example, Fig. 2.9 shows an annotated parse free for 9-5+2 with an attribute
t associated with the nonterminals ezpr and ferm. The value 95-2+ of the
attribute at the root is the postfix notation for 9-6+2. We shall see shortly how
these cxpressions are computed.

expr.f = 9b=2+
expr.f = 95— + term.dt = 2
e:cp'r.lr‘, =8 - termt =5 2
f |
term.t = 9 5

!_
9
Figure 2.9: Attribute valoes at nodes in a parse trec

An artribute is said to be synthesized if its value at a parsc-trec node N is de-
termined from attribute values at the children of N and at IV itself. Synthesizod

2.3. SYNTAX-DIRECTED TRANSLATION 35

sttributes have the desirable property that they can be evaluated during a sin-
gle bottom-1up traversal of a parse tree. In Section 5.1.1 we shall discuss another
important kind of attribute: the “inherited” attribute. Informally, inherited at-
tributes have their value at a parse-tree node determined from attribute valies
at the node itself, ils parcnt, and its siblings in the parse tree.

Example 2.10: The annotated parse tree in Fig. 2.9 is based on the syntax-
directed definition in Fig. 2.10 for translating cxpressions congisting of digits
separated by plus or miry signs into postiix notatlon. Each nontcrminal has a
string-valued attribute ¢ that represents the postfix notation for the expression
generated by that nonterminal in a parsc trec. The symbol || in the semantic
rule is the operator for string concatenation.

PRODUCTION SEMANTIC RULES

expr — expry + term | expr.t = expry.t || termdt || '+
erpr — expry — term | ezprit = expry.t || termt || '~
erpr — termn erprt = terynt

term — O termit = 10’

term — 1 termit = 1

term — 9 termt = '9'

Figure 2.10: Syntax-directed definition for infix to postfix translation

The postfix form of a digit is the digit itself; c.g., the semantic rule associ-
ated with the production ferm — 9 defincs ferm.t to be 9 itself whenever this
production is used at a node in a parse tree. The other digits are translated
similarly. As another cxample, when the production expr — ferm iz applied,
the value of term.t bocomes the value of expr.t.

The production expr — ezpr, + ferm derives an expression containing a plus
operator.® The left operand of the plus operator is given by expr) amd the right
operand by term. The semantic rule

exprt = expr .t || termat || '+

associated with this production constructs the value of attribute expr.t by con-
catenating the postfix forms expr; .t and term.t of the left and right operands,
respectively, and then appending the plus sign. This rule ig a formalization of
the definition of “postfix expression.* O

*u this and many other rules, the same nonterminal {ezpr, here) appoars several Lilnes.
The purpose of the subseript 1 in ezpry is Lo distingnish 1he two occurrences of ezpr in the
production; the “17 s not part of the nonterminal. See the box on “Convention Distinguishing
Lses of 2 Nonterminal” for more details, ’

56 CHAPTER 2. ASIMPLE S YNTAX—DIRECTED TRANSLATOR

Convention Distinguishing Uses of a Nonterminal

In rules, we ofter have a need to distinguish among several uses of the
same nonterminal in the head and/or body of a production; e.g., see Ex-
ample 2.10, The reason is that in the parse tree, different nodes labeled
by the same nontérminal usually have different values for their translo-
tions. We shall adopt the following convention: the nonterminal appears
unsubscripted in the Head and with distinet subscripts in the body. These
are all nceurrences of the same nonterminal, and the subseript is not part
of its name. Howeyer, the reader should be alert to the difference be-
iween exampies of specific translations, where Lhis convention is used, and
generic productions like 4 — X3 X5,. .., X,,, where the subscripted X’s
represent an arbitrary list of grammar symbols, and are nof instances of
one particular nomerminal called X,

2.3.3 Simple Syntax-Directed Definitions

The syntax-directed definition in Example 2.10 has the following hnportant
property: the string represeniing the translation of the nonterminal at the head
of each production is the concatenation of the translations of the nonterminals
in the productiom body, in the samc order ag in the production, with somce
optional additional strings interleaved. A syntax-directed definition with this
property is termed simple.

Example 2.11: Consider the first production aml semantic rulc from Fig. 2.10:

PRODGOTION SEMANTIC RULE (2.5)
expr — expr, + term exprt = expry.t || ferimt || '+

Here the translation ezpr.t is the concatenation of the translations of ezpr; and
term, followed by the symbol +. Notice that ewpr) and ferm appear in the
game order in both the production body and the semantic rule. There are no
additional symbols before or between their ttanslations. In this example, the
only extra symbol oeeurs at the end. 3

When translation schemes are discussed, we shall see that a simple syntax-
directed definition can be implemented by printing only the additional strings,
in the order they appear in the definition.

2.3.4 Tree Traversals

Tree traversals will be used for deseribing attribute evaluation and for specifying
the cxeeution of code fragments in a translation scheme. A #raversal of a tree
gtarts at the root and visits cach node of the tree in some order.

23 SYNTAX-DIRECTED TRANSLATION 57

A depth-first traversal starts at the root and recursively visits the children
of each node in any order, not necessarily from left to right. It is calied “depth-
first” because it visits an unvisited child of a node whenever it can, so it visits
nodes as far away from the root {as “deep™) as quickly as it can.

The procedure visit(N) in Fig. 2.11 is a depth first. traversal thab vigits the
children of a node in left-to-right order, as shown in Pig. 2.12. In this traversal,
we have included the action of evaluating translations al each node, just before
we finish with the node (that is, after translations at the children have surely
been computed). In general, the actions agsociated with a fraversal can be
whataver we choose, or nothing at all,

procedure visil{node N} {
for (each child & of N, from left to right) {
wvigit(C');

evaluate semantic rules at node N;

Figure 2.11: A depth-firsl traversal of a tree

Figure 2.12: Example of a depth-first traversal of a tree

A gyntax-directed definition does not impose any specific order for the cval-
uation of attributes on a parse tree; any evaluation order that computes an
attribute.a after all the other attributes that o depends on is acceptable. Syn-
thesized attributes can be evalnated during any boltom-up traversal, that is, a
traversal that evaluates attributes at a node after having evaluated attributes
at its ehildren. In gencral, with both synthesized and inherited attributes, the
matfer of evaluation order is quite complex; see Section 5.2.

2.3.5 Translation Schemes

The syntax-directed definition in Fig. 2.10 builds up a translation hy attaching
strings as attributes to the nodes in the parse trec. We now consider an alter-
native approach that does not need to manipulate strings: it produces the same
translation incrementally, by cxecuting program fragments.

58 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Preorder and Postorder Traversals

Preorder and postorder traversuls arc two important special cases of depth-
first traversals in which we visit the children of cach node from left to right.

Often, we traverse a tree to perform some particular action at each
node. If the action is done when we first visit a node, then we may refer
10 the traversal as a preorde_r traversal. Similarly, if the action is done
just before we leave a node for the last time, then we say it is a postorder
traversal of the trec. The procedure wigit(N) in Fig. 2.11 is an example of
a postorder traversal.

Preorder and postorder traversals define corresponding orderings on
nodes, based on when the action at a node would be performed. The
preorder of a (subjtree rooted at node N consists of N, followed by the
preorders of the subtrees of each of its children, if any, from the left, The
poatorder of a (sub)tree rooted at N consists of the postorders of each of
the subtrees for the children of N, if any, from the left, [ollowed by N
itself,

A syntax-directed translation scheme is a notation for specifying a transla-
tion by attaching program fragments to productions in a grammar. A transla-
tion schome is like a syntax-directed definition, except that the order of evalu-
ation of the semantic rules is explicitly specified.

Program fragments emmbedded within production bodies are called semantic
aciions. The position at which an action is to be executed is shown by enclosing
it hetween curly braces and writing il within the production body, as in

rest — + term {prlnf +} rest

We shall see such rules when we consider an alternative form of grammar for
axpressions, where the nonterminal rest represents “everything but the first
term of an expression. This form of gramimar is discussed in Section 2.4.5
Again, the subscript in rest; distinguishes this instance of nonterminal resf in
the production body from the instance of rest at the head of the production.

When drawing a parsc tree for a translation scheme, we indicate an action
by constructing an extra child for it, connected by a dashed line to the node
that corresponds to the head of the production. For example, the portion of
the parse tree for the above production and action is shown in Fig. 2.13. The
node for a semantic action has no children, so the action is pelformed W hEIl
that node is first seen.

Example 2.12: The parse tree in Fig. 2.24 has print statements at cxira
leaves, which are attached by dashed lines to interior noded of the parse tree.
The translation scheme appears in Fig. 2.15. The undertying grammar gen-
crates expressions consisting of digits separated by pluq and minus signg. The

2.3, SYNTAX-DIRECTED TRANSLATION 51

rest

\\H“‘H--,_H‘

+ term {priut{'+")} resty
Figure 2.13: An exira loaf is constructed for a semantic action
actions embedded in the production bodies tranglate such expressions into post-

fix notation, provided we perform a left-to-right depth-first traversal of the tree
and cxccute cach print statement when we visit its leaf.

eps
/ / \‘ e .
cxpr_ + ;grm Iprint(’'+'}}
/ Tl - N i
capr - 7 tzm\ {prins(’-)} 2 {print('2}}
teLn 5 {]{31;1}“'(f 5:)}

/o

o {print¢®’}}

Figure 2.14: Actions translating 9-5+2 into 95-2+

expr —+ expr) + term. {print('+)}
expr — expry - term {print{’-}}
expr — lerm

term — 0 {print{'0"}}
term — 1 {print('1')}
term — 9 {print{'g’}}

Figure 2.13: Actions for translating into postfix notation

The root of Fig. 2.14 represents the first production in Fig. 2.15. In a
postorder traversal, we first perform all the actions in the leftmost subiree of
the root, for the left operand., also labeled expr like the root. We then visit the
leaf + at which thore is no action. We next perform the actions in the subtree
for the right operand term and, finally, the semantic action { print(*+') 1 at the
cxtra node.

Since the productions for term have only a digit on the right side, that. digit
is printed by the actions for the productions. No output is necessary for the
production expr — term, and ouly the opcrator needs to be printed in the

60 CHAPTER 2. A SIMPLE SYNTAX-DIREGCTED TRANSLATOR

action for cach of the first two productions. When exeented during a postorder
traversal of the parse free, the actions in Fig. 2.14 print 95-2+. O

Note that although the schemes in Fig. 2.10 and Fig. 2.15 produce the same
translation, they construct it differently: Fig. 2.10 attaches sirings as attribyses
to the nodes in the parse tree, while the scheme in Fig, 2.15 prints the translation
incrementally, through semantic actions.

The semantic actions in the parse tree in Fig. 2.14 translate the infix ex-
pression 9-5+2 into 85-2+ by printing each character in 9-5+2 exactly once,
without using sny storage for the translation of subexpressions. When the ont-
put is created incrementally in this fashion, the order in which the characters
are printed is significant.

The implementation of a translation scheme must cnsure that semantic ac-
tions are performmed in the order they would appear during a postorder traversal
of a4 parse trec. The implementation need not actually construct & parse tree
{often it docs not), as long as it ensures that the scmantic actions are per-
formed as if we congtructed u parse tree and then executed the actions during
a postorder traversal.

2.3.6 [Exercises for Section 2.3

Exercise 2.3.1: Construct a syntax-directed translation scheme that trans-
lates arithmetic cxpressions from infix notation into prefix notation in which an
operator appears before its operands; e.g., —zy is the prefix notation for z —y.
Give annotated parse trees for the inputs 9-5+2 and 9-5%2.

Exercise 2.3.2: Construct a syntax-directed translation scheme that frans-
lates arithmotic cxpressions from postfix notation info infix notatlon. Give
annotated parse trees for the inputs 85-2% and 952#-,

Exercise 2.3.3: Construct a syntax-direcied translation scheme that trans-
latcs integers into roman nuinerals.

Exercise 2,3.4: Construct a syntax-directed translation scheme that trans-
lates roman numerals into integers.

Exercise 2.3.5: Construct a syntax-directed transiation schome that trans-
latcs postfix arithmetic expressions into equivalent infix arithmetic expressions.

2.4 Parsing

Parsing is the process of deiermining how a string of terminals can be generated
by a grammat. In discussing this problem, it is helpful to think of a parse tree
being constructed, even though a compiler may not construct one, in praclice.
However, & parser must. be capable of constructing the tree in principle, or else
the translation cannot be guaranteed correct.

