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Preface 

In the time since the 1986 edition of this book, the world of compiler design 

has changed significantly. Programming languages have evolved to present new 

compilation problems. Computer architectures offer a variety of resources of 

which the compiler designer must take advantage. Perhaps most interestingly, 

the venerable technology of code optimization has found use outside compilers. 

It is now used in tools that find bugs in software, and most importantly, find 

security holes in existing code. And much of the "front-end" technology - 

grammars, regular expressions, parsers, and syntax-directed translators - are 

still in wide use. 

Thus, our philosophy from previous versions of the book has not changed. 

We recognize that few readers will build, or even maintain, a compiler for a 

major programming language. Yet the models, theory, and algorithms associ- 

ated with a compiler can be applied to a wide range of problems in software 

design and software development. We therefore emphasize problems that are 

most commonly encountered in designing a language processor, regardless of 

the source language or target machine. 

Use of the Book 

It takes at  least two quarters or even two semesters to cover all or most of the 

material in this book. It is common to cover the first half in an undergraduate 

course and the second half of the book - stressing code optimization - in 

a second course at the graduate or mezzanine level. Here is an outline of the 

chapters: 

Chapter 1 contains motivational material and also presents some background 

issues in computer architecture and programming-language principles. 

Chapter 2 develops a miniature compiler and introduces many of the impor- 

tant concepts, which are then developed in later chapters. The compiler itself 

appears in the appendix. 

Chapter 3 covers lexical analysis, regular expressions, finite-state machines, and 

scanner-generator tools. This material is fundamental to text-processing of all 

sorts. 



PREFACE 

Chapter 4 covers the major parsing methods, top-down (recursive-descent, LL) 

and bottom-up (LR and its variants). 

Chapter 5 introduces the principal ideas in syntax-directed definitions and 

syntax-directed translations. 

Chapter 6 takes the theory of Chapter 5 and shows how to use it to generate 

intermediate code for a typical programming language. 

Chapter 7 covers run-time environments, especially management of the run-time 

stack and garbage collection. 

Chapter 8 is on object-code generation. It covers construction of basic blocks, 

generation of code from expressions and basic blocks, and register-allocation 

techniques. 

Chapter 9 introduces the technology of code optimization, including flow graphs, 

dat a-flow frameworks, and iterative algorithms for solving these frameworks. 

Chapter 10 covers instruction-level optimization. The emphasis is on the ex- 

traction of parallelism from small sequences of instructions and scheduling them 

on single processors that can do more than one thing at once. 

Chapter 11 talks about larger-scale parallelism detection and exploit ation. Here, 

the emphasis is on numeric codes that have many tight loops that range over 

multidimensional arrays. 

Chapter 12 is on interprocedural analysis. It covers pointer analysis, aliasing, 

and data-flow analysis that takes into account the sequence of procedure calls 

that reach a given point in the code. 

Courses from material in this book have been taught at Columbia, Harvard, 

and Stanford. At Columbia, a seniorlfirst-year graduate course on program- 

ming languages and translators has been regularly offered using material from 

the first eight chapters. A highlight of this course is a semester-long project 

in which students work in small teams to create and implement a little lan- 

guage of their own design. The student-created languages have covered diverse 

application domains including quantum computation, music synthesis, com- 

puter graphics, gaming, matrix operations and many other areas. Students use 

compiler-component generators such as ANTLR, Lex, and Yacc and the syntax- 

directed translation techniques discussed in chapters two and five to build their 

compilers. A follow-on graduate course has focused on material in Chapters 9 

through 12, emphasizing code generation and optimization for contemporary 

machines including network processors and multiprocessor architectures. 

At Stanford, a one-quarter introductory course covers roughly the mate- 

rial in Chapters 1 through 8, although there is an introduction to global code 

optimization from Chapter 9. The second compiler course covers Chapters 9 

through 12, plus the more advanced material on garbage collection from Chap- 

ter 7. Students use a locally developed, Java-based system called Joeq for 

implementing dat a-flow analysis algorithms . 



PREFACE vii 

Prerequisites 

The reader should possess some "computer-science sophistication," including 

a t  least a second course on programming, and courses in data structures and 

discrete mathematics. Knowledge of several different programming languages 

is useful. 

Exercises 

The book contains extensive exercises, with some for almost every section. We 

indicate harder exercises or parts of exercises with an exclamation point. The 

hardest exercises have a double exclamation point. 

Gradiance On-Line Homeworks 

A feature of the new edition is that there is an accompanying set of on-line 

homeworks using a technology developed by Gradiance Corp. Instructors may 

assign these homeworks to  their class, or students not enrolled in a class may 

enroll in an "omnibus class" that allows them to do the homeworks as a tutorial 

(without an instructor-created class). Gradiance questions look like ordinary 

questions, but your solutions are sampled. If you make an incorrect choice you 

are given specific advice or feedback to help you correct your solution. If your 

instructor permits, you are allowed to try again, until you get a perfect score. 

A subscription to the Gradiance service is offered with all new copies of this 

text sold in North America. For more information, visit the Addison-Wesley 

web site www . aw . com/gradiance or send email to comput ing@aw . corn. 

Support on the World Wide Web 

The book's home page is 

Here, you will find errata as we learn of them, and backup materials. We hope 

to make available the notes for each offering of compiler-related courses as we 

teach them, including homeworks, solutions, and exams. We also plan to  post 

descriptions of important compilers written by their implementers. 
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Chapter 1 

Introduction 

Programming languages are notations for describing computations to people 

and to machines. The world as we know it depends on programming languages, 

because all the software running on all the computers was written in some 

programming language. But, before a program can be run, it first must be 

translated into a form in which it can be executed by a computer. 

The software systems that do this translation are called compilers. 

This book is about how to design and implement compilers. We shall dis- 

cover that a few basic ideas can be used to construct translators for a wide 

variety of languages and machines. Besides compilers, the principles and tech- 

niques for compiler design are applicable to so many other domains that they 

are likely to be reused many times in the career of a computer scientist. The 

study of compiler writing touches upon programming languages, machine ar- 

chitecture, language theory, algorithms, and software engineering. 

In this preliminary chapter, we introduce the different forms of language 

translators, give a high level overview of the structure of a typical compiler, 

and discuss the trends in programming languages and machine architecture 

that are shaping compilers. We include some observations on the relationship 

between compiler design and computer-science theory and an outline of the 

applications of compiler technology that go beyond compilation. We end with 

a brief outline of key programming-language concepts that will be needed for 

our study of compilers. 

1.1 Language Processors 

Simply stated, a compiler is a program that can read a program in one lan- 

guage - the source language - and translate it into an equivalent program in 

another language - the target language; see Fig. 1.1. An important role of the 

compiler is to report any errors in the source program that it detects during 

the translation process. 
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source program 

Compiles h + 
target program 

Figure 1.1 : A compiler 

If the target program is an executable machine-language program, it can 

then be called by the user to process inputs and produce outputs; see Fig. 1.2. 

Target Program output 

t- 
Figure 1.2: Running the target program 

An in terpreter  is another common kind of language processor. Instead of 

producing a target program as a translation, an interpreter appears to directly 

execute the operations specified in the source program on inputs supplied by 

the user, as shown in Fig. 1.3. 

source program 1 Interpreter t- output 
input 

Figure 1.3: An interpreter 

The machine-language target program produced by a compiler is usually 

much faster than an interpreter at mapping inputs to outputs . An interpreter, 

however, can usually give better error diagnostics than a compiler, because it 

executes the source program statement by statement. 

Example 1.1 : Java language processors combine compilation and interpreta- 

tion, as shown in Fig. 1.4. A Java source program may first be compiled into 

an intermediate form called bytecodes. The bytecodes are then interpreted by a 

virtual machine. A benefit of this arrangement is that bytecodes compiled on 

one machine can be interpreted on another machine, perhaps across a network. 

In order to achieve faster processing of inputs to outputs, some Java compil- 

ers, called jus t - in- t ime compilers, translate the bytecodes into machine language 
immediately before they run the intermediate program to process the input. 
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source program 

Translator 

intermediate program 

input 

Figure 1.4: A hybrid compiler 

In addition to a compiler, several other programs may be required to create 

an executable target program, as shown in Fig. 1.5. A source program may be 

divided into modules stored in separate files. The task of collecting the source 

program is sometimes entrusted to a separate program, called a preprocessor. 

The preprocessor may also expand shorthands, called macros, into source lan- 

guage st at ements. 

The modified source program is then fed to a compiler. The compiler may 

produce an assembly-language program as its output, because assembly lan- 

guage is easier to produce as output and is easier to debug. The assembly 

language is then processed by a program called an assembler that produces 

relocatable machine code as its output. 

Large programs are often compiled in pieces, so the relocatable machine 

code may have to  be linked together with other relocatable object files and 

library files into the code that actually runs on the machine. The l inker resolves 

external memory addresses, where the code in one file may refer to a location 

in another file. The loader then puts together all of the executable object files 

into memory for execution. 

1 .11  Exercises for Section 1.1 

Exercise 1.1.1 : What is the difference between a compiler and an interpreter? 

Exercise 1.1.2 : What are the advantages of (a) a compiler over an interpreter 

(b) an interpreter over a compiler? 

Exercise 1.1.3 : What advantages are there to a language-processing system in 

which the compiler produces assembly language rather than machine language? 

Exercise 1.1.4 : A compiler that translates a high-level language into another 

high-level language is called a source-to-source translator. What advantages are 

there to using C as a target language for a compiler? 

Exercise 1.1.5 : Describe some of the tasks that an assembler needs to per- 

form. 
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source program 
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modified source program 

I 

Compiler fi 
t 

target assembly program 

i 
/ Assembler 1 
i 
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target machine code 

Figure 1.5: A language-processing system 

1.2 The Structure of a Compiler 

Up to this point we have treated a compiler as a single box that maps a source 

program into a semantically equivalent target program. If we open up this box 

a little, we see that there are two parts to this mapping: analysis and synthesis. 

The analysis part breaks up the source program into constituent pieces and 

imposes a grammatical structure on them. It then uses this structure to cre- 

ate an intermediate representation of the source program. If the analysis part 

detects that the source program is either syntactically ill formed or semanti- 

cally unsound, then it must provide informative messages, so the user can take 

corrective action. The analysis part also collects information about the source 

program and stores it in a data structure called a symbol table, which is passed 

along with the intermediate representation to the synthesis part. 

The synthesis part constructs the desired target program from the interme- 

diate representation and the information in the symbol table. The analysis part 

is often called the front end of the compiler; the synthesis part is the back end. 

If we examine the compilation process in more detail, we see that it operates 

as a sequence of phases, each of which transforms one representation of the 

source program to another. A typical decomposition of a compiler into phases 
is shown in Fig. 1.6. In practice, several phases may be grouped together, 

and the intermediate representations between the grouped phases need not be 

constructed explicitly. The symbol table, which stores information about the 



1.2. THE STRUCTURE O F A  COMPILER 

Symbol Table E l  

, characte; stream , 
/ Lexical Analyzer 1 

token Atream 

f 

Syntax Analyzer 

syntax tree + 
1 Semantic Analyzer 

I Intermediate Code Generator I 
I I 

I 

intermediate represent ation 

i 
Machine-Independent 

intermediate representation 

i 1 Code Generator I 
I I 

I 

target-machine code 
C 

Machine-Dependent I Code Optimizer 
I , 

I 

t arget-machine code 

t 

Figure 1.6: Phases of a compiler 

entire source program, is used by all phases of the compiler. 

Some compilers have a machine-independent optimization phase between 

the front end and the back end. The purpose of this optimization phase is to 

perform transformations on the intermediate representation, so that the back 

end can produce a better target program than it would have otherwise pro- 

duced from an unoptimized intermediate representation. Since optimization is 

optional, one or the other of the two optimization phases shown in Fig. 1.6 may 

be missing. 

1.2.1 Lexical Analysis 

The first phase of a compiler is called lexical analysis or scanning. The lex- 
ical analyzer reads the stream of characters making up the source program 
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and groups the characters into meaningful sequences called lexemes. For each 

lexeme, the lexical analyzer produces as output a token of the form 

(token-name, attribute-value) 

that it passes on to  the subsequent phase, syntax analysis. In the token, the 

first component token-name is an abstract symbol that is used during syntax 

analysis, and the second component attribute-value points to  an entry in the 

symbol table for this token. Information from the symbol-table entry 'is needed 

for semantic analysis and code generation. 

For example, suppose a source program contains the assignment statement 

p o s i t i o n  = i n i t i a l  + r a t e  * 60 (1.1) 

The characters in this assignment could be grouped into the following lexemes 

and mapped into the following tokens passed on to the syntax analyzer: 

1. p o s i t  ion  is a lexeme that would be mapped into a token (id, I ) ,  where i d  

is an abstract symbol standing for identifier and 1 points to  the symbol- 

table entry for pos i t i on .  The symbol-table entry for an identifier holds 

information about the identifier, such as its name and type. 

2. The assignment symbol = is a lexeme that is mapped into the token (=). 
Since this token needs no attribute-value, we have omitted the second 

component. We could have used any abstract symbol such as assign for 

the token-name, but for notational convenience we have chosen to use the 

lexeme itself as the name of the abstract symbol. 

3. i n i t i a l  is a lexeme that is mapped into the token (id, 2), where 2 points 

to  the symbol-table entry for i n i t i a l .  

4. + is a lexeme that is mapped into the token (+). 

5 .  r a t e  is a lexeme that is mapped into the token (id, 3), where 3 points to  

the symbol-table entry for r a t e .  

6. * is a lexeme that is mapped into the token (*) . 

7. 60 is a lexeme that is mapped into the token (60) .' 
Blanks separating the lexemes would be discarded by the lexical analyzer. 

Figure 1.7 shows the representation of the assignment statement (1.1) after 

lexical analysis as the sequence of tokens 

In this representation, the token names =, +, and * are abstract symbols for 

the assignment, addition, and multiplication operators, respectively. 

'Technically speaking, for the lexeme 60 we should make up a token like (number,4), 

where 4 points to the symbol table for the internal representation of integer 60 but we shall 

defer the discussion of tokens for numbers until Chapter 2. Chapter 3 discusses techniques 

for building lexical analyzers. 
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3 r a t e  

p o s i t i o n  = i n i t i a l  + r a t e  * 60 

t 
Lexical Analyzer 

t 
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\ 
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60 

I Intermediate Code Generator I 

t 
t l  = i n t t o f l o a t ( 6 0 )  

t 2  = i d 3  * ti 
t 3  = i d 2  + t 2  

i d 1  = t 3  

t l  = i d 3  * 60.0 

i d 1  = i d 2  + t1 

LDF R2, i d 3  

MULF R2, R2, #60.0 

LDF R1, i d 2  

ADDF R 1 ,  R 1 ,  R2 

STF i d l y  R l  

Figure 1.7: Translation of an assignment statement 
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1.2.2 Syntax Analysis 

The second phase of the compiler is syntax analysis or parsing. The parser uses 

the first components of the tokens produced by the lexical analyzer to create 

a tree-like intermediate representation that depicts the grammatical structure 

of the token stream. A typical representation is a syntax tree in which each 

interior node represents an operation and the children of the node represent the 

arguments of the operation. A syntax tree for the token stream (1.2) is shown 

as the output of the syntactic analyzer in Fig. 1.7. 

This tree shows the order in which the operations in the assignment 

p o s i t i o n  = i n i t i a l  + r a t e  * 60 

are to be performed. The tree has an interior node labeled * with (id, 3) as 

its left child and the integer 60 as its right child. The node (id, 3) represents 

the identifier r a t e .  The node labeled * makes it explicit that we must first 

multiply the value of r a t e  by 60. The node labeled + indicates that we must 

add the result of this multiplication to the value of i n i t i a l .  The root of the 

tree, labeled =, indicates that we must store the result of this addition into the 

location for the identifier p o s i t  ion. This ordering of operations is consistent 

with the usual conventions of arithmetic which tell us that multiplication has 

higher precedence than addition, and hence that the multiplication is to be 

performed before the addition. 

The subsequent phases of the compiler use the grammatical structure to help 

analyze the source program and generate the target program. In Chapter 4 

we shall use context-free grammars to specify the grammatical structure of 

programming languages and discuss algorithms for constructing efficient syntax 

analyzers automatically from certain classes of grammars. In Chapters 2 and 5 

we shall see that syntax-directed definitions can help specify the translation of 

programming language constructs. 

1.2.3 Semantic Analysis 

The semantic analyzer uses the syntax tree and the information in the symbol 

table to check the source program for semantic consistency with the language 

definition. It also gathers type information and saves it in either the syntax tree 

or the symbol table, for subsequent use during intermediate-code generation. 

An important part of semantic analysis is type checking, where the compiler 

checks that each operator has matching operands. For example, many program- 

ming language definitions require an array index to be an integer; the compiler 

must report an error if a floating-point number is used to index an array. 

The language specification may permit some type conversions called coer- 

cions. For example, a binary arithmetic operator may be applied to either a 

pair of integers or to a pair of floating-point numbers. If the operator is applied 

to a floating-point number and an integer, the compiler may convert or coerce 

the integer into a floating-point number. 
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Such a coercion appears in Fig. 1.7. Suppose that pos i t i on ,  i n i t i a l ,  and 

r a t e  have been declared to be floating-point numbers, and that the lexeme 60 

by itself forms an integer. The type checker in the semantic analyzer in Fig. 1.7 

discovers that the operator * is applied to a floating-point number r a t e  and 

an integer 60. In this case, the integer may be converted into a floating-point 

number. In Fig. 1.7, notice that the output of the semantic analyzer has an 

extra node for the operator inttofloat, which explicitly converts its integer 

argument into a floating-point number. Type checking and semantic analysis 

are discussed in Chapter 6. 

1.2.4 Intermediate Code Generation 

In the process of translating a source program into target code, a compiler may 

construct one or more intermediate representations, which can have a variety 

of forms. Syntax trees are a form of intermediate representation; they are 

commonly used during syntax and semantic analysis. 

After syntax and semantic analysis of the source program, many compil- 

ers generate an explicit low-level or machine-like intermediate representation, 

which we can think of as a program for an abstract machine. This intermedi- 

ate representation should have two important properties: it should be easy to 

produce and it should be easy to translate into the target machine. 

In Chapter 6, we consider an intermediate form called three-address code, 

which consists of a sequence of assembly-like instructions with three operands 

per instruction. Each operand can act like a register. The output of the inter- 

mediate code generator in Fig. 1.7 consists of the three-address code sequence 

t l  = i n t t o f l o a t  (60) 

t 2  = i d3  * t l  
t 3  = i d2  + t 2  

i d 1  = t 3  

There are several points worth noting about three-address instructions. 

First, each three-address assignment instruction has at most one operator on the 

right side. Thus, these instructions fix the order in which operations are to be 

done; the multiplication precedes the addition in the source program (1.1). Sec- 

ond, the compiler must generate a temporary name to hold the value computed 

by a three-address instruction. Third, some "three-address instructions" like 
the first and last in the sequence (1.3), above, have fewer than three operands. 

In Chapter 6, we cover the principal intermediate representations used in 

compilers. Chapters 5 introduces techniques for syntax-directed translation 
that are applied in Chapter 6 to type checking and intermediate-code generation 

for typical programming language constructs such as expressions, flow-of-control 

constructs, and procedure calls. 
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1.2.5 Code Optimization 

The machine-independent code-optimization phase attempts to improve the 

intermediate code so that better target code will result. Usually better means 

faster, but other objectives may be desired, such as shorter code, or target code 

that consumes less power. For example, a straightforward algorithm generates 

the intermediate code (1.3), using an instruction for each operator in the tree 

representation that comes from the semantic analyzer. 

A simple intermediate code generation algorithm followed by code optimiza- 

tion is a reasonable way to generate good target code. The optimizer can deduce 

that the conversion of 60 from integer to floating point can be done once and for 

all at compile time, so the inttofloat operation can be eliminated by replacing 

the integer 60 by the floating-point number 60.0. Moreover, t3 is used only 

once to transmit its value to id1  so the optimizer can transform (1.3) into the 

shorter sequence 

There is a great variation in the amount of code optimization different com- 

pilers perform. In those that do the most, the so-called "optimizing compilers," 

a significant amount of time is spent on this phase. There are simple opti- 

mizations that significantly improve the running time of the target program 

without slowing down compilation too much. The chapters from 8 on discuss 

machine-independent and machine-dependent optimizations in detail. 

1.2.6 Code Generation 

The code generator takes as input an intermediate representation of the source 

program and maps it into the target language. If the target language is machine 

code, registers or memory locations are selected for each of the variables used by 

the program. Then, the intermediate instructions are translated into sequences 

of machine instructions that perform the same task. A crucial aspect of code 

generation is the judicious assignment of registers to hold variables. 

For example, using registers R 1  and R2, the intermediate code in (1.4) might 

get translated into the machine code 

LDF R 2 ,  i d3  

MULF R 2 ,  R 2 ,  #60.0 

LDF R l ,  id2  

ADDF R l ,  R l ,  R2 

S T F  i d l ,  R l  

The first operand of each instruction specifies a destination. The F in each 

instruction tells us that it deals with floating-point numbers. The code in 
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(1.5) loads the contents of address id3 into register R2, then multiplies it with 

floating-point constant 60.0. The # signifies that 60.0 is to be treated as an 

immediate constant. The third instruction moves id2 into register R 1  and the 

fourth adds to it the value previously computed in register R2. Finally, the value 

in register R1 is stored into the address of i d l ,  so the code correctly implements 

the assignment statement (1.1). Chapter 8 covers code generation. 

This discussion of code generation has ignored the important issue of stor- 

age allocation for the identifiers in the source program. As we shall see in 

Chapter 7, the organization of storage at run-time depends on the language be- 

ing compiled. Storage-allocation decisions are made either during intermediate 

code generation or during code generation. 

1.2.7 Symbol-Table Management 

An essential function of a compiler is to record the variable names used in the 

source program and collect information about various attributes of each name. 

These attributes may provide information about the storage allocated for a 

name, its type, its scope (where in the program its value may be used), and 

in the ca,se of procedure names, such things as the number and types of its 

arguments, the method of passing each argument (for example, by value or by 

reference), and the type returned. 

The symbol table is a data structure containing a record for each variable 

name, with fields for the attributes of the name. The data structure should be 

designed to allow the compiler to find the record for each name quickly and to 

store or retrieve data from that record quickly. Symbol tables are discussed in 

Chapter 2. 

1.2.8 The Grouping of Phases into Passes 

The discussion of phases deals with the logical organization of a compiler. In 

an implementation, activities from several phases may be grouped together 

into a pass that reads an input file and writes an output file. For example, 
the front-end phases of lexical analysis, syntax analysis, semantic analysis, and 

intermediate code generation might be grouped together into one pass. Code 

optimization might be an optional pass. Then there could be a back-end pass 

consisting of code generation for a particular target machine. 

Some compiler collections have been created around carefully designed in- 

termediate representations that allow the front end for a particular language to 

interface with the back end for a certain target machine. With these collections, 

we can produce compilers for different source languages for one target machine 

by combining different front ends with the back end for that target machine. 

Similarly, we can produce compilers for different target machines, by combining 

a front end with back ends for different target machines. 
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1.2.9 Compiler-Construction Tools 

The compiler writer, like any software developer, can profitably use modern 

software development environments containing tools such as language editors, 

debuggers, version managers, profilers, test harnesses, and so on. In addition 

to these general software-development tools, other more specialized tools have 

been created to help implement various phases of a compiler. 

These tools use specialized languages for specifying and implementing spe- 

cific components, and many use quite sophisticated algorithms. The most suc- 

cessful tools are those that hide the details of the generation algorithm and 

produce components that can be easily integrated into the remainder of the 

compiler. Some commonly used compiler-construction tools include 

1. Parser generators that automatically produce syntax analyzers from a 

grammatical description of a programming language. 

2. Scanner generators that produce lexical analyzers from a regular-expres- 

sion description of the tokens of a language. 

3. Syntax-directed translat ion engines that produce collections of routines 

for walking a parse tree and generating intermediate code. 

4. Code-generator generators that produce a code generator from a collection 

of rules for translating each operation of the intermediate language into 

the machine language for a target machine. 

5. Data-flow analysis engines that facilitate the gathering of information 

about how values are transmitted from one part of a program to each 

other part. Data-flow analysis is a key part of code optimization. 

6. Compiler-construct ion toolk2ts that provide an integrated set of routines 

for constructing various phases of a compiler. 

We shall describe many of these tools throughout this book. 

1.3 The Evolution of Programming Languages 

The first electronic computers appeared in the 1940's and were programmed in 

machine language by sequences of 0's and 1's that explicitly told the computer 
what operations to execute and in what order. The operations themselves 

were very low level: move data from one location to another, add the contents 
of two registers, compare two values, and so on. Needless to say, this kind 

of programming was slow, tedious, and error prone. And once written, the 

programs were hard to understand and modify. 
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1.3.1 The Move to Higher-level Languages 

The first step towards more people-friendly programming languages was the 
development of mnemonic assembly languages in the early 1950's. Initially, 

the instructions in an assembly language were just mnemonic representations 
of machine instructions. Later, macro instructions were added to assembly 

languages so that a programmer could define parameterized shorthands for 

frequently used sequences of machine instructions. 

A major step towards higher-level languages was made in the latter half of 

the 1950's with the development of Fortran for scientific computation, Cobol 

for business data processing, and Lisp for symbolic computation. The philos- 

ophy behind these languages was to create higher-level notations with which 

programmers could more easily write numerical computations, business appli- 

cations, and symbolic programs. These languages were so successful that they 

are still in use today. 

In the following decades, many more languages were created with innovative 

features to help make programming easier, more natural, and more robust. 

Later in this chapter, we shall discuss some key features that are common to 

many modern programming languages. 

Today, there are thousands of programming languages. They can be classi- 

fied in a variety of ways. One classification is by generation. First-generation 

languages are the machine languages, second-generation the assembly languages, 

and third-generation the higher-level languages like Fortran, Cobol, Lisp, C, 

C++, C#, and Java. Fourth-generation languages are languages designed 

for specific applications like NOMAD for report generation, SQL for database 

queries, and Postscript for text formatting. The term fifth-generation language 

has been applied to logic- and constraint-based languages like Prolog and OPS5. 

Another classification of languages uses the term imperative for languages 

in which a program specifies how a computation is to be done and declarative 

for languages in which a program specifies what computation is to be done. 

Languages such as C, C++, C#, and Java are imperative languages. In imper- 

ative languages there is a notion of program state and statements that change 

the state. Functional languages such as ML and Haskell and constraint logic 

languages such as Prolog are often considered to be declarative languages. 

The term von Neumann language is applied to programming languages 

whose computational model is based on the von Neumann computer archi- 

tecture. Many of today's languages, such as Fortran and C are von Neumann 

languages. 

An object-oriented language is one that supports object-oriented program- 
ming, a programming style in which a program consists of a collection of objects 

that interact with one another. Simula 67 and Smalltalk are the earliest major 

object-oriented languages. Languages such as C++, C#, Java, and Ruby are 

more recent ob ject-oriented languages. 

Scripting languages are interpreted languages with high-level operators de- 

signed for "gluing toget her" computations. These computations were originally 
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called "scripts." Awk, JavaScript, Perl, PHP, Python, Ruby, and Tcl are pop- 

ular examples of scripting languages. Programs written in scripting languages 

are often much shorter than equivalent programs written in languages like C. 

1.3.2 Impacts on Compilers 

Since the design of programming languages and compilers are intimately related, 

the advances in programming languages placed new demands on compiler writ- 

ers. They had to devise algorithms and representations to translate and support 

the new language features. Since the 1940's, computer architecture has evolved 

as well. Not only did the compiler writers have to track new language fea- 
tures, they also had to devise translation algorithms that would take maximal 

advantage of the new hardware capabilities. 

Compilers can help promote the use of high-level languages by minimizing 

the execution overhead of the programs written in these languages. Compilers 

are also critical in making high-performance computer architectures effective 

on users' applications. In fact, the performance of a computer system is so 

dependent on compiler technology that compilers are used as a tool in evaluating 

architectural concepts before a computer is built. 

Compiler writing is challenging. A compiler by itself is a large program. 

Moreover, many modern language-processing systems handle several source lan- 

guages and target machines within the same framework; that is, they serve as 

collections of compilers, possibly consisting of millions of lines of code. Con- 

sequently, good software-engineering techniques are essential for creating and 

evolving modern language processors. 

A compiler must translate correctly the potentially infinite set of programs 

that could be written in the source language. The problem of generating the 

optimal target code from a source program is undecidable in general; thus, 

compiler writers must evaluate tradeoffs about what problems to tackle and 

what heuristics to use to approach the problem of generating efficient code. 

A study of compilers is also a study of how theory meets practice, as we 

shall see in Section 1.4. 

The purpose of this text is to teach the methodology and fundamental ideas 

used in compiler design. It is not the intention of this text to teach all the 

algorithms and techniques that could be used for building a st ate-of-the-art 

language-processing system. However, readers of this text will acquire the basic 

knowledge and understanding to learn how to build a compiler relatively easily. 

1.3.3 Exercises for Section 1.3 

Exercise 1.3.1 : Indicate which of the following terms: 

a) imperative b) declarative c) von Neumann 

d) object-oriented e) functional f)  third-generation 

g) fourth-generation h) scripting 
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apply to which of the following languages: 

1) C 2) C++ 3) Cobol 4) Fortran 5) Java 

6) Lisp 7) ML 8) Per1 9) Python 10) VB. 

1.4 The Science of Building a Compiler 

Compiler design is full of beautiful examples where complicated real-world prob- 

lems are solved by abstracting the essence of the problem mathematically. These 

serve as excellent illustrations of how abstractions can be used to solve prob- 

lems: take a problem, formulate a mathematical abstraction that captures the 

key characteristics, and solve it using mathematical techniques. The problem 

formulation must be grounded in a solid understanding of the characteristics of 

computer programs, and the solution must be validated and refined empirically. 

A compiler must accept all source programs that conform to the specification 

of the language; the set of source programs is infinite and any program can be 

very large, consisting of possibly millions of lines of code. Any transformation 

performed by the compiler while translating a source program must preserve the 

meaning of the program being compiled. Compiler writers thus have influence 

over not just the compilers they create, but all the programs that their com- 

pilers compile. This leverage makes writing compilers particularly rewarding; 

however, it also makes compiler development challenging. 

1.4.1 Modeling in Compiler Design and Implementation 

The study of compilers is mainly a study of how we design the right mathe- 

matical models and choose the right algorithms, while balancing the need for 

generality and power against simplicity and efficiency. 

Some of most fundamental models are finite-state machines and regular 

expressions, which we shall meet in Chapter 3. These models are useful for de- 

scribing the lexical units of programs (keywords, identifiers, and such) and for 

describing the algorithms used by the compiler to recognize those units. Also 

among the most fundamental models are context-free grammars, used to de- 

scribe the syntactic structure of programming languages such as the nesting of 

parentheses or control constructs. We shall study grammars in Chapter 4. Sim- 

ilarly, trees are an important model for representing the structure of programs 

and their translation into object code, as we shall see in Chapter 5. 

1.4.2 The Science of Code Optimization 

The term "optimization" in compiler design refers to the attempts that a com- 

piler makes to produce code that is more efficient than the obvious code. "Op- 

timization" is thus a misnomer, since there is no way that the code produced 

by a compiler can be guaranteed to be as fast or faster than any other code 

that performs the same task. 
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In modern times, the optimization of code that a compiler performs has 

become both more important and more complex. It is more complex because 

processor architectures have become more complex, yielding more opportunities 

to improve the way code executes. It is more important because massively par- 

allel computers require substantial optimization, or their performance suffers by 

orders of magnitude. With the likely prevalence of multicore machines (com- 

puters with chips that have large numbers of processors on them), all compilers 

will have to face the problem of taking advantage of multiprocessor machines. 

It  is hard, if not impossible, to build a robust compiler out of "hacks." 

Thus, an extensive and useful theory has been built up around the problem of 

optimizing code. The use of a rigorous mathematical foundation allows us to 

show that an optimization is correct and that it produces the desirable effect 

for all possible inputs. We shall see, starting in Chapter 9, how models such 

as graphs, matrices, and linear programs are necessary if the compiler is to 

produce well optimized code. 

On the other hand, pure theory alone is insufficient. Like many real-world 

problems, there are no perfect answers. In fact, most of the questions that 

we ask in compiler optimization are undecidable. One of the most important 

skills in compiler design is the ability to formulate the right problem to solve. 

We need a good understanding of the behavior of programs to start with and 

thorough experimentation and evaluation to validate our intuitions. 

Compiler optimizations must meet the following design objectives: 

The optimization must be correct, that is, preserve the meaning of the 

compiled program, 

The optimization must improve the performance of many programs, 

The compilation time must be kept reasonable, and 

The engineering effort required must be manageable. 

It is impossible to overemphasize the importance of correctness. It is trivial 

to write a compiler that generates fast code if the generated code need not 

be correct! Optimizing compilers are so difficult to get right that we dare say 

that no optimizing compiler is completely error-free! Thus, the most important 

objective in writing a compiler is that it is correct. 

The second goal is that the compiler must be effective in improving the per- 

formance of many input programs. Normally, performance means the speed of 

the program execution. Especially in embedded applications, we may also wish 

to minimize the size of the generated code. And in the case of mobile devices, 

it is also desirable that the code minimizes power consumption. Typically, the 

same optimizations that speed up execution time also conserve power. Besides 

performance, usability aspects such as error reporting and debugging are also 

import ant. 

Third, we need to keep the compilation time short to support a rapid devel- 

opment and debugging cycle. This requirement has become easier to meet as 
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machines get faster. Often, a program is first developed and debugged without 

program optimizations. Not only is the compilation time reduced, but more 

importantly, unoptimized programs are easier to debug, because the optimiza- 

tions introduced by a compiler often obscure the relationship between the source 

code and the object code. Turning on optimizations in the compiler sometimes 

exposes new problems in the source program; thus testing must again be per- 

formed on the optimized code. The need for additional testing sometimes deters 

the use of optimizations in applications, especially if their performance is not 

critical. 

Finally, a compiler is a complex system; we must keep the system sim- 

ple to assure that the engineering and maintenance costs of the compiler are 

manageable. There is an infinite number of program optimizations that we 

could implement, and it takes a nontrivial amount of effort to create a correct 

and effective optimization. We must prioritize the optimizations, implementing 

only those that lead to the greatest benefits on source programs encountered in 

practice. 

Thus, in studying compilers, we learn not only how to build a compiler, but 

also the general methodology of solving complex and open-ended problems. The 

approach used in compiler development involves both theory and experimenta- 

tion. We normally start by formulating the problem based on our intuitions on 

what the important issues are. 

1.5 Applications of Compiler Technology 

Compiler design is not only about compilers, and many people use the technol- 

ogy learned by studying compilers in school, yet have never, strictly speaking, 

written (even part of) a compiler for a major programming language. Compiler 

technology has other important uses as well. Additionally, compiler design im- 

pacts several other areas of computer science. In this section, we review the 

most important interactions and applications of the technology. 

1.5.1 Implementation of High-Level Programming 

Languages 

A high-level programming language defines a programming abstraction: the 

programmer expresses an algorithm using the language, and the compiler must 

translate that program to the target language. Generally, higher-level program- 

ming languages are easier to program in, but are less efficient, that is, the target 

programs run more slowly. Programmers using a low-level language have more 

control over a computation and can, in principle, produce more efficient code. 

Unfortunately, lower-level programs are harder to write and - worse still - 

less portable, more prone to errors, and harder to maintain. Optimizing com- 

pilers include techniques to improve the performance of generated code, thus 

offsetting the inefficiency introduced by high-level abstractions. 
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Example 1.2 : The register keyword in the C programming language is an 

early example of the interaction between compiler technology and language evo- 

lution. When the C language was created in the mid 1970s, it was considered 

necessary to let a programmer control which program variables reside in regis- 

ters. This control became unnecessary as effective register-allocation techniques 

were developed, and most modern programs no longer use this language feature. 

In fact, programs that use the register keyword may lose efficiency, because 

programmers often are not the best judge of very low-level matters like register 

allocation. The optimal choice of register allocation depends greatly on the 

specifics of a machine architecture. Hardwiring low-level resource-management 

decisions like register allocation may in fact hurt performance, especially if the 
program is run on machines other than the one for which it was written. 

The many shifts in the popular choice of programming languages have been 

in the direction of increased levels of abstraction. C was the predominant 

systems programming language of the 80's; many of the new projects started 

in the 90's chose C++; Java, introduced in 1995, gained popularity quickly 

in the late 90's. The new programming-language features introduced in each 

round spurred new research in compiler optimization. In the following, we give 

an overview on the main language features that have stimulated significant 

advances in compiler technology. 

Practically all common programming languages, including C, Fortran and 

Cobol, support user-defined aggregate data types, such as arrays and structures, 

and high-level control flow, such as loops and procedure invocations. If we just 

take each high-level construct or data-access operation and translate it directly 

to machine code, the result would be very inefficient. A body of compiler 

optimizations, known as data-flow optimizations, has been developed to analyze 

the flow of data through the program and removes redundancies across these 

constructs. They are effective in generating code that resembles code written 

by a skilled programmer at a lower level. 

Object orientation was first introduced in Simula in 1967, and has been 
incorporated in languages such as Smalltalk, C++, C#, and Java. The key 

ideas behind object orientation are 

1. Data abstraction and 

2. Inheritance of properties, 

both of which have been found to make programs more modular and easier to 

maintain. Object-oriented programs are different from those written in many 

other languages, in that they consist of many more, but smaller, procedures 

(called methods in object-oriented terms). Thus, compiler optimizations must 

be able to perform well across the procedural boundaries of the source program. 

Procedure inlining, which is the replacement of a procedure call by the body 

of the procedure, is particularly useful here. Optimizations to speed up virtual 
met hod dispatches have also been developed. 
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Java has many features that make programming easier, many of which have 

been introduced previously in other languages. The Java language is type-safe; 

that is, an object cannot be used as an object of an unrelated type. All array 

accesses are checked to ensure that they lie within the bounds of the array. 

Java has no pointers and does not allow pointer arithmetic. It has a built-in 

garbage-collection facility that automatically frees the memory of variables that 

are no longer in use. While all these features make programming easier, they 

incur a run-time overhead. Compiler optimizations have been developed to 

reduce the overhead, for example, by eliminating unnecessary range checks and 

by allocating objects that are not accessible beyond a procedure on the stack 

instead of the heap. Effective algorithms also have been developed to minimize 

the overhead of garbage collection. 

In addition, Java is designed to support portable and mobile code. Programs 

are distributed as Java bytecode, which must either be interpreted or compiled 

into native code dynamically, that is, at run time. Dynamic compilation has also 

been studied in other contexts, where information is extracted dynamically at 

run time and used to produce better-optimized code. In dynamic optimization, 

it is important to minimize the compilation time as it is part of the execution 

overhead. A common technique used is to only compile and optimize those 

parts of the program that will be frequently executed. 

1.5.2 Optimizations for Computer Architectures 

The rapid evolution of computer architectures has also led to an insatiable 

demand for new compiler technology. Almost all high-performance systems 

take advantage of the same two basic techniques: parallelism and memory hi- 

erarchies. Parallelism can be found at several levels: at the instruction level, 

where multiple operations are executed simultaneously and at the processor 

level, where different threads of the same application are run on different pro- 

cessors. Memory hierarchies are a response to the basic limitation that we can 

build very fast storage or very large storage, but not storage that is both fast 

and large. 

Parallelism 

All modern microprocessors exploit instruction-level parallelism. However, this 

parallelism can be hidden from the programmer. Programs are written as if all 

instructions were executed in sequence; the hardware dynamically checks for 

dependencies in the sequential instruction stream and issues them in parallel 

when possible. In some cases, the machine includes a hardware scheduler that 

can change the instruction ordering to increase the parallelism in the program. 

Whether the hardware reorders the instructions or not, compilers can rearrange 

the instructions to make instruction-level parallelism more effective. 

Instruction-level parallelism can also appear explicitly in the instruction set. 

VLIW (Very Long Instruction Word) machines have instructions that can issue 
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multiple operations in parallel. The Intel IA64 is a well-known example of such 

an architecture. All high-performance, general-purpose microprocessors also 
include instructions that can operate on a vector of data at the same time. 

Compiler techniques have been developed to generate code automatically for 

such machines from sequential programs. 

Multiprocessors have also become prevalent ; even personal computers of- 

ten have multiple processors. Programmers can write multithreaded code for 

multiprocessors, or parallel code can be automatically generated by a com- 

piler from conventional sequential programs. Such a compiler hides from the 

programmers the details of finding parallelism in a program, distributing the 

computation across the machine, and minimizing synchronization and com- 

munication among the processors. Many scientific-computing and engineering 

applications are computation-intensive and can benefit greatly from parallel 

processing. Parallelization techniques have been developed to translate auto- 

matically sequential scientific programs into multiprocessor code. 

Memory Hierarchies 

A memory hierarchy consists of several levels of storage with different speeds 

and sizes, with the level closest to the processor being the fastest but small- 

est. The average memory-access time of a program is reduced if most of its 
accesses are satisfied by the faster levels of the hierarchy. Both parallelism and 

the existence of a memory hierarchy improve the potential performance of a 

machine, but they must be harnessed effectively by the compiler to deliver real 

performance on an application. 

Memory hierarchies are found in all machines. A processor usually has 

a small number of registers consisting of hundreds of bytes, several levels of 

caches containing kilobytes to megabytes, physical memory containing mega- 

bytes to gigabytes, and finally secondary storage that contains gigabytes and 

beyond. Correspondingly, the speed of accesses between adjacent levels of the 

hierarchy can differ by two or three orders of magnitude. The performance of a 

system is often limited not by the speed of the processor but by the performance 

of the memory subsystem. While compilers traditionally focus on optimizing 

the processor execution, more emphasis is now placed on making the memory 
hierarchy more effective. 

Using registers effectively is probably the single most important problem in 

optimizing a program. Unlike registers that have to be managed explicitly in 

software, caches and physical memories are hidden from the instruction set and 

are managed by hardware. It has been found that cache-management policies 

implemented by hardware are not effective in some cases, especially in scientific 

code that has large data structures (arrays, typically). It is possible to improve 

the effectiveness of the memory hierarchy by changing the layout of the data, 
or changing the order of instructions accessing the data. We can also change 

the layout of code to improve the effectiveness of instruction caches. 
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1.5.3 Design of New Computer Architectures 

In the early days of computer architecture design, compilers were developed 

after the machines were built. That has changed. Since programming in high- 

level languages is the norm, the performance of a computer system is determined 

not by its raw speed but also by how well compilers can exploit its features. 

Thus, in modern computer architecture development, compilers are developed 

in the processor-design stage, and compiled code, running on simulators, is used 

to evaluate the proposed architectural features. 

RISC 

One of the best known examples of how compilers influenced the design of 

computer architecture was the invention of the RISC (Reduced Instruction-Set 

Computer) architecture. Prior to this invention, the trend was to develop pro- 

gressively complex instruction sets intended to make assembly programming 

easier; these architectures were known as CISC (Complex Instruction-Set Com- 

puter). For example, CISC instruction sets include complex memory-addressing 

modes to support data-structure accesses and procedure-invocation instructions 

that save registers and pass parameters on the stack. 

Compiler optimizations often can reduce these instructions to a small num- 

ber of simpler operations by eliminating the redundancies across complex in- 

structions. Thus, it is desirable to build simple instruction sets; compilers can 

use them effectively and the hardware is much easier to optimize. 

Most general-purpose processor architectures, including PowerPC, SPARC, 

MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the 

x86 architecture-the most popular microprocessor-has a CISC instruction 

set, many of the ideas developed for RISC machines are used in the imple- 

mentation of the processor itself. Moreover, the most effective way to use a 

high-performance x86 machine is to use just its simple instructions. 

Specialized Architectures 

Over the last three decades, many architectural concepts have been proposed. 

They include data flow machines, vector machines, VLIW (Very Long Instruc- 

tion Word) machines, SIMD (Single Instruction, Multiple Data) arrays of pro- 

cessors, systolic arrays, multiprocessors with shared memory, and multiproces- 

sors with distributed memory. The development of each of these architectural 

concepts was accompanied by the research and development of corresponding 

compiler technology. 

Some of these ideas have made their way into the designs of embedded 

machines. Since entire systems can fit on a single chip, processors need no 
longer be prepackaged commodity units, but can be tailored to achieve better 

cost-effectiveness for a particular application. Thus, in contrast to general- 
purpose processors, where economies of scale have led computer architectures 
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to converge, application-specific processors exhibit a diversity of computer ar- 

chitectures. Compiler technology is needed not only to support programming 

for these architectures, but also to evaluate proposed architectural designs. 

1.5.4 Program Translations 

While we normally think of compiling as a translation from a high-level lan- 

guage to the machine level, the same technology can be applied to translate 

between different kinds of languages. The following are some of the important 

applications of program-translation techniques. 

Binary Translation 

Compiler technology can be used to translate the binary code for one machine 

to that of another, allowing a machine to run programs originally compiled for 

another instruction set. Binary translation technology has been used by various 

computer companies to increase the availability of software for their machines. 

In particular, because of the domination of the x86 personal-computer mar- 

ket, most software titles are available as x86 code. Binary translators have 

been developed to convert x86 code into both Alpha and Sparc code. Binary 

translation was also used by Transmeta Inc. in their implementation of the x86 

instruction set. Instead of executing the complex x86 instruction set directly in 

hardware, the Transmeta Crusoe processor is a VLIW processor that relies on 

binary translation to convert x86 code into native VLIW code. 

Binary translation can also be used to provide backward compatibility. 

When the processor in the Apple Macintosh was changed from the Motorola MC 

68040 to the PowerPC in 1994, binary translation was used to allow PowerPC 

processors run legacy MC 68040 code. 

Hardware Synthesis 

Not only is most software written in high-level languages; even hardware de- 

signs are mostly described in high-level hardware description languages like 

Verilog and VHDL (Very high-speed integrated circuit Hardware Description 

Language). Hardware designs are typically described at the register trans- 

fer level (RTL), where variables represent registers and expressions represent 

combinational logic. Hardware-synthesis tools translate RTL descriptions auto- 

matically into gates, which are then mapped to transistors and eventually to a 
physical layout. Unlike compilers for programming languages, these tools often 
take hours optimizing the circuit. Techniques to translate designs at higher 

levels, such as the behavior or functional level, also exist. 

Database Query Interpreters 

Besides specifying software and hardware, languages are useful in many other 

applications. For example, query languages, especially SQL (Structured Query 
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Language), are used to search databases. Database queries consist of predicates 

containing relational and boolean operators. They can be interpreted or com- 

piled into commands to search a database for records satisfying that predicate. 

Compiled Simulation 

Simulation is a general technique used in many scientific and engineering disci- 

plines to understand a phenomenon or to validate a design. Inputs to a simula- 

tor usually include the description of the design and specific input parameters 

for that particular simulation run. Simulations can be very expensive. We typi- 

cally need to simulate many possible design alternatives on many different input 

sets, and each experiment may take days to complete on a high-performance 

machine. Instead of writing a simulator that interprets the design, it is faster 

to compile the design to produce machine code that simulates that particular 

design natively. Compiled simulation can run orders of magnitude faster than 

an interpreter-based approach. Compiled simulation is used in many state-of- 

the-art tools that simulate designs written in Verilog or VHDL. 

1.5.5 Software Productivity Tools 

Programs are arguably the most complicated engineering artifacts ever pro- 

duced; they consist of many many details, every one of which must be correct 

before the program will work completely. As a result, errors are rampant in 

programs; errors may crash a system, produce wrong results, render a system 

vulnerable to security attacks, or even lead to catastrophic failures in critical 

systems. Testing is the primary technique for locating errors in programs. 

An interesting and promising complementary approach is to use data-flow 

analysis to locate errors statically (that is, before the program is run). Data- 

flow analysis can find errors along all the possible execution paths, and not 

just those exercised by the input data sets, as in the case of program testing. 

Many of the data-flow-analysis techniques, originally developed for compiler 

optimizations, can be used to create tools that assist programmers in their 

software engineering tasks. 

The problem of finding all program errors is undecidable. A data-flow analy- 

sis may be designed to warn the programmers of all possible statements violating 

a particular category of errors. But if most of these warnings are false alarms, 

users will not use the tool. Thus, practical error detectors are often neither 

sound nor complete. That is, they may not find all the errors in the program, 

and not all errors reported are guaranteed to be real errors. Nonetheless, var- 

ious static analyses have been developed and shown to be effective in finding 

errors, such as dereferencing null or freed pointers, in real programs. The fact 

that error detectors may be unsound makes them significantly different from 

compiler optimizations. Optimizers must be conservative and cannot alter the 

semantics of the program under any circumstances. 
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In the balance of this section, we shall mention several ways in which pro- 

gram analysis, building upon techniques originally developed to optimize code 

in compilers, have improved software productivity. Of special importance are 

techniques that detect statically when a program might have a security vulner- 

ability. 

Type Checking 

Type checking is an effective and well-established technique to catch inconsis- 

tencies in programs. It can be used to catch errors, for example, where an 

operation is applied to the wrong type of object, or if parameters passed to a 

procedure do not match the signature of the procedure. Program analysis can 

go beyond finding type errors by analyzing the flow of data through a program. 

For example, if a pointer is assigned n u l l  and then immediately dereferenced, 

the program is clearly in error. 

The same technology can be used to catch a variety of security holes, in 

which an attacker supplies a string or other data that is used carelessly by the 

program. A user-supplied string can be labeled with a type "dangerous." If 

this string is not checked for proper format, then it remains "dangerous," and 

if a string of this type is able to influence the control-flow of the code at some 

point in the program, then there is a potential security flaw. 

Bounds Checking 

It is easier to make mistakes when programming in a lower-level language than 

a higher-level one. For example, many security breaches in systems are caused 

by buffer overflows in programs written in C. Because C does not have array- 

bounds checks, it is up to the user to ensure that the arrays are not accessed 

out of bounds. Failing to check that the data supplied by the user can overflow 

a buffer, the program may be tricked into storing user data outside of the 

buffer. An attacker can manipulate the input data that causes the program to 

misbehave and compromise the security of the system. Techniques have been 

developed to find buffer overflows in programs, but with limited success. 

Had the program been written in a safe language that includes automatic 

range checking, this problem would not have occurred. The same data-flow 

analysis that is used to eliminate redundant range checks can also be used to 

locate buffer overflows. The major difference, however, is that failing to elimi- 

nate a range check would only result in a small run-time cost, while failing to 

identify a potential buffer overflow may compromise the security of the system. 

Thus, while it is adequate to use simple techniques to optimize range checks, so- 

phisticated analyses, such as tracking the values of pointers across procedures, 

are needed to get high-quality results in error detection tools. 
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Memory-Management Tools 

Garbage collection is another excellent example of the tradeoff between effi- 

ciency and a combination of ease of programming and software reliability. Au- 

tomatic memory management obliterates all memory-management errors (e.g., 

"memory leaks"), which are a major source of problems in C and C++ pro- 

grams. Various tools have been developed to help programmers find memory 

management errors. For example, Purify is a widely used tool that dynamically 

catches memory management errors as they occur. Tools that help identify 

some of these problems statically have also been developed. 

1.6 Programming Language Basics 

In this section, we shall cover the most important terminology and distinctions 

that appear in the study of programming languages. It is not our purpose to  

cover all concepts or all the popular programming languages. We assume that 

the reader is familiar with at least one of C, C++, C#, or Java, and may have 

encountered other languages as well. 

1.6.1 The Static/Dynarnic Distinction 

Among the most important issues that we face when designing a compiler for 

a language is what decisions can the compiler make about a program. If a 

language uses a policy that allows the compiler to  decide an issue, then we say 

that the language uses a static policy or that the issue can be decided a t  compile 
t ime.  On the other hand, a policy that only allows a decision to  be made when 

we execute the program is said to  be a dynamic policy or to  require a decision 

at r u n  t ime.  

One issue on which we shall concentrate is the scope of declarations. The 

scope of a declaration of x is the region of the program in which uses of x refer t o  

this declaration. A language uses static scope or lexical scope if it is possible to  

determine the scope of a declaration by looking only a t  the program. Otherwise, 

the language uses dynamic scope. With dynamic scope, as the program runs, 

the same use of x could refer to  any of several different declarations of x. 

Most languages, such as C and Java, use static scope. We shall discuss static 

scoping in Section 1.6.3. 

Example 1.3 : As another example of the staticldynamic distinction, consider 

the use of the term "static" as it applies to data in a Java class declaration. In 

Java, a variable is a name for a location in memory used to hold a data value. 

Here, "static" refers not to  the scope of the variable, but rather to  the ability of 

the compiler to  determine the location in memory where the declared variable 

can be found. A declaration like 

public  s t a t i c  i n t  x ;  
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makes x a class variable and says that there is only one copy of x, no matter how 

many objects of this class are created. Moreover, the compiler can determine a 

location in memory where this integer x will be held. In contrast, had "static" 

been omitted from this declaration, then each object of the class would have its 

own location where x would be held, and the compiler could not determine all 

these places in advance of running the program. 

1.6.2 Environments and States 

Another important distinction we must make when discussing programming 

languages is whether changes occurring as the program runs affect the values of 

data elements or affect the interpretation of names for that data. For example, 

the execution of an assignment such as x = y + 1 changes the value denoted by 

the name x. More specifically, the assignment changes the value in whatever 

location is denoted by x. 

It may be less clear that the location denoted by x can change at run time. 

For instance, as we discussed in Example 1.3, if x is not a static (or "class") 

variable, then every object of the class has its own location for an instance 

of variable x. In that case, the assignment to x can change any of those "in- 

stance" variables, depending on the object to which a method containing that 

assignment is applied. 

environment state 

names 
n n 

locations values 

(variables) 

Figure 1.8: Two-stage mapping from names to values 

The association of names with locations in memory (the store) and then 

with values can be described by two mappings that change as the program runs 

(see Fig. 1.8): 

1. The environment is a mapping from names to locations in the store. Since 

variables refer to locations ('L1-values" in the terminology of C), we could 

alternatively define an environment as a mapping from names to variables. 

2. The state is a mapping from locations in store to their values. That is, the 

state maps 1-values to their corresponding r-values, in the terminology of 

C. 

Environments change according to the scope rules of a language. 

Example 1.4: Consider the C program fragment in Fig. 1.9. Integer i is 

declared a global variable, and also declared as a variable local to function f .  

When f is executing, the environment adjusts so that name i refers to the 
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i n t  i ;  
... 
void f(.--) { 

i n t  i ;  

/* global i */ 

/* local i */ 

/* use of local i */ 

x = i + I ;  /*  use of global i */ 

Figure 1.9: Two declarations of the name i 

location reserved for the i that is local to f ,  and any use of i ,  such as the 

assignment i = 3 shown explicitly, refers to that location. Typically, the local 

i is given a place on the run-time stack. 

Whenever a function g other than f is executing, uses of i cannot refer to 

the i that is local to f .  Uses of name i in g must be within the scope of some 

other declaration of i. An example is the explicitly shown statement x = i+l, 

which is inside some procedure whose definition is not shown. The i in i + 1 

presumably refers to the global i .  As in most languages, declarations in C must 

precede their use, so a function that comes before the global i cannot refer to 

it. 

The environment and state mappings in Fig. 1.8 are dynamic, but there are 

a few exceptions: 

1. Static versus dynamic binding of names to locations. Most binding of 

names to locations is dynamic, and we discuss several approaches to this 

binding throughout the section. Some declarations, such as the global i 

in Fig. 1.9, can be given a location in the store once and for all, as the 

compiler generates object code.2 

2. Static versus dynamic binding of locations to values. The binding of lo- 

cations to values (the second stage in Fig. 1.8), is generally dynamic as 
well, since we cannot tell the value in a location until we run the program. 

Declared constants are an exception. For instance, the C definition 

#define ARRAYSIZE 1000 
-- -- 

2~echnically, the C compiler will assign a location in virtual memory for the global i, 

leaving it to the loader and the operating system to determine where in the physical memory 

of the machine i will be located. However, we shall not worry about "relocation" issues such 
as these, which have no impact on compiling. Instead, we treat the address space that the 

compiler uses for its output code as if it gave physical memory locations. 
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Names, Identifiers, and Variables 

Although the terms "name" and "variable," often refer to the same thing, 

we use them carefully to distinguish between compile-time names and the 

run-time locations denoted by names. 

An identifier is a string of characters, typically letters or digits, that 

refers to (identifies) an entity, such as a data object, a procedure, a class, 

or a type. All identifiers are names, but not all names are identifiers. 

Names can also be expressions. For example, the name x.y might denote 

the field y of a structure denoted by x. Here, x and y are identifiers, while 

x.y is a name, but not an identifier. Composite names like x.y are called 

qualified names. 

A variable refers to a particular location of the store. It is common for 

the same identifier to be declared more than once; each such declaration 

introduces a new variable. Even if each identifier is declared just once, an 

identifier local to a recursive procedure will refer to different locations of 

the store at different times. 

binds the name ARRAYSIZE to the value 1000 statically. We can determine 

this binding by looking at the statement, and we know that it is impossible 

for this binding to change when the program executes. 

1.6.3 Static Scope and Block Structure 

Most languages, including C and its family, use static scope. The scope rules 

for C are based on program structure; the scope of a declaration is determined 

implicitly by where the declaration appears in the program. Later languages, 

such as C++, Java, and C#, also provide explicit control over scopes through 

the use of keywords like public, private, and protected. 

In this section we consider static-scope rules for a language with blocks, 

where a block is a grouping of declarations and statements. C uses braces I and 

) to delimit a block; the alternative use of begin and end  for the same purpose 

dates back to Algol. 

Example 1.5 : To a first approximation, the C static-scope policy is as follows: 

1. A C program consists of a sequence of top-level declarations of variables 

and functions. 

2. Functions may have variable declarations within them, where variables 

include local variables and parameters. The scope of each such declaration 

is restricted to the function in which it appears. 
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Procedures, Functions, and Methods 

To avoid saying "procedures, functions, or methods," each time we want 

to talk about a subprogram that may be called, we shall usually refer to 

all of them as "procedures." The exception is that when talking explicitly 

of programs in languages like C that have only functions, we shall refer 

to them as "functions." Or, if we are discussing a language like Java that 

has only methods, we shall use that term instead. 

A function generally returns a value of some type (the "return type"), 

while a procedure does not return any value. C and similar languages, 

which have only functions, treat procedures as functions that have a special 

return type "void," to signify no return value. Object-oriented languages 

like Java and C++ use the term "methods." These can behave like either 

functions or procedures, but are associated with a particular class. 

3. The scope of a top-level declaration of a name x consists of the entire 

program that follows, with the exception of those statements that lie 

within a function that also has a declaration of x. 

The additional detail regarding the C static-scope policy deals with variable 

declarations within statements. We examine such declarations next and in 

Example 1.6. 

In C, the syntax of blocks is given by 

1. One type of statement is a block. Blocks can appear anywhere that other 

types of statements, such as assignment statements, can appear. 

2. A block is a sequence of declarations followed by a sequence of statements, 

all surrounded by braces. 

Note that this syntax allows blocks to be nested inside each other. This 
nesting property is referred to as block structure. The C family of languages 

has block structure, except that a function may not be defined inside another 

function. 

We say that a declaration D "belongs" to a block B if B is the most closely 

nested block containing D; that is, D is located within B ,  but not within any 

block that is nested within B. 
The static-scope rule for variable declarations in a block-structured lan- 

guages is as follows. If declaration D of name x belongs to block B, then the 

scope of D is all of B ,  except for any blocks B' nested to any depth within B ,  

in which x is redeclared. Here, x is redeclared in B' if some other declaration 
D' of the same name x belongs to B'. 
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An equivalent way to express this rule is to focus on a use of a name x. 

Let B1, B2, . . . , Bk be all the blocks that surround this use of x, with Bk the 

smallest, nested within Bk-1, which is nested within Bk-2, and so on. Search 

for the largest i such that there is a declaration of x belonging to Bi. This use 

of x refers to the declaration in Bi. Alternatively, this use of x is within the 

scope of the declaration in Bi. 

'int b = 2; \ 

.€ 
B2 

int a = 3; 

cout << a << b; 
3 

int b = 4; 

cout << a << b; 
3 
,cout << a << b; 

J 

cout << a << b; 
1 

Figure 1.10: Blocks in a C++ program 

Example 1.6 : The C++ program in Fig. 1.10 has four blocks, with several 

definitions of variables a and b. As a memory aid, each declaration initializes 

its variable to the number of the block to which it belongs. 

For instance, consider the declaration int a = I in block B1. Its scope 

is all of B1, except for those blocks nested (perhaps deeply) within B1 that 

have their own declaration of a. B2, nested immediately within B1, does not 

have a declaration of a ,  but B3 does. B4 does not have a declaration of a ,  so 

block B3 is the only place in the entire program that is outside the scope of the 

declaration of the name a that belongs to B1. That is, this scope includes f i  

and all of B2 except for the part of B2 that is within B3. The scopes of all five 

declarations are summarized in Fig. 1.11. 

From another point of view, let us consider the output statement in block 

B4 and bind the variables a and b used there to the proper declarations. The 

list of surrounding blocks, in order of increasing size, is Bq , B2, B1. Note that 

B3 does not surround the point in question. B4 has a declaration of b, so it 

is to this declaration that this use of b refers, and the value of b printed is 4. 

However, B4 does not have a declaration of a ,  so we next look at  B2. That 

block does not have a declaration of a either, so we proceed to B1. Fortunately, 
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DECLARATION 

int a = 1; 

int b = 1; 

int b = 2; 

int a = 3; 

int b = 4; 

Figure 1.11: Scopes of declarations in Example 1.6 

there is a declaration int a = 1 belonging to that block, so the value of a 

printed is I. Had there been no such declaration, the program would have been 

erroneous. C1 

1.6.4 Explicit Access Control 

Classes and structures introduce a new scope for their members. If p is an 

object of a class with a field (member) x, then the use of x in p.x refers to 

field x in the class definition. In analogy with block structure, the scope of a 

member declaration x in a class C extends to any subclass C', except if C' has 

a local declaration of the same name x. 

Through the use of keywords like public, private, and protected,  object- 

oriented languages such as C++ or Java provide explicit control over access 

to member names in a superclass. These keywords support encapsulation by 

restricting access. Thus, private names are purposely given a scope that includes 

only the method declarations and definitions associated with that class and any 

"friend" classes (the C++ term). Protected names are accessible to subclasses. 

Public names are accessible from outside the class. 

In C++, a class definition may be separated from the definitions of some 

or all of its methods. Therefore, a name x associated with the class C may 

have a region of the code that is outside its scope, followed by another region (a 

method definition) that is within its scope. In fact, regions inside and outside 

the scope may alternate, until all the methods have been defined. 

1.6.5 Dynamic Scope 

Technically, any scoping policy is dynamic if it is based on factor(s) that can 

be known only when the program executes. The term dynamic scope, however, 

usually refers to the following policy: a use of a name x refers to the declaration 

of x in the most recently called procedure with such a declaration. Dynamic 

scoping of this type appears only in special situations. We shall consider two ex- 

amples of dynamic policies: macro expansion in the C preprocessor and method 

resolution in ob ject-oriented programming. 
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Declarations and Definitions 

The apparently similar terms "declaration" and "definition" for program- 

ming-language concepts are actually quite different. Declarations tell us 

about the types of things, while definitions tell us about their values. Thus, 

int i is a declaration of i, while i = I is a definition of i .  

The difference is more significant when we deal with methods or other 

procedures. In C++, a method is declared in a class definition, by giving 

the types of the arguments and result of the method (often called the 

signature for the method. The method is then defined, i.e., the code for 

executing the method is given, in another place. Similarly, it is common 

to define a C function in one file and declare it in other files where the 

function is used. 

Example 1.7 : In the C program of Fig. 1.12, identifier a is a macro that 

stands for expression (x + I).  But what is x? We cannot resolve x statically, 

that is, in terms of the program text. 

int x = 2; 

void b()  ( int x = I ; printf (ll%d\nll, a) ; 3 

void c ( )  ( printf("%d\nI1, a); 

void main() ( b(); c ( ) ;  3 

Figure 1.12: A macro whose names must be scoped dynamically 

In fact, in order to interpret x, we must use the usual dynamic-scope rule. 

We examine all the function calls that are currently active, and we take the most 

recently called function that has a declaration of x. It is to this declaration that 

the use of x refers. 
In the example of Fig. 1.12, the function main first calls function b. As b 

executes, it prints the value of the macro a. Since (x + 1) must be substituted 

for a ,  we resolve this use of x to the declaration int x=l in function b. The 
reason is that b has a declaration of x, so the (x + 1) in the printf in b refers 

to this x. Thus, the value printed is 1. 

After b finishes, and c is called, we again need to print the value of macro 

a. However, the only x accessible to c is the global x. The printf statement 
in c thus refers to this declaration of x, and value 2 is printed. 

Dynamic scope resolution is also essential for polymorphic procedures, those 

that have two or more definitions for the same name, depending only on the 
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Analogy Between Static and Dynamic Scoping 

While there could be any number of static or dynamic policies for scoping, 

there is an interesting relationship between the normal (block-structured) 

static scoping rule and the normal dynamic policy. In a sense, the dynamic 

rule is to time as the static rule is to space. While the static rule asks us to 

find the declaration whose unit (block) most closely surrounds the physical 

location of the use, the dynamic rule asks us to find the declaration whose 

unit (procedure invocation) most closely surrounds the time of the use. 

types of the arguments. In some languages, such as ML (see Section 7.3.3), it 

is possible to determine statically types for all uses of names, in which case the 

compiler can replace each use of a procedure name p by a reference to the code 

for the proper procedure. However, in other languages, such as Java and C++, 
there are times when the compiler cannot make that determination. 

Example 1.8 : A distinguishing feature of object-oriented programming is the 

ability of each object to invoke the appropriate method in response to a message. 

In other words, the procedure called when x.m() is executed depends on the 

class of the object denoted by x at that time. A typical example is as follows: 

1. There is a class iC with a method named m().  

2. D is a subclass of C,  and D has its own method named m(). 

3. There is a use of m of the form x.m(), where x is an object of class C. 

Normally, it is impossible to tell at compile time whether x will be of class 

C or of the subclass D. If the method application occurs several times, it is 

highly likely that some will be on objects denoted by x that are in class C but 

not D, while others will be in class D. It is not until run-time that it can be 

decided which definition of rn is the right one. Thus, the code generated by the 

compiler must determine the class of the object x, and call one or the other 

method named m. 

1.6.6 Parameter Passing Mechanisms 

All programming languages have a notion of a procedure, but they can differ 

in how these procedures get their arguments. In this section, we shall consider 

how the actual parameters (the parameters used in the call of a procedure) 

are associated with the formal parameters (those used in the procedure defi- 

nition). Which mechanism is used determines how the calling-sequence code 

treats parameters. The great majority of languages use either "call-by-value," 

or "call-by-reference," or both. We shall explain these terms, and another 
method known as "call-by-name," that is primarily of historical interest. 



CHAPTER 1. INTRODUCTION 

In call-by-value, the actual parameter is evaluated (if it is an expression) or 

copied (if it is a variable). The value is placed in the location belonging to 
the corresponding formal parameter of the called procedure. This method is 

used in C and Java, and is a common option in C++, as well as in most 

other languages. Call-by-value has the effect that all computation involving the 

formal parameters done by the called procedure is local to that procedure, and 

the actual parameters themselves cannot be changed. 

Note, however, that in C we can pass a pointer to a variable to allow that 

variable to be changed by the callee. Likewise, array names passed as param- 

eters in C, C++, or Java give the called procedure what is in effect a pointer 

or reference to the array itself. Thus, if a is the name of an array of the calling 

procedure, and it is passed by value to corresponding formal parameter x, then 

an assignment such as x[ i ]  = 2 really changes the array element a[2]. The 

reason is that, although x gets a copy of the value of a ,  that value is really a 

pointer to the beginning of the area of the store where the array named a is 

located. 

Similarly, in Java, many variables are really references, or pointers, to the 

things they stand for. This observation applies to arrays, strings, and objects 

of all classes. Even though Java uses call-by-value exclusively, whenever we 

pass the name of an object to a called procedure, the value received by that 

procedure is in effect a pointer to the object. Thus, the called procedure is able 

to affect the value of the object itself. 

Call- by-Reference 

In call- b y-reference, the address of the actual parameter is passed to the callee as 

the value of the corresponding formal parameter. Uses of the formal parameter 

in the code of the callee are implemented by following this pointer to the location 

indicated by the caller. Changes to the formal parameter thus appear as changes 

to the actual parameter. 

If the actual parameter is an expression, however, then the expression is 

evaluated before the call, and its value stored in a location of its own. Changes 

to the formal parameter change this location, but can have no effect on the 
data of the caller. 

Call-by-reference is used for "ref" parameters in C++ and is an option in 

many other languages. It is almost essential when the formal parameter is a 

large object, array, or structure. The reason is that strict call-by-value requires 

that the caller copy the entire actual parameter into the space belonging to 
the corresponding formal parameter. This copying gets expensive when the 

parameter is large. As we noted when discussing call-by-value, languages such 
as Java solve the problem of passing arrays, strings, or other objects by copying 

only a reference to those objects. The effect is that Java behaves as if it used 

call-by-reference for anything other than a basic type such as an integer or real. 
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Call- by-Name 

A third mechanism - call-by-name - was used in the early programming 

language Algol 60. It requires that the callee execute as if the actual parameter 

were substituted literally for the formal parameter in the code of the callee, as 

if the formal parameter were a macro standing for the actual parameter (with 

renaming of local names in the called procedure, to keep them distinct). When 

the actual parameter is an expression rather than a variable, some unintuitive 

behaviors occur, which is one reason this mechanism is not favored today. 

1.6.7 Aliasing 

There is an interesting consequence of call-by-reference parameter passing or 

its simulation, as in Java, where references to objects are passed by value. It 

is possible that two formal parameters can refer to the same location; such 

variables are said to be aliases of one another. As a result, any two variables, 

which may appear to take their values from two distinct formal parameters, can 

become aliases of each other, as well. 

Example 1.9 : Suppose a is an array belonging to a procedure p, and p calls 

another procedure q(x, y) with a call q(a, a ) .  Suppose also that parameters 

are passed by value, but that array names are really references to the location 

where the array is stored, as in C or similar languages. Now, x and y have 

become aliases of each other. The important point is that if within q there is 

an assignment x [lo] = 2, then the value of y[10] also becomes 2. 

It turns out that understanding aliasing and the mechanisms that create it 

is essential if a compiler is to optimize a program. As we shall see starting in 

Chapter 9, there are many situations where we can only optimize code if we 

can be sure certain variables are not aliased. For instance, we might determine 

that x = 2 is the only place that variable x is ever assigned. If so, then we can 

replace a use of x by a use of 2; for example, replace a = x+3 by the simpler 

a = 5. But suppose there were another variable y that was aliased to x. Then 

an assignment y = 4 might have the unexpected effect of changing x. It might 

also mean that replacing a = x+3 by a = 5 was a mistake; the proper value of 

a could be 7 there. 

1.6.8 Exercises for Section 1.6 

Exercise 1.6.1 : For the block-structured C code of Fig. 1.13(a), indicate the 

values assigned to w, x, y, and x. 

Exercise 1.6.2 : Repeat Exercise 1.6.1 for the code of Fig. 1.13(b). 

Exercise 1.6.3 : For the block-structured code of Fig. 1.14, assuming the usual 

static scoping of declarations, give the scope for each of the twelve declarations. 
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i n t  w ,  x ,  y ,  z ;  

i n t  i = 4 ;  i n t  j = 5 ;  

( i n t  j = 7 ;  

i = 6 ;  

w = i + j ;  

3 
x = i + j ;  

{ i n t i = 8 ;  

y = i + j ;  

i n t  w ,  x,  y ,  z ;  

i n t  i = 3 ;  i n t  j = 4;  

( i n t i = 5 ;  
w = i + j ;  

3 
x = i + j ;  

( i n t  j = 6 ;  

i = 7 ;  
y = i + j ;  

(a) Code for Exercise 1.6.1 (b) Code for Exercise 1.6.2 

Figure 1.13: Block-structured code 

C i n t  w, x,  y ,  z ;  /* Block B 1  */ 
C i n t x , z ;  /* Block B2 */ 

( i n t  w ,  x;  /* Block B3 */ 3 

3 
{ i n t w , x ;  /* Block B4 */ 

{ i n t  y ,  z ;  /* Block B5 */ 3 
3 

3 

Figure 1.14: Block structured code for Exercise 1.6.3 

Exercise 1.6.4 : What is printed by the following C code? 

#define a (x+l)  

i n t  x = 2; 

void b() ( x = a ;  p r i n t f  ( l l%d\nlf ,  x ) ;  3 
void c ( )  ( i n t  x = 1 ;  p r i n t f  ("%d\n"), a ;  ) 

void main() ( b(); c ( ) ;  3 

1.7 Summary of Chapter 1 

+ Language Processors. An integrated software development environment 

includes many different kinds of language processors such as compilers, 

interpreters, assemblers, linkers, loaders, debuggers, profilers. 

+ Compiler Phases. A compiler operates as a sequence of phases, each of 

which transforms the source program from one intermediate representa- 

tion to another. 
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+ Machine and Assembly Languages. Machine languages were the first- 

generation programming languages, followed by assembly languages. Pro- 

gramming in these languages was time consuming and error prone. 

+ Modeling in Compiler Design. Compiler design is one of the places where 

theory has had the most impact on practice. Models that have been found 

useful include automata, grammars, regular expressions, trees, and many 

others. 

+ Code Optimization. Although code cannot truly be "optimized," the sci- 

ence of improving the efficiency of code is both complex and very impor- 

tant. It is a major portion of the study of compilation. 

+ Higher-Level Languages. As time goes on, programming languages take 

on progressively more of the tasks that formerly were left to the program- 

mer, such as memory management, type-consistency checking, or parallel 

execution of code. 

+ Compilers and Computer Architecture. Compiler technology influences 

computer architecture, as well as being influenced by the advances in ar- 

chitecture. Many modern innovations in architecture depend on compilers 

being able to extract from source programs the opportunities to use the 

hardware capabilities effectively. 

+ Software Productivity and Software Security. The same technology that 

allows compilers to optimize code can be used for a variety of program- 

analysis tasks, ranging from detecting common program bugs to discov- 

ering that a program is vulnerable to one of the many kinds of intrusions 

that "hackers" have discovered. 

+ Scope Rules. The scope of a declaration of x is the context in which uses 

of x refer to this declaration. A language uses static scope or lexical scope 
if it is possible to determine the scope of a declaration by looking only at 

the program. Otherwise, the language uses dynamic scope. 

+ Environments. The association of names with locations in memory and 

then with values can be described in terms of environments, which map 

names to locations in store, and states, which map locations to their 

values. 

+ Block Structure. Languages that allow blocks to be nested are said to 

have block structure. A name x in a nested block B is in the scope of a 

declaration D of x in an enclosing block if there is no other declaration 

of x in an intervening block. 

+ Parameter Passing. Parameters are passed from a calling procedure to 

the callee either by value or by reference. When large objects are passed 

by value, the values passed are really references to the objects themselves, 

resulting in an effective call-by-reference. 
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+ Aliasing. When parameters are (effectively) passed by reference, two for- 

mal parameters can refer to the same object. This possibility allows a 
change in one variable to change another. 

1.8 References for Chapter 1 

For the development of programming languages that were created and in use 

by 1967, including Fortran, Algol, Lisp, and Simula, see [7]. For languages that 

were created by 1982, including C, C++, Pascal, and Smalltalk, see [I]. 

The GNU Compiler Collection, gcc, is a popular source of open-source 

compilers for C, C-t- +, Fortran, Java, and other languages [2]. Phoenix is a 

compiler-construction toolkit that provides an integrated framework for build- 

ing the program analysis, code generation, and code optimization phases of 

compilers discussed in this book [3]. 
For more information about programming language concepts, we recom- 

mend [5,6]. For more on computer architecture and how it impacts compiling, 

we suggest [4]. 

1. Bergin, T. J. and R. G. Gibson, History of Programming Languages, ACM 

Press, New York, 1996. 
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Kaufmann, San Francisco, CA, 2006. 

6. Sethi, R., Programming Languages: Concepts and Constructs, Addison- 

Wesley, 1996. 
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Chapter 2 

A Simple Syntax-Directed 

Translator 

This chapter is an introduction to the compiling techniques in Chapters 3 

through 6 of this book. It illustrates the techniques by developing a working 

Java program that translates representative programming language statements 

into three-address code, an intermediate representation. In this chapter, the 

emphasis is on the front end of a compiler, in particular on lexical analysis, 

parsing, and intermediate code generation. Chapters 7 and 8 show how to 

generate machine instructions from three-address code. 

We start small by creating a syntax-directed translator that maps infix arith- 

metic expressions into postfix expressions. We then extend this translator to 

map code fragments as shown in Fig. 2.1 into three-address code of the form 

in Fig. 2.2. 

The working Java translator appears in Appendix A. The use of Java is 
convenient, but not essential. In fact, the ideas in this chapter predate the 

creation of both Java and C. 

< 
i n t  i ;  i n t  j ;  f loat[100]  a ;  f l o a t  v ;  f l o a t  x ;  

while ( t r u e  ) ( 

do i = i + l ;  while  ( a[ i ]  < v ) ;  

do j = j - I ;  while ( a[ j ]  > v ) ;  

i f  ( i >= j ) break;  

x = a [ i l ;  a [ i l  = a [ j ] ;  a [ j ]  = x ;  

Figure 2.1: A code fragment to be translated 

39 
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Figure 2.2: Simplified intermediate code for the program fragment in Fig. 2.1 

2.1 Introduction 

The analysis phase of a compiler breaks up a source program into constituent 

pieces and produces an internal representation for it, called intermediate code. 

The synthesis phase translates the intermediate code into the target program. 

Analysis is organized around the "syntax" of the language to be compiled. 

The syntax of a programming language describes the proper form of its pro- 

grams, while the semantics of the language defines what its programs mean; that 

is, what each program does when it executes. For specifying syntax, we present 

a widely used notation, called context-free grammars or BNF (for Backus-Naur 

Form) in Section 2.2. With the notations currently available, the semantics of 

a language is much more difficult to describe than the syntax. For specifying 

semantics, we shall therefore use informal descriptions and suggestive examples. 

Besides specifying the syntax of a language, a context-free grammar can be 

used to help guide the translation of programs. In Section 2.3, we introduce 

a grammar-oriented compiling technique known as syntax-directed translation. 
Parsing or syntax analysis is introduced in Section 2.4. 

The rest of this chapter is a quick tour through the model of a compiler 

front end in Fig. 2.3. We begin with the parser. For simplicity, we consider the 

syntax-directed translation of infix expressions to postfix form, a notation in 

which operators appear after their operands. For example, the postfix form of 

the expression 9 - 5 + 2 is 95 - 2+. Translation into postfix form is rich enough 

to illustrate syntax analysis, yet simple enough that the translator is shown in 
full in Section 2.5. The simple translator handles expressions like 9 - 5 + 2, 

consisting of digits separated by plus and minus signs. One reason for starting 

with such simple expressions is that the syntax analyzer can work directly with 

the individual characters for operators and operands. 
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Symbol 1 Table 1 
Figure 2.3: A model of a compiler front end 

t hree-address 

code 

A lexical analyzer allows a translator to handle multicharacter constructs 

like identifiers, which are written as sequences of characters, but are treated 

as units called tokens during syntax analysis; for example, in the expression 

count + 1, the identifier count is treated as a unit. The lexical analyzer in 

Section 2.6 allows numbers, identifiers, and "white space" (blanks, tabs, and 

newlines) to appear within expressions. 

Next, we consider intermediate-code generation. Two forms of intermedi- 

ate code are illustrated in Fig. 2.4. One form, called abstract syntax trees or 

simply syntax trees, represents the hierarchical syntactic structure of the source 

program. In the model in Fig. 2.3, the parser produces a syntax tree, that 

is further translated into three-address code. Some compilers combine parsing 

and intermediate-code generation into one component. 

body 

I 

syntax 

tree 
Parser 

source 

prograz 

assign 

/ \ 

Intermediate 
Code 

Generator 

Figure 2.4: Intermediate code for "do i = i + 1 ; while ( a [il < v) ; " 

Y 

~ ~ ~ i ~ ~ l  
Analyzer 

The root of the abstract syntax tree in Fig. 2.4(a) represents an entire do- 

while loop. The left child of the root represents the body of the loop, which 

consists of only the assignment i = i + 1 ; . The right child of the root repre- 
sents the condition a Cil < v. An implementation of syntax trees appears in 

Section 2.8(a). 

The other common intermediate representation, shown in Fig. 2.4(b), is a 

tokens 
c- 
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sequence of "three-address" instructions; a more complete example appears in 

Fig. 2.2. This form of intermediate code takes its name from instructions of 

the form x = y op z, where op is a binary operator, y and z the are addresses 

for the operands, and x is the address for the result of the operation. A three- 

address instruction carries out at most one operation, typically a computation, 

a comparison, or a branch. 

In Appendix A, we put the techniques in this chapter together to build a 

compiler front end in Java. The front end translates statements into assembly- 

level instructions. 

2.2 Syntax Definition 

In this section, we introduce a notation - the "context-free grammar," or 

"grammar" for short - that is used to specify the syntax of a language. Gram- 

mars will be used throughout this book to organize compiler front ends. 

A grammar naturally describes the hierarchical structure of most program- 

ming language constructs. For example, an if-else statement in Java can have 

the form 

if ( expression ) statement else statement 

That is, an if-else statement is the concatenation of the keyword if, an open- 

ing parenthesis, an expression, a closing parenthesis, a statement, the keyword 

else, and another statement. Using the variable expr to denote an expres- 

sion and the variable stmt to denote a statement, this structuring rule can be 

expressed as 

stmt -+ if ( expr ) stmt else stmt 

in which the arrow may be read as "can have the form." Such a rule is called a 

production. In a production, lexical elements like the keyword if and the paren- 

theses are called terminals. Variables like expr and stmt represent sequences of 

terminals and are called nonterminals. 

2.2.1 Definition of Grammars 

A context-free grammar has four components: 

1. A set of terminal symbols, sometimes referred to as "tokens." The termi- 

nals are the elementary symbols of the language defined by the grammar. 

2. A set of nonterminals, sometimes called "syntactic variables." Each non- 
terminal represents a set of strings of terminals, in a manner we shall 
describe. 

3. A set of productions, where each production consists of a nonterminal, 
called the head or left side of the production, an arrow, and a sequence of 
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Tokens Versus Terminals 

In a compiler, the lexical analyzer reads the characters of the source pro- 

gram, groups them into lexically meaningful units called lexemes, and pro- 

duces as output tokens representing these lexemes. A token consists of two 

components, a token name and an attribute value. The token names are 

abstract symbols that are used by the parser for syntax analysis. Often, 

we shall call these token names terminals, since they appear as terminal 

symbols in the grammar for a programming language. The attribute value, 

if present, is a pointer to the symbol table that contains additional infor- 
mation about the token. This additional information is not part of the 

grammar, so in our discussion of syntax analysis, often we refer to tokens 

and terminals synonymously. 

terminals and/or nonterminals, called the body or right side of the produc- 

tion. The intuitive intent of a production is to specify one of the written 

forms of a construct; if the head nonterminal represents a construct, then 

the body represents a written form of the construct. 

4. A designation of one of the nonterminals as the start symbol. 

We specify grammars by listing their productions, with the productions 

for the start symbol listed first. We assume that digits, signs such as < and 

<=, and boldface strings such as while are terminals. An italicized name is a 

nonterminal, and any nonitalicized name or symbol may be assumed to be a 

terminal.' For notational convenience, productions with the same nonterminal 

as the head can have their bodies grouped, with the alternative bodies separated 

by the symbol 1 ,  which we read as "or." 

Example 2.1 : Several examples in this chapter use expressions consisting of 

digits and plus and minus signs; e.g., strings such as 9-5+2, 3-1, or 7. Since a 

plus or minus sign must appear between two digits, we refer to such expressions 

as "lists of digits separated by plus or minus signs." The following grammar 
describes the syntax of these expressions. The productions are: 

list -+ list + digit 

list -+ list - digit 

list -+ digit 

digit -+ 0 1 1 1 2 ) 3 ) 4 ( 5 1 6 1 7 1 8 1 9  

l~ndividual italic letters will be used for additional purposes, especially when grammars 
are studied in detail in Chapter 4. For example, we shall use X, Y, and Z to talk about a 

symbol that is either a terminal or a nonterminal. However, any italicized name containing 
two or more characters will continue to represent a nonterminal. 
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The bodies of the three productions with nonterminal l ist  as head equiva- 

lently can be grouped: 

l i s t  + l i s t  + digit  1 l i s t  - digit  I digit  

According to our conventions, the terminals of the grammar are the symbols 

The nonterminals are the italicized names l ist  and digit, with l ist  being the start 

symbol because its productions are given first. 

We say a production is for a nonterminal if the nonterminal is the head of 

the production. A string of terminals is a sequence of zero or more terminals. 

The string of zero terminals, written as E ,  is called the e m p t y  string2 

2.2.2 Derivations 

A grammar derives strings by beginning with the start symbol and repeatedly 

replacing a nonterminal by the body of a production for that nonterminal. The 

terminal strings that can be derived from the start symbol form the language 

defined by the grammar. 

Example 2.2 : The language defined by the grammar of Example 2.1 consists 

of lists of digits separated by plus and minus signs. The ten productions for the 

nonterminal digit allow it to stand for any of the terminals 0 ,1 , .  . . ,9. From 

production (2.3), a single digit by itself is a list. Productions (2.1) and (2.2) 

express the rule that any list followed by a plus or minus sign and then another 

digit makes up a new list. 

Productions (2.1) to (2.4) are all we need to define the desired language. 

For example, we can deduce that 9-5+2 is a l ist  as follows. 

a) 9 is a l ist  by production (2.3), since 9 is a digit. 

b) 9-5 is a l ist  by production (2.2), since 9 is a l ist  and 5 is a digit. 

c) 9-5+2 is a l ist  by production (2.1), since 9-5 is a l ist  and 2 is a digit. 

Example 2.3 : A somewhat different sort of list is the list of parameters in a 

function call. In Java, the parameters are enclosed within parentheses, as in 

the call max(x, y) of function max with parameters x and y. One nuance of such 
lists is that an empty list of parameters may be found between the terminals 
( and ). We may start to develop a grammar for such sequences with the 

productions: 

2~echnically, e can be a string of zero symbols from any alphabet (collection of symbols). 
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call + id ( optparams ) 

optparams -+ params I 6 

params -+ params , param I param 

Note that the second possible body for optpamms ("optional parameter list") 

is t, which stands for the empty string of symbols. That is, optparams can be 

replaced by the empty string, so a call can consist of a function name followed 
by the two-terminal string () . Notice that the productions for params are 

analogous to those for dist in Example 2.1, with comma in place of the arithmetic 

operator + or -, and param in place of digit. We have not shown the productions 

for param, since parameters are really arbitrary expressions. Shortly, we shall 

discuss the appropriate productions for the various language constructs, such 

as expressions, statements, and so on. 

Parsing is the problem of taking a string of terminals and figuring out how 

to derive it from the start symbol of the grammar, and if it cannot be derived 

from the start symbol of the grammar, then reporting syntax errors within the 

string. Parsing is one of the most fundamental problems in all of compiling; 

the main approaches to parsing are discussed in Chapter 4. In this chapter, for 

simplicity, we begin with source programs like 9-5+2 in which each character 

is a terminal; in general, a source program has multicharacter lexemes that are 

grouped by the lexical analyzer into tokens, whose first components are the 

terminals processed by the parser. 

2.2.3 Parse Trees 

A parse tree pictorially shows how the start symbol of a grammar derives a 

string in the language. If nonterminal A has a production A -+ XYZ,  then a 

parse tree may have an interior node labeled A with three children labeled X, 
Y, and Z,  from left to right: 

/ 1 \ 
X Y Z  

Formally, given a context-free grammar, a parse tree according to the gram- 

mar is a tree with the following properties: 

1. The root is labeled by the start symbol. 

2. Each leaf is labeled by a terminal or by e. 

3. Each interior node is labeled by a nonterminal. 

4. If A is the nonterminal labeling some interior node and XI ,  Xz, . . . , Xn are 

the labels of the children of that node from left to right, then there must 

be a production A -+ X1X2 . . Xn. Here, X1, X2, . . . , X, each stand 



CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR 

Tree Terminology 

Tree data structures figure prominently in compiling. 

A tree consists of one or more nodes. Nodes may have labels, which 

in this book typically will be grammar symbols. When we draw a 

tree, we often represent the nodes by these labels only. 

Exactly one node is the root. All nodes except the root have a unique 

parent; the root has no parent. When we draw trees, we place the 

parent of a node above that node and draw an edge between them. 

The root is then the highest (top) node. 

If node N is the parent of node M ,  then M is a child of N.  The 

children of one node are called siblings. They have an order, from 
the left, and when we draw trees, we order the childen of a given 

node in this manner. 

A node with no children is called a leaf. Other nodes - those with 

one or more children - are interior nodes. 

A descendant of a node N is either N itself, a child of N ,  a child of 

a child of N, and so on, for any number of levels. We say node N is 

an ancestor of node M if M is a descendant of N.  

for a symbol that is either a terminal or a nonterminal. As a special case, 

if A -+ c is a production, then a node labeled A may have a single child 

labeled E .  

Example 2.4: The derivation of 9-5+2 in Example 2.2 is illustrated by the 

tree in Fig. 2.5. Each node in the tree is labeled by a grammar symbol. An 

interior node and its children correspond to a production; the interior node 

corresponds to the head of the production, the children to the body. 

In Fig. 2.5, the root is labeled list, the start symbol of the grammar in 

Example 2.1. The children of the root are labeled, from left to right, list, +, 

and digit. Note that 

list -+ list + digit 

is a production in the grammar of Example 2.1. The left child of the root is 

similar to the root, with a child labeled - instead of +. The three nodes labeled 

digit each have one child that is labeled by a digit. 

From left to right, the leaves of a parse tree form the yield of the tree, which 

is the string generated or derived from the nonterminal at the root of the parse 
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list 

list -----' 1 ' d i g i t  

Figure 2.5: Parse tree for 9-5+2 according to the grammar in Example 2.1 

list 
/ 

I 
digit 

I 

tree. In Fig. 2.5, the yield is 9-5+2; for convenience, all the leaves are shown 

at the bottom level. Henceforth, we shall not necessarily line up the leaves in 

this way. Any tree imparts a natural left-to-right order to its leaves, based on 

the idea that if X and Y are two children with the same parent, and X is to 

the left of Y, then all descendants of X are to the left of descendants of Y. 
Another definition of the language generated by a grammar is as the set of 

strings that can be generated by some parse tree. The process of finding a parse 

tree for a given string of terminals is called parsing that string. 

\ 
digit 

2.2.4 Ambiguity 

We have to be careful in talking about the structure of a string according to a 

grammar. A grammar can have more than one parse tree generating a given 

string of terminals. Such a grammar is said to be ambiguous. To show that a 

grammar is ambiguous, all we need to do is find a terminal string that is the 

yield of more than one parse tree. Since a string with more than one parse tree 

usually has more than one meaning, we need to design unambiguous grammars 

for compiling applications, or to use ambiguous grammars with additional rules 

to resolve the ambiguities. 

Example 2.5 : Suppose we used a single nonterminal string and did not dis- 
tinguish between digits and lists, as in Example 2.1. We could have written the 

grammar 

string -+ string + string I s t k g  - string 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 / 9 

Merging the notion of digit and list into the nonterminal string makes superficial 

sense, because a single digit is a special case of a list. 
However, Fig. 2.6 shows that an expression like 9-5+2 has more than one 

parse tree with this grammar. The two trees for 9-5+2 correspond to the two 

ways of parenthesizing the expression: (9-5) +2 and 9- (5+2) . This second 
parenthesization gives the expression the unexpected value 2 rather than the 

customary value 6. The grammar of Example 2.1 does not permit this inter- 

pretation. 
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string 

/ I \  
string + string 

/ I \ I 
string - string 2 

I I 
9 5 

string - string 

I / I \  
9 string + string 

I  I 
5 2 

Figure 2.6: Two parse trees for 9-5+2 

2.2.5 Associativity of Operators 

By convention, 9+5+2 is equivalent to (9+5)+2 and 9-5-2 is equivalent to 

(9-5)-2. When an operand like 5 has operators to its left and right, con- 

ventions are needed for deciding which operator applies to that operand. We 

say that the operator + associates to the left, because an operand with plus signs 

on both sides of it belongs to the operator to its left. In most programming 

languages the four arithmetic operators, addition, subtraction, multiplication, 

and division are left-associative. 

Some common operators such as exponentiation are right-associative. As 

another example, the assignment operator = in C and its descendants is right- 

associative; that is, the expression a=b=c is treated in the same way as the 

expression a= (b=c) . 
Strings like a=b=c with a right-associative operator are generated by the 

following grammar: 

right + letter = right I letter 

letter -+ a I b I . 1 z 

The contrast between a parse tree for a left-associative operator like - and 

a parse tree for a right-associative operator like = is shown by Fig. 2.7. Note 

that the parse tree for 9-5-2 grows down towards the left, whereas the parse 

tree for a=b=c grows down towards the right. 

2.2.6 Precedence of Operators 

Consider the expression 9+5*2. There are two possible interpretations of this 

expression: (9+5) *2 or 9+ (5*2). The associativity rules for + and * apply to 

occurrences of the same operator, so they do not resolve this ambiguity. Rules 

defining the relative precedence of operators are needed when more than one 

kind of operator is present. 
We say that * has higher precedence than + if * takes its operands before + 

does. In ordinary arithmetic, multiplication and division have higher precedence 

than addition and subtraction. Therefore, 5 is taken by * in both 9+5*2 and 

9*5+2; i.e., the expressions are equivalent to 9+ (5*2) and (9*5) +2, respectively. 
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list - digit 

/ I \ I 
list - digit 2 

I I 
digit 5 

I 
9 

letter = right 

I / I \ 
a letter = right 

I I 
b letter 

Figure 2.7: Parse trees for left- and right-associative grammars 

Example 2.6 : A grammar for arithmetic expressions can be constructed from 

a table showing the associativity and precedence of operators. We start with 

the four common arithmetic operators and a precedence table, showing the 

operators in order of increasing precedence. Operators on the same line have 

the same associativity and precedence: 

left-associative: + - 
left-associative: * / 

We create two nonterminals expr and t e r m  for the two levels of precedence, 

and an extra nonterminal factor for generating basic units in expressions. The 

basic units in expressions are presently digits and parenthesized expressions. 

factor + digit I ( expr ) 

Now consider the binary operators, * and /, that have the highest prece- 

dence. Since these operators associate to the left, the productions are similar 

to those for lists that associate to the left. 

t e r m  + t e r m  * factor 

I t e r m  / factor 

I factor 

Similarly, expr generates lists of terms separated by the additive operators. 

expr + expr + t e r m  

I expr - t e r m  

I t e r m  

The resulting grammar is therefore 

expr -+ expr + t e r m  ( expr - t e r m  ( t e r m  

t e r m  -+ t e r m  * factor I t e r m  / factor ( factor 

factor --+ digit 1 ( expr ) 
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Generalizing the Expression Grammar of Example 2.6 

We can think of a factor as an expression that cannot be "torn apart" by 

any operator. By "torn apart," we mean that placing an operator next 

to any factor, on either side, does not cause any piece of the factor, other 

than the whole, to become an operand of that operator. If the factor is a 

parenthesized expression, the parentheses protect against such "tearing," 

while if the factor is a single operand, it cannot be torn apart. 

A term (that is not also a factor) is an expression that can be torn 

apart by operators of the highest precedence: * and /, but not by the 
lower-precedence operators. An expression (that is not a term or factor) 

can be torn apart by any operator. 

We can generalize this idea to any number n of precedence levels. We 

need n+ 1 nonterminals. The first, like factor in Example 2.6, can never be 

torn apart. Typically, the production bodies for this nonterminal are only 

single operands and parenthesized expressions. Then, for each precedence 

level, there is one nonterminal representing expressions that can be torn 

apart only by operators at that level or higher. Typically, the productions 

for this nonterminal have bodies representing uses of the operators at that 

level, plus one body that is just the nonterminal for the next higher level. 

With this grammar, an expression is a list of terms separated by either + or 

- signs, and a term is a list of factors separated by * or / signs. Notice that 

any parenthesized expression is a factor, so with parentheses we can develop 
expressions that have arbitrarily deep nesting (and arbitrarily deep trees). 

Example 2.7: Keywords allow us to recognize statements, since most state- 

ment begin with a keyword or a special character. Exceptions to this rule 

include assignments and procedure calls. The statements defined by the (am- 

biguous) grammar in Fig. 2.8 are legal in Java. 

In the first production for stmt, the terminal id represents any identifier. 

The productions for expression are not shown. The assignment statements 

specified by the first production are legal in Java, although Java treats = as an 

assignment operator that can appear within an expression. For example, Java 

allows a = b = c, which this grammar does not. 
The nonterminal stmts generates a possibly empty list of statements. The 

second production for stmts generates the empty list E .  The first production 

generates a possibly empty list of statements followed by a statement. 

The placement of semicolons is subtle; they appear at the end of every body 

that does not end in stmt. This approach prevents the build-up of semicolons 
after statements such as if- and while-, which end with nested substatements. 

When the nested substatement is an assignment or a do-while, a semicolon will 
be generated as part of the substatement. 
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stmt -+ id = expression ; 

( if ( expression ) stmt 

I if ( expression ) stmt else stmt 

I while ( expression ) stmt 

I do stmt while ( expression ) ; 

I C stmts 3 

stmts -+ stmts stmt 

I t: 

Figure 2.8: A grammar for a subset of Java statements 

2.2.7 Exercises for Section 2.2 

Exercise 2.2 .I : Consider the context-free grammar 

S -+ S S +  I S S *  1 a 

a) Show how the string aa+a* can be generated by this grammar. 

b) Construct a parse tree for this string. 

c) What language does this grammar generate? Justify your answer. 

Exercise 2.2.2 : What language is generated by the following grammars? In 

each case justify your answer. 

Exercise 2.2.3 : Which of the grammars in Exercise 2.2.2 are ambiguous? 

Exercise 2.2.4 : Construct unambiguous context-free grammars for each of 

the following languages. In each case show that your grammar is correct. 

a) Arithmetic expressions in postfix notation. 

b) Left-associative lists of identifiers separated by commas. 

c) Right-associative lists of identifiers separated by commas. 

d) Arithmetic expressions of integers and identifiers with the four binary 

operators +, -, *, /. 
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! e) Add unary plus and minus to the arithmetic operators of (d). 

Exercise 2.2.5 : 

a) Show that all binary strings generated by the following grammar have 

values divisible by 3. Hint. Use induction on the number of nodes in a 
parse tree. 

num += I1 I 1001 I numO I numnum 

b) Does the grammar generate all binary strings with values divisible by 3? 

Exercise 2.2.6 : Construct a context-free grammar for roman numerals. 

2.3 Syntax-Directed Translation 

Syntax-directed translation is done by attaching rules or program fragments to 

productions in a grammar. For example, consider an expression expr generated 

by the production 

expr += expr, + term 

Here, expr is the sum of the two subexpressions expr, and term. (The subscript 

in expr, is used only to distinguish the instance of expr in the production body 

from the head of the production). We can translate expr by exploiting its 

structure, as in the following pseudo-code: 

translate expr, ; 
translate term; 
handle +; 

Using a variant of this pseudocode, we shall build a syntax tree for expr in 

Section 2.8 by building syntax trees for exprl and term and then handling + by 

constructing a node for it. For convenience, the example in this section is the 

translation of infix expressions into postfix notation. 

This section introduces two concepts related to syntax-directed translation: 

Attributes. An attribute is any quantity associated with a programming 
construct. Examples of attributes are data types of expressions, the num- 

ber of instructions in the generated code, or the location of the first in- 

struction in the generated code for a construct, among many other pos- 

sibilities. Since we use grammar symbols (nonterminals and terminals) 
to represent programming constructs, we extend the notion of attributes 

from constructs to the symbols that represent them. 
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(Syntax-directed) translation schemes. A translation scheme is a notation 

for attaching program fragments to the productions of a grammar. The 

program fragments are executed when the production is used during syn- 

tax analysis. The combined result of all these fragment executions, in 

the order induced by the syntax analysis, produces the translation of the 

program to which this analysis/synthesis process is applied. 

Syntax-directed translations will be used throughout this chapter to trans- 

late infix expressions into postfix notation, to evaluate expressions, and to build 

syntax trees for programming constructs. A more detailed discussion of syntax- 

directed formalisms appears in Chapter 5 .  

2.3.1 Postfix Notation 

The examples in this section deal with translation into postfix notation. The 

postfix notation for an expression E can be defined inductively as follows: 

1. If E is a variable or constant, then the postfix notation for E is E itself. 

2. If E is an expression of the form El o p  E2, where o p  is any binary 

operator, then the postfix notation for E is Ei Eh op, where Ei and Eh 
are the postfix notations for El and E2, respectively. 

3. If E is a parenthesized expression of the form (El),  then the postfix 

notation for E is the same as the postfix notation for El .  

Example 2.8 : The postfix notation for (9-5)+2 is 95-2+. That is, the trans- 

lations of 9, 5, and 2 are the constants themselves, by rule (1). Then, the 

translation of 9-5 is 95- by rule (2). The translation of (9-5) is the same 

by rule (3). Having translated the parenthesized subexpression, we may apply 

rule (2) to the entire expression, with (9-5) in the role of El and 2 in the role 

of E2, to get the result 95-2+. 
As another example, the postfix notation for 9- (5+2) is 952+-. That is, 5+2 

is first translated into 52+, and this expression becomes the second argument 

of the minus sign. 

No parentheses are needed in postfix notation, because the position and 

arity (number of arguments) of the operators permits only one decoding of a 

postfix expression. The "trick" is to repeatedly scan the postfix string from the 

left, until you find an operator. Then, look to the left for the proper number 

of operands, and group this operator with its operands. Evaluate the operator 

on the operands, and replace them by the result. Then repeat the process, 
continuing to the right and searching for another operator. 

Example 2.9 : Consider the postfix expression 952+-3*. Scanning from the 

left, we first encounter the plus sign. Looking to its left we find operands 5 and 

2. Their sum, 7, replaces 52+, and we have the string 97-3*. Now, the leftmost 
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operator is the minus sign, and its operands are 9 and 7. Replacing these by 

the result of the subtraction leaves 23*. Last, the multiplication sign applies to 

2 and 3, giving the result 6. 

2.3.2 Synthesized Attributes 

The idea of associating quantities with programming constructs-for example, 

values and types with expressions-can be expressed in terms of grammars. We 

associate attributes with nonterminals and terminals. Then, we attach rules to 

the productions of the grammar; these rules describe how the attributes are 

computed at those nodes of the parse tree where the production in question is 

used to relate a node to its children. 

A syntax-directed definition associates 

1. With each grammar symbol, a set of attributes, and 

2. With each production, a set of semantic rules for computing the values of 

the attributes associated with the symbols appearing in the production. 

Attributes can be evaluated as follows. For a given input string x, construct 

a parse tree for x. Then, apply the semantic rules to evaluate attributes at each 

node in the parse tree, as follows. 

Suppose a node N in a parse tree is labeled by the grammar symbol X .  We 

write X.a to denote the value of attribute a of X at that node. A parse tree 

showing the attribute values at each node is called an annotated parse tree. For 

example, Fig. 2.9 shows an annotated parse tree for 9-5+2 with an attribute 

t associated with the nonterminals expr and term. The value 95-2+ of the 

attribute at the root is the postfix notation for 9-5+2. We shall see shortly how 

these expressions are computed. 

Figure 2.9: Attribute values at nodes in a parse tree 

An attribute is said to be synthesized if its value at a parse-tree node N is de- 

termined from attribute values at the children of N and at N itself. Synthesized 
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attributes have the desirable property that they can be evaluated during a sin- 

gle bottom-up traversal of a parse tree. In Section 5.1.1 we shall discuss another 

important kind of attribute: the "inherited" attribute. Informally, inherited at- 

tributes have their value at a parse-tree node determined from attribute values 

at the node itself, its parent, and its siblings in the parse tree. 

Example 2.10 : The annotated parse tree in Fig. 2.9 is based on the syntax- 

directed definition in Fig. 2.10 for translating expressions consisting of digits 

separated by plus or minus signs into postfix notation. Each nonterminal has a 

string-valued attribute t that represents the postfix notation for the expression 

generated by that nonterminal in a parse tree. The symbol 1 1  in the semantic 

rule is the operator for string concatenation. 

expr -+ exprl + term 

expr -+ exprl - term 

expr -+ term 

term -+ 0 

term -+ I 

. . . 

term -+ 9 

expr.t = exprl.t 1 1  term.t 1 1  '+I 

expr.t = exprl.t ) I  term.t 1 1  I-' 
expr.t = term.t 

term.t = '0' 

term.t = 'I' 

. . . 

term.t = '9' 

Figure 2.10: Syntax-directed definition for infix to postfix translation 

The postfix form of a digit is the digit itself; e.g., the semantic rule associ- 

ated with the production term -+ 9 defines term.t to be 9 itself whenever this 

production is used at a node in a parse tree. The other digits are translated 

similarly. As another example, when the production expr -+ term is applied, 

the value of term.t becomes the value of expr.t. 

The production expr -+ exprl + term derives an expression containing a plus 

operator.3 The left operand of the plus operator is given by expr, and the right 

operand by term. The semantic rule 

associated with this production constructs the value of attribute expr.t by con- 

catenating the postfix forms expr, .t and term.t of the left and right operands, 

respectively, and then appending the plus sign. This rule is a formalization of 
the definition of "postfix expression." 

3 ~ n  this and many other rules, the same nonterminal ( e x p r ,  here) appears several times. 
The purpose of the subscript 1 in expr l  is to distinguish the two occurrences of e x p r  in the 
production; the "1" is not part of the nonterminal. See the box on "Convention Distinguishing 
Uses of a Nonterminal" for more details. 
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Convention Distinguishing Uses of a Nonterminal 

In rules, we ~ftem have a need to distinguish among several uses of the 

same nonterminal in the head and/or body of a production; e.g., see Ex- 

ample 2.10. The reason is that in the parse tree, different nodes labeled 

by the same nonterminal usually have different values for their transla- 

tions. We shall adopt the following convention: the nonterminal appears 

unsubscripted in the head and with distinct subscripts in the body. These 

are all occurrences of the same nonterminal, and the subscript is not part 

of its name. However, the reader should be alert to the difference be- 

tween examples of specific translations, where this convention is used, and 

generic productions like A -+ X1X2,. . . , X,, where the subscripted X's 

represent an arbitrary list of grammar symbols, and are not instances of 

one particular nonterminal called X .  

2.3.3 Simple Syntax-Directed Definitions 

The syntax-directed definition in Example 2.10 has the following important 

property: the string representing the translation of the nonterminal at the head 

of each production is the concatenation of the translations of the nonterminals 

in the production body, in the same order as in the production, with some 

optional additional strings interleaved. A syntax-directed definition with this 

property is termed simple. 

Example 2.1 1 : Consider the first production and semantic rule from Fig. 2.10: 

PRODUCTION SEMANTIC RULE 

expr -+ exprl + term expr.t = expr, .t I I term.t I I '+' 
(2.5) 

Here the translation expr.t is the concatenation of the translations of expr, and 

term, followed by the symbol +. Notice that exprl and term appear in the 

same order in both the production body and the semantic rule. There are no 

additional symbols before or between their translations. In this example, the 

only extra symbol occurs at the end. 

When translation schemes are discussed, we shall see that a simple syntax- 

directed definition can be implemented by printing only the additional strings, 

in the order they appear in the definition. 

2.3.4 Tree Traversals 

Tree traversals will be used for describing attribute evaluation and for specifying 

the execution of code fragments in a translation scheme. A traversal of a tree 

starts at the root and visits each node of the tree in some order. 
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A depth-first traversal starts at the root and recursively visits the children 

of each node in any order, not necessarily from left to right. It is called "depth- 

first" because it visits an unvisited child of a node whenever it can, so it visits 

nodes as far away from the root (as "deep") as quickly as it can. 
The procedure visit(N) in Fig. 2.11 is a depth first traversal that visits the 

children of a node in left-to-right order, as shown in Fig. 2.12. In this traversal, 

we have included the action of evaluating translations at each node, just before 

we finish with the node (that is, after translations at the children have surely 

been computed). In general, the actions associated with a traversal can be 

whatever we choose, or nothing at all. 

procedure visit(node N) { 
for ( each child C of N, from left to right ) { 

visit (C) ; 

1 
evaluate semantic rules at node N;  

Figure 2.11: A depth-first traversal of a tree 

Figure 2.12: Example of a depth-first traversal of a tree 

A syntax-directed definition does not impose any specific order for the eval- 

uation of attributes on a parse tree; any evaluation order that computes an 

attribute a after all the other attributes that a depends on is acceptable. Syn- 

thesized attributes can be evaluated during any bottom-up traversal, that is, a 

traversal that evaluates attributes at a node after having evaluated attributes 

at its children. In general, with both synthesized and inherited attributes, the 

matter of evaluation order is quite complex; see Section 5.2. 

2.3.5 Translation Schemes 

The syntax-directed definition in Fig. 2.10 builds up a translation by attaching 
strings as attributes to the nodes in the parse tree. We now consider an alter- 

native approach that does not need to manipulate strings; it produces the same 

translation increment ally, by executing program fragments. 
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Preorder and Postorder Traversals 

Preorder and postorder traversals are two important special cases of depth- 

first traversals in which we visit the children of each node from left to right. 

Often, we traverse a tree to perform some particular action at each 
node. If the action is done when we first visit a node, then we may refer 

to the traversal as a preorder traversal. Similarly, if the action is done 
just before we leave a node for the last time, then we say it is a postorder 

traversal of the tree. The procedure visit(N) in Fig. 2.11 is an example of 

a postorder traversal. 

Preorder and postorder traversals define corresponding orderings on 

nodes, based on when the action at a node would be performed. The 
preorder of a (sub)tree rooted at node N consists of N, followed by the 

preorders of the subtrees of each of its children, if any, from the left. The 

postorder of a (sub)tree rooted at N consists of the postorders of each of 

the subtrees for the children of N, if any, from the left, followed by N 

itself. 

A syntax-directed translation scheme is a notation for specifying a transla- 

tion by attaching program fragments to productions in a grammar. A transla- 

tion scheme is like a syntax-directed definition, except that the order of evalu- 

ation of the semantic rules is explicitly specified. 

Program fragments embedded within production bodies are called semantic  

actions. The position at which an action is to be executed is shown by enclosing 

it between curly braces and writing it within the production body, as in 

rest -+ + t e r m  {print('+')) restl 

We shall see such rules when we consider an alternative form of grammar for 

expressions, where the nonterminal rest represents "everything but the first 

term of an expression." This form of grammar is discussed in Section 2.4.5. 

Again, the subscript in restl distinguishes this instance of nonterminal rest in 

the production body from the instance of rest at the head of the production. 

When drawing a parse tree for a translation scheme, we indicate an action 

by constructing an extra child for it, connected by a dashed line to the node 

that corresponds to the head of the production. For example, the portion of 

the parse tree for the above production and action is shown in Fig. 2.13. The 

node for a semantic action has no children, so the action is performed when 

that node is first seen. 

Example 2.12: The parse tree in Fig. 2.14 has print statements at extra 

leaves, which are attached by dashed lines to interior nodes of the parse tree. 
The translation scheme appears in Fig. 2.15. The underlying grammar gen- 

erates expressions consisting of digits separated by plus and minus signs. The 
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Figure 2.13: An extra leaf is constructed for a semantic action 

actions embedded in the production bodies translate such expressions into post- 

fix notation, provided we perform a left-to-right depth-first traversal of the tree 

and execute each print statement when we visit its leaf. 

xprK. \ \ . 
\ 

+ term iprint ('+I)) 

A e x 7 - -  - - - -  -- . / \ \ \ \  

expr - term {print (I-') 2 {print ('2')) 

I / \ \ \ \  

term 5 {print ('5')) 

/ \ \ \ \  

9 {print ('9')) 

Figure 2.14: Actions translating 9-5+2 into 95-2+ 

expr -+ expr, + term {print('+')) 

expr -+ expr, - term {print('-')) 

e x  + term 

term + 0 {print ('0')) 

term + 1 {print (' 1')) 
. . .  

term -+ 9 {print ('9')) 

Figure 2.15: Actions for translating into postfix notation 

The root of Fig. 2.14 represents the first production in Fig. 2.15. In a 
postorder traversal, we first perform all the actions in the leftmost subtree of 

the root, for the left operand, also labeled expr like the root. We then visit the 
leaf + at which there is no action. We next perform the actions in the subtree 

for the right operand term and, finally, the semantic action {print('+') ) at the 

extra node. 

Since the productions for term have only a digit on the right side, that digit 

is printed by the actions for the productions. No output is necessary for the 
production expr + term, and only the operator needs to be printed in the 
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action for each of the first two productions. When executed during a postorder 

traversal of the parse tree, the actions in Fig. 2.14 print 95-2+. 

Note that although the schemes in Fig. 2.10 and Fig. 2.15 produce the same 

translation, they construct it differently; Fig. 2.10 attaches strings as attributes 

to the nodes in the parse tree, while the scheme in Fig. 2.15 prints the translation 

incrementally, through semantic actions. 

The semantic actions in the parse tree in Fig. 2.14 translate the infix ex- 

pression 9-5+2 into 95-2+ by printing each character in 9-5+2 exactly once, 

without using any storage for the translation of subexpressions. When the out- 

put is created incrementally in this fashion, the order in which the characters 

are printed is significant. 

The implementation of a translation scheme must ensure that semantic ac- 

tions are performed in the order they would appear during a postorder traversal 

of a parse tree. The implementation need not actually construct a parse tree 

(often it does not), as long as it ensures that the semantic actions are per- 

formed as if we constructed a parse tree and then executed the actions during 

a postorder traversal. 

2.3.6 Exercises for Section 2.3 

Exercise 2.3.1 : Construct a syntax-directed translation scheme that trans- 

lates arithmetic expressions from infix notation into prefix notation in which an 

operator appears before its operands; e.g., -xy is the prefix notation for x - y. 

Give annotated parse trees for the inputs 9-5+2 and 9-5*2. 

Exercise 2.3.2 : Construct a syntax-directed translation scheme that trans- 

lates arithmetic expressions from postfix notation into infix notation. Give 

annotated parse trees for the inputs 95-2* and 952*-. 

Exercise 2.3.3 : Construct a syntax-directed translation scheme that trans- 

lates integers into roman numerals. 

Exercise 2.3.4 : Construct a syntax-directed translation scheme that trans- 

lates roman numerals into integers. 

Exercise 2.3.5 : Construct a syntax-directed translation scheme that trans- 

lates postfix arithmetic expressions into equivalent infix arithmetic expressions. 

2.4 Parsing 

Parsing is the process of determining how a string of terminals can be generated 

by a grammar. In discussing this problem, it is helpful to think of a parse tree 
being constructed, even though a compiler may not construct one, in practice. 

However, a parser must be capable of constructing the tree in principle, or else 

the translation cannot be guaranteed correct. 
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This section introduces a parsing method called "recursive descent," which 

can be used both to parse and to implement syntax-directed translators. A com- 

plete Java program, implementing the translation scheme of Fig. 2.15, appears 

in the next section. A viable alternative is to use a software tool to generate 

a translator directly from a translation scheme. Section 4.9 describes such a 

tool - Yacc; it can implement the translation scheme of Fig. 2.15 without 

modification. 

For any context-free grammar there is a parser that takes 


