

Second Edition

Alfred V. Aho

Columbia University

Monica S. Lam

Stanford University

Ravi Sethi

Ava ya

Jeffrey D. Ullman

Stanford University

Boston San Francisco NewYork

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Publisher

Executive Editor
Acquisitions Editor
Project Editor
Associate Managing Editor

Cover Designer
Digital Assets Manager

Media Producer
Senior Marketing Manager

Marketing Assistant

Senior Author Support1

Technology Specialist
Senior Manufacturing Buyer

Cover Image

Greg Tobin

Michael Hirsch
Matt Goldstein
Katherine Harutunian
Jeffrey Holcomb
Joyce Cosentino Wells

Marianne Groth

Bethany Tidd
Michelle Brown

Sarah Milmore

Joe Vetere

Carol Melville

Scott Ullman of Strange Tonic Productions

(www. strangetonic.com)

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations

have been printed in initial caps or all caps.

This interior of this book was composed in L*T~X.

Library of Congress Cataloging-in-Publication Data

Compilers : principles, techniques, and tools 1 Alfred V. Aho ... [et al.]. -- 2nd ed.

p. cm.
Rev. ed. of: Compilers, principles, techniques, and tools / Alfred V. Aho, Ravi

Sethi, Jeffrey D. Ullman. 1986.

ISBN 0-32 1-4868 1 - 1 (alk. paper)
1. Compilers (Computer programs) I. Aho, Alfied V. 11. Aho, Alfred V.

Compilers, principles, techniques, and tools.

QA76.76.C65A37 2007
005.4'53--dc22

2006024333

Copyright O 2007 Pearson Education, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the
United States of America. For information on obtaining permission for use of
material in this work, please submit a written request to Pearson Education,
Inc., Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston,
MA 021 16, fax your request to 61 7-848-7047, or e-mail at
http://www .pearsoned.com/legal/permissions.htm.

Preface

In the time since the 1986 edition of this book, the world of compiler design

has changed significantly. Programming languages have evolved to present new

compilation problems. Computer architectures offer a variety of resources of

which the compiler designer must take advantage. Perhaps most interestingly,

the venerable technology of code optimization has found use outside compilers.

It is now used in tools that find bugs in software, and most importantly, find

security holes in existing code. And much of the "front-end" technology -

grammars, regular expressions, parsers, and syntax-directed translators - are

still in wide use.

Thus, our philosophy from previous versions of the book has not changed.

We recognize that few readers will build, or even maintain, a compiler for a

major programming language. Yet the models, theory, and algorithms associ-

ated with a compiler can be applied to a wide range of problems in software

design and software development. We therefore emphasize problems that are

most commonly encountered in designing a language processor, regardless of

the source language or target machine.

Use of the Book

It takes at least two quarters or even two semesters to cover all or most of the

material in this book. It is common to cover the first half in an undergraduate

course and the second half of the book - stressing code optimization - in

a second course at the graduate or mezzanine level. Here is an outline of the

chapters:

Chapter 1 contains motivational material and also presents some background

issues in computer architecture and programming-language principles.

Chapter 2 develops a miniature compiler and introduces many of the impor-

tant concepts, which are then developed in later chapters. The compiler itself

appears in the appendix.

Chapter 3 covers lexical analysis, regular expressions, finite-state machines, and

scanner-generator tools. This material is fundamental to text-processing of all

sorts.

PREFACE

Chapter 4 covers the major parsing methods, top-down (recursive-descent, LL)

and bottom-up (LR and its variants).

Chapter 5 introduces the principal ideas in syntax-directed definitions and

syntax-directed translations.

Chapter 6 takes the theory of Chapter 5 and shows how to use it to generate

intermediate code for a typical programming language.

Chapter 7 covers run-time environments, especially management of the run-time

stack and garbage collection.

Chapter 8 is on object-code generation. It covers construction of basic blocks,

generation of code from expressions and basic blocks, and register-allocation

techniques.

Chapter 9 introduces the technology of code optimization, including flow graphs,

dat a-flow frameworks, and iterative algorithms for solving these frameworks.

Chapter 10 covers instruction-level optimization. The emphasis is on the ex-

traction of parallelism from small sequences of instructions and scheduling them

on single processors that can do more than one thing at once.

Chapter 11 talks about larger-scale parallelism detection and exploit ation. Here,

the emphasis is on numeric codes that have many tight loops that range over

multidimensional arrays.

Chapter 12 is on interprocedural analysis. It covers pointer analysis, aliasing,

and data-flow analysis that takes into account the sequence of procedure calls

that reach a given point in the code.

Courses from material in this book have been taught at Columbia, Harvard,

and Stanford. At Columbia, a seniorlfirst-year graduate course on program-

ming languages and translators has been regularly offered using material from

the first eight chapters. A highlight of this course is a semester-long project

in which students work in small teams to create and implement a little lan-

guage of their own design. The student-created languages have covered diverse

application domains including quantum computation, music synthesis, com-

puter graphics, gaming, matrix operations and many other areas. Students use

compiler-component generators such as ANTLR, Lex, and Yacc and the syntax-

directed translation techniques discussed in chapters two and five to build their

compilers. A follow-on graduate course has focused on material in Chapters 9

through 12, emphasizing code generation and optimization for contemporary

machines including network processors and multiprocessor architectures.

At Stanford, a one-quarter introductory course covers roughly the mate-

rial in Chapters 1 through 8, although there is an introduction to global code

optimization from Chapter 9. The second compiler course covers Chapters 9

through 12, plus the more advanced material on garbage collection from Chap-

ter 7. Students use a locally developed, Java-based system called Joeq for

implementing dat a-flow analysis algorithms .

PREFACE vii

Prerequisites

The reader should possess some "computer-science sophistication," including

a t least a second course on programming, and courses in data structures and

discrete mathematics. Knowledge of several different programming languages

is useful.

Exercises

The book contains extensive exercises, with some for almost every section. We

indicate harder exercises or parts of exercises with an exclamation point. The

hardest exercises have a double exclamation point.

Gradiance On-Line Homeworks

A feature of the new edition is that there is an accompanying set of on-line

homeworks using a technology developed by Gradiance Corp. Instructors may

assign these homeworks to their class, or students not enrolled in a class may

enroll in an "omnibus class" that allows them to do the homeworks as a tutorial

(without an instructor-created class). Gradiance questions look like ordinary

questions, but your solutions are sampled. If you make an incorrect choice you

are given specific advice or feedback to help you correct your solution. If your

instructor permits, you are allowed to try again, until you get a perfect score.

A subscription to the Gradiance service is offered with all new copies of this

text sold in North America. For more information, visit the Addison-Wesley

web site www . aw . com/gradiance or send email to comput ing@aw . corn.

Support on the World Wide Web

The book's home page is

Here, you will find errata as we learn of them, and backup materials. We hope

to make available the notes for each offering of compiler-related courses as we

teach them, including homeworks, solutions, and exams. We also plan to post

descriptions of important compilers written by their implementers.

Acknowledgements

Cover art is by S. D. Ullman of Strange Tonic Productions.

Jon Bentley gave us extensive comments on a number of chapters of an

earlier draft of this book. Helpful comments and errata were received from:

viii PREFACE

Domenico Bianculli, Peter Bosch, Marcio Buss, Marc Eaddy, Stephen Edwards,

Vibhav Garg, Kim Hazelwood, Gaurav Kc, Wei Li, Mike Smith, Art Stamness,

Krysta Svore, Olivier Tardieu, and Jia Zeng. The help of all these people is

gratefully acknowledged. Remaining errors are ours, of course.

In addition, Monica would like to thank her colleagues on the SUIF com-

piler team for an 18-year lesson on compiling: Gerald Aigner, Dzintars Avots,

Saman Amarasinghe, Jennifer Anderson, Michael Carbin, Gerald Cheong, Amer

Diwan, Robert French, Anwar Ghuloum, Mary Hall, John Hennessy, David

Heine, Shih- Wei Liao, Amy Lim, Benjamin Livshits, Michael Martin, Dror

Maydan, Todd Mowry, Brian Murphy, Jeffrey Oplinger, Karen Pieper, Mar-

tin Rinard, Olatunji Ruwase, Constantine Sapuntzakis, Patrick Sathyanathan,

Michael Smith, Steven Tjiang, Chau- Wen Tseng, Christopher Unkel, John

Whaley, Robert Wilson, Christopher Wilson, and Michael Wolf.

A. V. A., Chatham NJ

M. S. L., Menlo Park CA

R. S., Far Hills NJ

J . D. U., Stanford CA

June, 2006

Table of Contents

1 Introduction 1

. 1.1 Language Processors 1
1.1.1 Exercises for Section 1.1 3

1.2 The Structure of a Compiler . 4

1.2.1 Lexical Analysis . 5

1.2.2 Syntax Analysis . 8

1.2.3 Semantic Analysis . 8

. 1.2.4 Intermediate Code Generation 9

. 1.2.5 Code Optimization 10

. 1.2.6 Code Generation 10

. 1.2.7 Symbol-Table Management 11

. 1.2.8 The Grouping of Phases into Passes 11

. 1.2.9 Compiler-Construction Tools 12

. 1.3 The Evolution of Programming Languages 12

1.3.1 The Move to Higher-level Languages 13

1.3.2 Impacts on Compilers . 14

1.3.3 Exercises for Section 1.3 14

1.4 The Science of Building a Compiler 15

1.4.1 Modeling in Compiler Design and Implementation 15

1.4.2 The Science of Code Optimization 15

1.5 Applications of Compiler Technology 17

1.5.1 Implement at ion of High-Level Programming Languages . 17

1.5.2 Optimizations for Computer Architectures 19

1.5.3 Design of New Computer Architectures 21

1.5.4 Program Translations . 22

1.5.5 Software Productivity Tools 23

1.6 Programming Language Basics 25

1.6.1 The Static/Dynamic Distinction 25

1.6.2 Environments and States 26

1.6.3 Static Scope and Block Structure 28

1.6.4 Explicit Access Control 31

1.6.5 Dynamic Scope . 31

1.6.6 Parameter Passing Mechanisms 33

TABLE OF CONTENTS

1.6.7 Aliasing . 35

1.6.8 Exercises for Section 1.6 35

1.7 Summary of Chapter 1 . 36

. 1.8 References for Chapter 1 38

2 A Simple Synt ax-Direct ed Translator 39
. 2.1 Introduction 40

. 2.2 Syntax Definition 42
. 2.2.1 Definition of Grammars 42

. 2.2.2 Derivations 44

2.2.3 Parse Trees . 45
. 2.2.4 Ambiguity 47

2.2.5 Associativity of Operators 48

2.2.6 Precedence of Operators 48
. 2.2.7 Exercises for Section 2.2 51

. 2.3 Syntax-Directed Translation 52
. 2.3.1 Postfix Notation 53

. 2.3.2 Synthesized Attributes 54

. 2.3.3 Simple Syntax-Directed Definitions 56
. 2.3.4 Tree Traversals 56

. 2.3.5 Translation Schemes 57
. 2.3.6 Exercises for Section 2.3 60

. 2.4 Parsing 60
. 2.4.1 Top-Down Parsing 61
. 2.4.2 Predictive Parsing 64

. 2.4.3 When to Use 6-Productions 65
. 2.4.4 Designing a Predictive Parser 66

. 2.4.5 Left Recursion 67
. 2.4.6 Exercises for Section 2.4 68

. 2.5 A Translator for Simple Expressions 68
. 2.5.1 Abstract and Concrete Syntax 69

. 2.5.2 Adapting the Translation Scheme 70

. 2.5.3 Procedures for the Nonterminals 72
. 2.5.4 Simplifying the Translator 73

. 2.5.5 The Complete Program 74
. 2.6 Lexical Analysis 76

. 2.6.1 Removal of White Space and Comments 77
. 2.6.2 Reading Ahead 78

. 2.6.3 Constants 78
. 2.6.4 Recognizing Keywords and Identifiers 79

. 2.6.5 A Lexical Analyzer 81
. 2.6.6 Exercises for Section 2.6 84

. 2.7 Symbol Tables 85
. 2.7.1 Symbol Table Per Scope 86

. 2.7.2 The Use of Symbol Tables 89

TABLE OF CONTENTS xi

. 2.8 Intermediate Code Generation 91
. 2.8.1 Two Kinds of Intermediate Representations 91

. 2.8.2 Construction of Syntax Trees 92
. 2.8.3 Static Checking 97

. 2.8.4 Three-Address Code 99
. 2.8.5 Exercises for Section 2.8 105

. 2.9 Summary of Chapter 2 105

3 Lexical Analysis 109

. 3.1 The Role of the Lexical Analyzer 109

. 3.1.1 Lexical Analysis Versus Parsing 110

. 3.1.2 Tokens, Patterns, and Lexemes 111

. 3.1.3 Attributes for Tokens 112

. 3.1.4 Lexical Errors 113

. 3.1.5 Exercises for Section 3.1 114

. 3.2 Input Buffering 115

. 3.2.1 Buffer Pairs 115

. 3.2.2 Sentinels 116

. 3.3 Specification of Tokens 116

. 3.3.1 Strings and Languages 117

. 3.3.2 Operations on Languages 119

. 3.3.3 Regular Expressions 120

. 3.3.4 Regular Definitions 123

3.3.5 Extensions of Regular Expressions 124

. 3.3.6 Exercises for Section 3.3 125

3.4 Recognition of Tokens . 128

3.4.1 Transition Diagrams . 130

3.4.2 Recognition of Reserved Words and Identifiers 132

3.4.3 Completion of the Running Example 133

3.4.4 Architecture of a Transition-Diagram-Based Lexical An-

alyzer . 134

3.4.5 Exercises for Section 3.4 136

3.5 The Lexical-Analyzer Generator Lex 140

3.5.1 Use of Lex . 140

3.5.2 Structure of Lex Programs 141

3.5.3 Conflict Resolution in Lex 144

3.5.4 The Lookahead Operator 144

3.5.5 Exercises for Section 3.5 146
3.6 Finite Automata . 147

3.6.1 Nondeterministic Finite Automata 147

3.6.2 Transition Tables . 148

3.6.3 Acceptance of Input Strings by Automata 149
3.6.4 Deterministic Finite Automata 149

3.6.5 Exercises for Section 3.6 151
3.7 From Regular Expressions to Automata 152

TABLE OF CONTENTS

3.7.1 Conversion of an NFA to a DFA 152

3.7.2 Simulation of an NFA . 156

3.7.3 Efficiency of NFA Simulation 157

3.7.4 Construction of an NFA from a Regular Expression . . . 159
3.7.5 Efficiency of String-Processing Algorithms 163
3.7.6 Exercises for Section 3.7 166

3.8 Design of a Lexical-Analyzer Generator 166

3.8.1 The Structure of the Generated Analyzer 167

3.8.2 Pattern Matching Based on NFA's 168

3.8.3 DFA's for Lexical Analyzers 170

3.8.4 Implementing the Lookahead Operator 171

3.8.5 Exercises for Section 3.8 172

3.9 Optimization of DFA-Based Pattern Matchers 173

3.9.1 Important States of an NFA 173

3.9.2 Functions Computed From the Syntax Tree 175

3.9.3 Computing nullable, firstpos, and lastpos 176

. 3.9.4 Computing followpos 177

. . . 3.9.5 Converting a Regular Expression Directly to a DFA 179

3.9.6 Minimizing the Number of States of a DFA 180

. 3.9.7 State Minimization in Lexical Analyzers 184

. 3.9.8 Trading Time for Space in DFA Simulation 185

. 3.9.9 Exercises for Section 3.9 186

. 3.10 Summary of Chapter 3 187

. 3.11 References for Chapter 3 189

4 Syntax Analysis 191
. 4.1 Introduction 192

. 4.1.1 The Role of the Parser 192
. 4.1.2 Representative Grammars 193

. 4.1.3 Syntax Error Handling 194
. 4.1.4 Error-Recovery Strategies 195

. 4.2 Context-Free Grammars 197

4.2.1 The Formal Definition of a Context-Free Grammar 197
. 4.2.2 Notational Conventions 198

. 4.2.3 Derivations 199
. 4.2.4 Parse Trees and Derivations 201

. 4.2.5 Ambiguity 203
. . . . 4.2.6 Verifying the Language Generated by a Grammar 204

. . . 4.2.7 Context-Free Grammars Versus Regular Expressions 205
. 4.2.8 Exercises for Section 4.2 206

. 4.3 Writing a Grammar 209
. 4.3.1 Lexical Versus Syntactic Analysis 209

. 4.3.2 Eliminating Ambiguity 210
. 4.3.3 Elimination of Left Recursion 212

. 4.3.4 Left Factoring 214

...
TABLE OF CONTENTS xlll

4.3.5 Non-Context-Free Language Constructs 215

. 4.3.6 Exercises for Section 4.3 216

. 4.4 Top-Down Parsing 217
. 4.4.1 Recursive-Descent Parsing 219

. 4.4.2 FIRST and FOLLOW 220
. 4.4.3 LL(1) Grammars 222

. 4.4.4 Nonrecursive Predictive Parsing 226

. 4.4.5 Error Recovery in Predictive Parsing 228

. 4.4.6 Exercises for Section 4.4 231

. 4.5 Bottom-Up Parsing 233

. 4.5.1 Reductions 234

. 4.5.2 Handle Pruning 235

. 4.5.3 Shift-Reduce Parsing 236

. 4.5.4 Conflicts During Shift-Reduce Parsing 238

. 4.5.5 Exercises for Section 4.5 240

. 4.6 Introduction to LR Parsing: Simple LR 241

. 4.6.1 Why LR Parsers? 241

. 4.6.2 Items and the LR(0) Automaton 242

. 4.6.3 The LR-Parsing Algorithm 248

. 4.6.4 Constructing SLR-Parsing Tables 252

4.6.5 Viable Prefixes . 256

4.6.6 Exercisesfor Section 4.6 257

4.7 More Powerful LR Parsers . 259

4.7.1 Canonical LR(1) Items . 260

4.7.2 Constructing LR(1) Sets of Items 261

4.7.3 Canonical LR(1) Parsing Tables 265

4.7.4 Constructing LALR Parsing Tables 266

4.7.5 Efficient Construction of LALR Parsing Tables 270

4.7.6 Compaction of LR Parsing Tables 275

4.7.7 Exercises for Section 4.7 277

4.8 Using Ambiguous Grammars . 278

4.8.1 Precedence and Associativity to Resolve Conflicts 279

4.8.2 The "Dangling-Else" Ambiguity 281

4.8.3 Error Recovery in LR Parsing 283

4.8.4 Exercises for Section 4.8 285

4.9 Parser Generators . 287

4.9.1 The Parser Generator Yacc 287

4.9.2 Using Yacc with Ambiguous Grammars 291

4.9.3 Creating Yacc Lexical Analyzers with Lex 294

4.9.4 Error Recovery in Yacc 295

4.9.5 Exercises for Section 4.9 297
4.10 Summary of Chapter 4 . 297

4.11 References for Chapter 4 . 300

xiv TABLE OF CONTENTS

5 Syntax-Directed Translation 303

5.1 Syntax-Directed Definitions . 304

5.1.1 Inherited and Synthesized Attributes 304
5.1.2 Evaluating an SDD at the Nodes of a Parse Tree 306
5.1.3 Exercises for Section 5.1 309

5.2 Evaluation Orders for SDD's . 310

5.2.1 Dependency Graphs . 310

5.2.2 Ordering the Evaluation of Attributes 312

5.2.3 S-Attributed Definitions 312

5.2.4 L-Attributed Definitions 313

5.2.5 Semantic Rules with Controlled Side Effects 314

5.2.6 Exercises for Section 5.2 317

5.3 Applications of Synt ax-Directed Translation 318

5.3.1 Construction of Syntax Trees 318

. 5.3.2 The Structure of a Type 321

. 5.3.3 Exercises for Section 5.3 323

. 5.4 Syntax-Directed Translation Schemes 324

. 5.4.1 Postfix Translation Schemes 324

. 5.4.2 Parser-Stack Implementation of Postfix SDT's 325

. 5.4.3 SDT's With Actions Inside Productions 327

. 5.4.4 Eliminating Left Recursion From SDT's 328

. 5.4.5 SDT's for L-Attributed Definitions 331

. 5.4.6 Exercises for Section 5.4 336

. 5.5 Implementing L- Attributed SDD's 337

. 5.5.1 Translation During Recursive-Descent Parsing 338

. 5.5.2 On-The-Fly Code Generation 340

. 5.5.3 L-Attributed SDD's and LL Parsing 343

. 5.5.4 Bottom-Up Parsing of L-Attributed SDD's 348
. 5.5.5 Exercises for Section 5.5 352

. 5.6 Summary of Chapter 5 353

. 5.7 References for Chapter 5 354

6 Intermediate-Code Generation 357
. 6.1 Variants of Syntax Trees 358

. 6.1.1 Directed Acyclic Graphs for Expressions 359
6.1.2 The Value-Number Method for Constructing DAG's . . . 360

. 6.1.3 Exercises for Section 6.1 362
. 6.2 Three-Address Code 363

. 6.2.1 Addresses and Instructions 364
. 6.2.2 Quadruples 366

. 6.2.3 Triples 367
. 6.2.4 Static Single- Assignment Form 369

. 6.2.5 Exercises for Section 6.2 370
. 6.3 Types and Declarations 370
. 6.3.1 Type Expressions 371

TABLE OF CONTENTS xv

. 6.3.2 Type Equivalence 372

. 6.3.3 Declarations 373

. 6.3.4 Storage Layout for Local Names 373

. 6.3.5 Sequences of Declarations 376

. 6.3.6 Fields in Records and Classes 376

. 6.3.7 Exercises for Section 6.3 378

. 6.4 Translation of Expressions 378

. 6.4.1 Operations Within Expressions 378

. 6.4.2 Incremental Translation 380

. 6.4.3 Addressing Array Elements 381

. 6.4.4 Translation of Array References 383

. 6.4.5 Exercises for Section 6.4 384

. 6.5 Type Checking 386

. 6.5.1 Rules for Type Checking 387

. 6.5.2 Type Conversions 388

. 6.5.3 Overloading of Functions and Operators 390

. 6.5.4 Type Inference and Polymorphic Functions 391

. 6.5.5 An Algorithm for Unification 395

. 6.5.6 Exercises for Section 6.5 398

. 6.6 Control Flow 399

. 6.6.1 Boolean Expressions 399

. 6.6.2 Short-circuit Code 400

. 6.6.3 Flow-of- Control Statements 401

6.6.4 Control-Flow Translation of Boolean Expressions 403

6.6.5 Avoiding Redundant Gotos 405

6.6.6 Boolean Values and Jumping Code 408

6.6.7 Exercises for Section 6.6 408

6.7 Backpatching . 410

6.7.1 One-Pass Code Generation Using Backpatching 410

6.7.2 Backpatching for Boolean Expressions 411

6.7.3 Flow-of-Control Statements 413

6.7.4 Break-, Continue-, and Goto-Statements 416

6.7.5 Exercises for Section 6.7 417

. 6.8 Switch-Statements 418

6.8.1 Translationof Switch-Statements 419

6.8.2 Syntax-Directed Translation of Switch-Statements 420

6.8.3 Exercises for Section 6.8 421

6.9 Intermediate Code for Procedures 422

6.10 Summary of Chapter 6 . 424

6.11 References for Chapter 6 . 425

xvi TABLE OF CONTENTS

7 Run-Time Environments 427

. 7.1 Storage Organization 427

7.1.1 Static Versus Dynamic Storage Allocation 429
. 7.2 Stack Allocation of Space 430

7.2.1 Activation Trees . 430

7.2.2 Activation Records . 433

7.2.3 Calling Sequences . 436

7.2.4 Variable-Length Data on the Stack 438
7.2.5 Exercises for Section 7.2 440

. 7.3 Access to Nonlocal Data on the Stack 441
. 7.3.1 Data Access Without Nested Procedures 442

. 7.3.2 Issues With Nested Procedures 442

7.3.3 A Language With Nested Procedure Declarations 443
. 7.3.4 Nesting Depth 443

. 7.3.5 Access Links 445
. 7.3.6 Manipulating Access Links 447

7.3.7 Access Links for Procedure Parameters 448
. 7.3.8 Displays 449

. 7.3.9 Exercises for Section 7.3 451
. 7.4 Heap Management 452

. 7.4.1 The Memory Manager 453
. 7.4.2 The Memory Hierarchy of a Computer 454

. 7.4.3 Locality in Programs 455
. 7.4.4 Reducing Fragmentation 457

. 7.4.5 Manual Deallocation Requests 460
. 7.4.6 Exercises for Section 7.4 463

. 7.5 Introduction to Garbage Collection 463
. 7.5.1 Design Goals for Garbage Collectors 464

. 7.5.2 Reachability 466
. 7.5.3 Reference Counting Garbage Collectors 468

. 7.5.4 Exercises for Section 7.5 470
. 7.6 Introduction to Trace-Based Collection 470

. 7.6.1 A Basic Mark-and-Sweep Collector 471
. 7.6.2 Basic Abstraction 473

. 7.6.3 Optimizing Mark-and-Sweep 475
. 7.6.4 Mark-and-Compact Garbage Collectors 476

. 7.6.5 Copying collectors 478
. 7.6.6 Comparing Costs 482

. 7.6.7 Exercises for Section 7.6 482

. 7.7 Short-Pause Garbage Collection 483
. 7.7.1 Incremental Garbage Collection 483

. 7.7.2 Incremental Reachability Analysis 485
. 7.7.3 Partial-Collection Basics 487

. 7.7.4 Generational Garbage Collection 488
. 7.7.5 The Train Algorithm 490

TABLE OF CONTENTS xvii

. 7.7.6 Exercises for Section 7.7 493
. 7.8 Advanced Topics in Garbage Collection 494

. 7.8.1 Parallel and Concurrent Garbage Collection 495
. 7.8.2 Partial Object Relocation 497

. 7.8.3 Conservative Collection for Unsafe Languages 498
. 7.8.4 Weak References 498

. 7.8.5 Exercises for Section 7.8 499
. 7.9 Summary of Chapter 7 500

. 7.10 References for Chapter 7 502

8 Code Generation 505

. 8.1 Issues in the Design of a Code Generator 506

. 8.1.1 Input to the Code Generator 507

. 8.1.2 The Target Program 507

. 8.1.3 Instruction Selection 508

. 8.1.4 Register Allocation 510

. 8.1.5 Evaluation Order 511

. 8.2 The Target Language 512

. 8.2.1 A Simple Target Machine Model 512

. 8.2.2 Program and Instruction Costs 515

. 8.2.3 Exercises for Section 8.2 516

. 8.3 Addresses in the Target Code 518

8.3.1 Static Allocation . 518

8.3.2 Stack Allocation . 520

8.3.3 Run-Time Addresses for Names 522

8.3.4 Exercises for Section 8.3 524

8.4 Basic Blocks and Flow Graphs 525

8.4.1 Basic Blocks . 526

8.4.2 Next-Use Information . 528

8.4.3 Flow Graphs . 529

8.4.4 Representation of Flow Graphs 530

8.4.5 Loops . 531

8.4.6 Exercises for Section 8.4 531

8.5 Optimization of Basic Blocks . 533

8.5.1 The DAG Representation of Basic Blocks 533

8.5.2 Finding Local Common Subexpressions 534

8.5.3 Dead Code Elimination 535

8.5.4 The Use of Algebraic Identities 536

8.5.5 Representation of Array References 537
8.5.6 Pointer Assignments and Procedure Calls 539

8.5.7 Reassembling Basic Blocks From DAG's 539
8.5.8 Exercises for Section 8.5 541

8.6 A Simple Code Generator . 542

8.6.1 Register and Address Descriptors 543
8.6.2 The Code-Generation Algorithm 544

xviii TABLE OF CONTENTS

8.6.3 Design of the Function getReg 547
8.6.4 Exercises for Section 8.6 548

. 8.7 Peephole Optimization 549

8.7.1 Eliminating Redundant Loads and Stores 550

8.7.2 Eliminating Unreachable Code 550

. 8.7.3 Flow-of-Control Optimizations 551

8.7.4 Algebraic Simplification and Reduction in Strength 552

. 8.7.5 Use of Machine Idioms 552

8.7.6 Exercises for Section 8.7 553
. 8.8 Register Allocation and Assignment 553

. 8.8.1 Global Register Allocation 553
. 8.8.2 Usage Counts 554

. 8.8.3 Register Assignment for Outer Loops 556

. 8.8.4 Register Allocation by Graph Coloring 556

. 8.8.5 Exercises for Section 8.8 557
. 8.9 Instruction Selection by Tree Rewriting 558

. 8.9.1 Tree-Translation Schemes 558
. 8.9.2 Code Generation by Tiling an Input Tree 560

. 8.9.3 Pattern Matching by Parsing 563
. 8.9.4 Routines for Semantic Checking 565

. 8.9.5 General Tree Matching 565
. 8.9.6 Exercises for Section 8.9 567

. 8.10 Optimal Code Generation for Expressions 567
. 8.10.1 Ershov Numbers 567

. 8.10.2 Generating Code From Labeled Expression Trees 568

8.10.3 Evaluating Expressions with an Insufficient Supply of Reg-
. isters 570

. 8.10.4 Exercises for Section 8.10 572
. 8.11 Dynamic Programming Code-Generation 573

. 8.11.1 Contiguous Evaluation 574
. 8.11.2 The Dynamic Programming Algorithm 575

. 8.1 1.3 Exercises for Section 8.11 577
. 8.12 Summary of Chapter 8 578

. 8.13 References for Chapter 8 579

9 Machine-Independent Optimizations 583
. 9.1 The Principal Sources of Optimization 584

. 9.1.1 Causes of Redundancy 584
. 9.1.2 A Running Example: Quicksort 585

. 9.1.3 Semantics-Preserving Transformations 586
. 9.1.4 Global Common Subexpressions 588

. 9.1.5 Copy Propagation 590
. 9.1.6 Dead-Code Elimination 591

. 9.1.7 Code Motion 592
. 9.1.8 Induction Variables and Reduction in Strength 592

TABLE OF CONTENTS xix

. 9.1.9 Exercises for Section 9.1 596
. 9.2 Introduction to Data-Flow Analysis 597

9.2.1 The Data-Flow Abstraction 597

9.2.2 The Data-Flow Analysis Schema 599

. 9.2.3 Data-Flow Schemas on Basic Blocks 600
. 9.2.4 Reaching Definitions 601

. 9.2.5 Live-Variable Arlalysis 608

. 9.2.6 Available Expressions 610
. 9.2.7 Summary 614

. 9.2.8 Exercises for Section 9.2 615

. 9.3 Foundations of Data-Flow Analysis 618
. 9.3.1 Semilattices 618

. 9.3.2 Transfer Functions 623

. 9.3.3 The Iterative Algorithm for General Frameworks 626

. 9.3.4 Meaning of a Data-Flow Solution 628

. 9.3.5 Exercises for Section 9.3 631

. 9.4 Constant Propagation 632

9.4.1 Data-Flow Values for the Constant-Propagation Frame-

. work 633

9.4.2 The Meet for the Constant-Propagation Framework . . . 633

9.4.3 Transfer Functions for the Constant-Propagation Frame-

. work 634

9.4.4 Monotonicity of the Constant-Propagation Framework . . 635

9.4.5 Nondistributivity of the Constant-Propagation Framework 635

9.4.6 Interpretation of the Results 637

9.4.7 Exercises for Section 9.4 637

9.5 Partial-Redundancy Elimination 639

9.5.1 The Sources of Redundancy 639

9.5.2 Can All Redundancy Be Eliminated? 642

9.5.3 The Lazy-Code-Motion Problem 644

9.5.4 Anticipation of Expressions 645

9.5.5 The Lazy-Code-Motion Algorithm 646

9.5.6 Exercises for Section 9.5 655

9.6 Loops in Flow Graphs . 655

9.6.1 Dominators . 656

9.6.2 Depth-First Ordering . 660

9.6.3 Edges in a Depth-First Spanning Tree 661

9.6.4 Back Edges and Reducibility 662

9.6.5 Depth of a Flow Graph 665

9.6.6 Natural Loops . 665

9.6.7 Speed of Convergence of Iterative Data-Flow Algorithms . 667

9.6.8 Exercises for Section 9.6 669

. 9.7 Region-Based Analysis 672
9.7.1 Regions . 672

9.7.2 Region Hierarchies for Reducible Flow Graphs 673

TABLE OF CONTENTS

9.7.3 Overview of a Region-Based Analysis 676

9.7.4 Necessary Assumptions About Transfer Functions 678

9.7.5 An Algorithm for Region-Based Analysis 680

9.7.6 Handling Nonreducible Flow Graphs 684

9.7.7 Exercises for Section 9.7 686

9.8 Symbolic Analysis . 686

9.8.1 Affine Expressions of Reference Variables 687

9.8.2 Data-Flow Problem Formulation 689

9.8.3 Region-Based Symbolic Analysis 694

9.8.4 Exercises for Section 9.8 699

. 9.9 Summary of Chapter 9 700

. 9.10 References for Chapter 9 703

10 Instruct ion-Level Parallelism 707
. 10.1 Processor Architectures 708

10.1.1 Instruction Pipelines and Branch Delays 708
. 10.1.2 Pipelined Execution 709

10.1.3 Multiple Instruction Issue 710
. 10.2 Code-Scheduling Constraints 710

. 10.2.1 Data Dependence 711

10.2.2 Finding Dependences Among Memory Accesses 712

10.2.3 Tradeoff Between Register Usage and Parallelism 713

10.2.4 Phase Ordering Between Register Allocation and Code
. Scheduling 716

. 10.2.5 Control Dependence 716
. 10.2.6 Speculative Execution Support 717

. 10.2.7 A Basic Machine Model 719
. 10.2.8 Exercises for Section 10.2 720

. 10.3 Basic-Block Scheduling 721
. 10.3.1 Data-Dependence Graphs 722

. 10.3.2 List Scheduling of Basic Blocks 723

. 10.3.3 Prioritized Topological Orders 725
. 10.3.4 Exercises for Section 10.3 726

. 10.4 Global Code Scheduling 727
. 10.4.1 Primitive Code Motion 728

. 10.4.2 Upward Code Motion 730
. 10.4.3 Downward Code Motion 731

. 10.4.4 Updating Data Dependences 732

. 10.4.5 Global Scheduling Algorithms 732
. 10.4.6 Advanced Code Motion Techniques 736

. 10.4.7 Interaction with Dynamic Schedulers 737
. 10.4.8 Exercises for Section 10.4 737

. 10.5 Software Pipelining 738
. 10.5.1 Introduction 738

. 10.5.2 Software Pipelining of Loops 740

TABLE OF CONTENTS xxi

. 10.5.3 Register Allocation and Code Generation 743

. 10.5.4 Do-Across Loops 743
. 10.5.5 Goals and Constraints of Software Pipelining 745

. 10.5.6 A Software-Pipelining Algorithm 749
. 10.5.7 Scheduling Acyclic Data-Dependence Graphs 749

. 10.5.8 Scheduling Cyclic Dependence Graphs 751

. 10.5.9 Improvements to the Pipelining Algorithms 758

. 10.5.10 Modular Variable Expansion 758
. 10.5.11 Conditional Statements 761

. 10.5.12 Hardware Support for Software Pipelining 762
. 10.5.13 Exercises for Section 10.5 763

. 10.6 Summary of Chapter 10 765
. 10.7 References for Chapter 10 766

11 Optimizing for Parallelism and Locality 769

. 11.1 Basic Concepts 771

. . 11.1 1 Multiprocessors 772

. 11.1.2 Parallelism in Applications 773

11.1.3 Loop-Level Parallelism . 775

11.1.4 Data Locality . 777

. 11.1.5 Introduction to Affine Transform Theory 778

. 11.2 Matrix Multiply: An In-Depth Example 782

. 11.2.1 The Matrix-Multiplication Algorithm 782

. 11.2.2 Optimizations 785

11.2.3 Cache Interference . 788

. 11.2.4 Exercises for Section 11.2 788

11.3 Iteration Spaces . 788

11.3.1 Constructing Iteration Spaces from Loop Nests 788

11.3.2 Execution Order for Loop Nests 791

11.3.3 Matrix Formulation of Inequalities 791

11.3.4 Incorporating Symbolic Constants 793
11.3.5 Controlling the Order of Execution 793

11.3.6 Changing Axes . 798

11.3.7 Exercises for Section 11.3 799

11.4 Affine Array Indexes . 801

11.4.1 Affine Accesses . 802

11.4.2 Affine and Nonaffine Accesses in Practice 803

11.4.3 Exercises for Section 11.4 804

11.5 Data Reuse . 804

11.5.1 Types of Reuse . 805

11.5.2 Self Reuse . 806
11.5.3 Self-spatial Reuse . 809

11.5.4 Group Reuse . 811

11.5.5 Exercises for Section 11.5 814
11.6 Array Data-Dependence Analysis 815

xxii TABLE O F CONTENTS

11.6.1 Definition of Data Dependence of Array Accesses 816

11.6.2 Integer Linear Programming 817
. 11.6.3 The GCD Test 818

11.6.4 Heuristics for Solving Integer Linear Programs 820

11.6.5 Solving General Integer Linear Programs 823
11.6.6 Summary . 825

. 11.6.7 Exercises for Section 11.6 826

11.7 Finding Synchronization-Free Parallelism 828

11.7.1 An Introductory Example 828
. 11.7.2 Affine Space Partitions 830

11.7.3 Space-Partition Constraints 831

11.7.4 Solving Space-Partition Constraints 835

11.7.5 A Simple Code-Generation Algorithm 838

11.7.6 Eliminating Empty Iterations 841

11.7.7 Eliminating Tests from Innermost Loops 844

11.7.8 Source-Code Transforms 846

11.7.9 Exercises for Section 11.7 851

11.8 Synchronization Between Parallel Loops 853

11.8.1 A Constant Number of Synchronizations 853

11.8.2 Program-Dependence Graphs 854

11.8.3 Hierarchical Time . 857

11.8.4 The Parallelization Algorithm 859

. 11.8.5 Exercises for Section 11.8 860

. 11.9 Pipelining 861
. 11.9.1 What is Pipelining? 861

. 11.9.2 Successive Over-Relaxation (SOR): An Example 863

. 11.9.3 Fully Permutable Loops 864

. 11.9.4 Pipelining Fully Permutable Loops 864

. 11.9.5 General Theory 867
. 11.9.6 Time-Partition Constraints 868

11.9.7 Solving Time-Partition Constraints by Farkas' Lemma . . 872
. 11.9.8 Code Transformations 875

. 11.9.9 Parallelism With Minimum Synchronization 880

. 11.9.10 Exercises for Section 11.9 882

. 11.10 Locality Optimizations 884

. 11.10.1 Temporal Locality of Computed Data 885

. 11.10.2 Array Contraction 885

. 11.10.3 Partition Interleaving 887
. 11.10.4 Putting it All Together 890

. 11.10.5 Exercises for Section 11.10 892

. 11.11 Other Uses of Affine Transforms 893

. I1 .1 1.1 Distributed memory machines 894

. 11.11.2 Multi-Instruction-Issue Processors 895
. 11 .l 1.3 Vector and SIMD Instructions 895

. 11.11.4 Prefetching 896

TABLE OF CONTENTS xxiii

. 11.12 Summary of Chapter 11 897

. 11.13 References for Chapter 11 899

12 Interprocedural Analysis 903
. 12.1 Basic Concepts 904

. 12.1.1 Call Graphs 904
. 12.1.2 Context Sensitivity 906

. 12.1.3 Call Strings 908

. 12.1.4 Cloning-Based Context-Sensitive Analysis 910

. 12.1.5 Summary-Based Context-Sensitive Analysis 911
. 12.1.6 Exercises for Section 12.1 914

. 12.2 Why Interprocedural Analysis? 916
. 12.2.1 Virtual Method Invocation 916

. 12.2.2 Pointer Alias Analysis 917

. 12.2.3 Parallelization 917

. 12.2.4 Detection of Software Errors and Vulnerabilities 917

. 12.2.5 SQL Injection 918

. 12.2.6 Buffer Overflow 920

. 12.3 A Logical Representation of Data Flow 921

. 12.3.1 Introduction to Datalog 921

. 12.3.2 Datalog Rules 922

. 12.3.3 Intensional and Extensional Predicates 924

. 12.3.4 Execution of Datalog Programs 927
. 12.3.5 Incremental Evaluation of Datalog Programs 928

. 12.3.6 Problematic Datalog Rules 930

12.3.7 Exercises for Section 12.3 932

12.4 A Simple Pointer-Analysis Algorithm 933

12.4.1 Why is Pointer Analysis Difficult 934

12.4.2 A Model for Pointers and References 935

12.4.3 Flow Insensitivity . 936

12.4.4 The Formulation in Datalog 937

12.4.5 Using Type Information 938

12.4.6 Exercises for Section 12.4 939

12.5 Context-Insensitive Interprocedural Analysis 941

12.5.1 Effects of a Method Invocation 941

12.5.2 Call Graph Discovery in Datalog 943

12.5.3 Dynamic Loading and Reflection 944

. 12.5.4 Exercises for Section 12.5 945

12.6 Context-Sensitive Pointer Analysis 945
12.6.1 Contexts and Call Strings 946

. 12.6.2 Adding Context to Datalog Rules 949
12.6.3 Additional Observations About Sensitivity 949

. 12.6.4 Exercises for Section 12.6 950

12.7 Datalog Implementation by BDD's 951
12.7.1 Binary Decision Diagrams 951

TABLE OF CONTENTS

12.7.2 Transformations on BDD7s 953

12.7.3 Representing Relations by BDD7s 954

. 12.7.4 Relational Operations as BDD Operations 954

. 12.7.5 Using BDD7s for Points-to Analysis 957

. 12.7.6 Exercises for Section 12.7 958

. 12.8 Summary of Chapter 12 958

. 12.9 References for Chapter 12 961

A A Complete Front End 965

. A.l The Source Language 965
. A.2 Main 966

. A.3 Lexical Analyzer 967
. A.4 Symbol Tables and Types 970

. A.5 Intermediate Code for Expressions 971
. A.6 Jumping Code for Boolean Expressions 974

. A.7 Intermediate Code for Statements 978
. A.8 Parser 981

. A.9 Creating the Front End 986

B Finding Linearly Independent Solutions 989

Index 993

Chapter 1

Introduction

Programming languages are notations for describing computations to people

and to machines. The world as we know it depends on programming languages,

because all the software running on all the computers was written in some

programming language. But, before a program can be run, it first must be

translated into a form in which it can be executed by a computer.

The software systems that do this translation are called compilers.

This book is about how to design and implement compilers. We shall dis-

cover that a few basic ideas can be used to construct translators for a wide

variety of languages and machines. Besides compilers, the principles and tech-

niques for compiler design are applicable to so many other domains that they

are likely to be reused many times in the career of a computer scientist. The

study of compiler writing touches upon programming languages, machine ar-

chitecture, language theory, algorithms, and software engineering.

In this preliminary chapter, we introduce the different forms of language

translators, give a high level overview of the structure of a typical compiler,

and discuss the trends in programming languages and machine architecture

that are shaping compilers. We include some observations on the relationship

between compiler design and computer-science theory and an outline of the

applications of compiler technology that go beyond compilation. We end with

a brief outline of key programming-language concepts that will be needed for

our study of compilers.

1.1 Language Processors

Simply stated, a compiler is a program that can read a program in one lan-

guage - the source language - and translate it into an equivalent program in

another language - the target language; see Fig. 1.1. An important role of the

compiler is to report any errors in the source program that it detects during

the translation process.

CHAPTER 2. INTRODUCTION

source program

Compiles h +
target program

Figure 1.1 : A compiler

If the target program is an executable machine-language program, it can

then be called by the user to process inputs and produce outputs; see Fig. 1.2.

Target Program output

t-
Figure 1.2: Running the target program

An in terpreter is another common kind of language processor. Instead of

producing a target program as a translation, an interpreter appears to directly

execute the operations specified in the source program on inputs supplied by

the user, as shown in Fig. 1.3.

source program 1 Interpreter t- output
input

Figure 1.3: An interpreter

The machine-language target program produced by a compiler is usually

much faster than an interpreter at mapping inputs to outputs . An interpreter,

however, can usually give better error diagnostics than a compiler, because it

executes the source program statement by statement.

Example 1.1 : Java language processors combine compilation and interpreta-

tion, as shown in Fig. 1.4. A Java source program may first be compiled into

an intermediate form called bytecodes. The bytecodes are then interpreted by a

virtual machine. A benefit of this arrangement is that bytecodes compiled on

one machine can be interpreted on another machine, perhaps across a network.

In order to achieve faster processing of inputs to outputs, some Java compil-

ers, called jus t - in- t ime compilers, translate the bytecodes into machine language
immediately before they run the intermediate program to process the input.

1.1. LANGUAGE PROCESSORS

source program

Translator

intermediate program

input

Figure 1.4: A hybrid compiler

In addition to a compiler, several other programs may be required to create

an executable target program, as shown in Fig. 1.5. A source program may be

divided into modules stored in separate files. The task of collecting the source

program is sometimes entrusted to a separate program, called a preprocessor.

The preprocessor may also expand shorthands, called macros, into source lan-

guage st at ements.

The modified source program is then fed to a compiler. The compiler may

produce an assembly-language program as its output, because assembly lan-

guage is easier to produce as output and is easier to debug. The assembly

language is then processed by a program called an assembler that produces

relocatable machine code as its output.

Large programs are often compiled in pieces, so the relocatable machine

code may have to be linked together with other relocatable object files and

library files into the code that actually runs on the machine. The l inker resolves

external memory addresses, where the code in one file may refer to a location

in another file. The loader then puts together all of the executable object files

into memory for execution.

1 .11 Exercises for Section 1.1

Exercise 1.1.1 : What is the difference between a compiler and an interpreter?

Exercise 1.1.2 : What are the advantages of (a) a compiler over an interpreter

(b) an interpreter over a compiler?

Exercise 1.1.3 : What advantages are there to a language-processing system in

which the compiler produces assembly language rather than machine language?

Exercise 1.1.4 : A compiler that translates a high-level language into another

high-level language is called a source-to-source translator. What advantages are

there to using C as a target language for a compiler?

Exercise 1.1.5 : Describe some of the tasks that an assembler needs to per-

form.

CHAPTER 1 . INTRODUCTION

source program

i
Preprocessor J

t
modified source program

I

Compiler fi
t

target assembly program

i
/ Assembler 1
i

relocatable machine code

library files
relocatable obiect files

t
target machine code

Figure 1.5: A language-processing system

1.2 The Structure of a Compiler

Up to this point we have treated a compiler as a single box that maps a source

program into a semantically equivalent target program. If we open up this box

a little, we see that there are two parts to this mapping: analysis and synthesis.

The analysis part breaks up the source program into constituent pieces and

imposes a grammatical structure on them. It then uses this structure to cre-

ate an intermediate representation of the source program. If the analysis part

detects that the source program is either syntactically ill formed or semanti-

cally unsound, then it must provide informative messages, so the user can take

corrective action. The analysis part also collects information about the source

program and stores it in a data structure called a symbol table, which is passed

along with the intermediate representation to the synthesis part.

The synthesis part constructs the desired target program from the interme-

diate representation and the information in the symbol table. The analysis part

is often called the front end of the compiler; the synthesis part is the back end.

If we examine the compilation process in more detail, we see that it operates

as a sequence of phases, each of which transforms one representation of the

source program to another. A typical decomposition of a compiler into phases
is shown in Fig. 1.6. In practice, several phases may be grouped together,

and the intermediate representations between the grouped phases need not be

constructed explicitly. The symbol table, which stores information about the

1.2. THE STRUCTURE O F A COMPILER

Symbol Table E l

, characte; stream ,
/ Lexical Analyzer 1

token Atream

f

Syntax Analyzer

syntax tree +
1 Semantic Analyzer

I Intermediate Code Generator I
I I

I

intermediate represent ation

i
Machine-Independent

intermediate representation

i 1 Code Generator I
I I

I

target-machine code
C

Machine-Dependent I Code Optimizer
I ,

I

t arget-machine code

t

Figure 1.6: Phases of a compiler

entire source program, is used by all phases of the compiler.

Some compilers have a machine-independent optimization phase between

the front end and the back end. The purpose of this optimization phase is to

perform transformations on the intermediate representation, so that the back

end can produce a better target program than it would have otherwise pro-

duced from an unoptimized intermediate representation. Since optimization is

optional, one or the other of the two optimization phases shown in Fig. 1.6 may

be missing.

1.2.1 Lexical Analysis

The first phase of a compiler is called lexical analysis or scanning. The lex-
ical analyzer reads the stream of characters making up the source program

6 CHAPTER 1. INTRODUCTION

and groups the characters into meaningful sequences called lexemes. For each

lexeme, the lexical analyzer produces as output a token of the form

(token-name, attribute-value)

that it passes on to the subsequent phase, syntax analysis. In the token, the

first component token-name is an abstract symbol that is used during syntax

analysis, and the second component attribute-value points to an entry in the

symbol table for this token. Information from the symbol-table entry 'is needed

for semantic analysis and code generation.

For example, suppose a source program contains the assignment statement

p o s i t i o n = i n i t i a l + r a t e * 60 (1.1)

The characters in this assignment could be grouped into the following lexemes

and mapped into the following tokens passed on to the syntax analyzer:

1. p o s i t ion is a lexeme that would be mapped into a token (id, I) , where i d

is an abstract symbol standing for identifier and 1 points to the symbol-

table entry for pos i t i on . The symbol-table entry for an identifier holds

information about the identifier, such as its name and type.

2. The assignment symbol = is a lexeme that is mapped into the token (=).
Since this token needs no attribute-value, we have omitted the second

component. We could have used any abstract symbol such as assign for

the token-name, but for notational convenience we have chosen to use the

lexeme itself as the name of the abstract symbol.

3. i n i t i a l is a lexeme that is mapped into the token (id, 2), where 2 points

to the symbol-table entry for i n i t i a l .

4. + is a lexeme that is mapped into the token (+).

5 . r a t e is a lexeme that is mapped into the token (id, 3), where 3 points to

the symbol-table entry for r a t e .

6. * is a lexeme that is mapped into the token (*) .

7. 60 is a lexeme that is mapped into the token (60) .'
Blanks separating the lexemes would be discarded by the lexical analyzer.

Figure 1.7 shows the representation of the assignment statement (1.1) after

lexical analysis as the sequence of tokens

In this representation, the token names =, +, and * are abstract symbols for

the assignment, addition, and multiplication operators, respectively.

'Technically speaking, for the lexeme 60 we should make up a token like (number,4),

where 4 points to the symbol table for the internal representation of integer 60 but we shall

defer the discussion of tokens for numbers until Chapter 2. Chapter 3 discusses techniques

for building lexical analyzers.

1.2. THE STRUCTURE OF A COMPILER

;m
3 r a t e

p o s i t i o n = i n i t i a l + r a t e * 60

t
Lexical Analyzer

t
(id, 1) (=) (id, 2) (+) (id, 3) (*) (60)

t
Syntax Analyzer

(id, 2)/ JF

(id, 3)/
\

60

Semantic Analyzer s
\+,

(id, 2)' *
\

(id, 3)' int t ofloat

t
I
60

I Intermediate Code Generator I

t
t l = i n t t o f l o a t (6 0)

t 2 = i d 3 * ti
t 3 = i d 2 + t 2

i d 1 = t 3

t l = i d 3 * 60.0

i d 1 = i d 2 + t1

LDF R2, i d 3

MULF R2, R2, #60.0

LDF R1, i d 2

ADDF R 1 , R 1 , R2

STF i d l y R l

Figure 1.7: Translation of an assignment statement

8 CHAPTER 1. INTRODUCTION

1.2.2 Syntax Analysis

The second phase of the compiler is syntax analysis or parsing. The parser uses

the first components of the tokens produced by the lexical analyzer to create

a tree-like intermediate representation that depicts the grammatical structure

of the token stream. A typical representation is a syntax tree in which each

interior node represents an operation and the children of the node represent the

arguments of the operation. A syntax tree for the token stream (1.2) is shown

as the output of the syntactic analyzer in Fig. 1.7.

This tree shows the order in which the operations in the assignment

p o s i t i o n = i n i t i a l + r a t e * 60

are to be performed. The tree has an interior node labeled * with (id, 3) as

its left child and the integer 60 as its right child. The node (id, 3) represents

the identifier r a t e . The node labeled * makes it explicit that we must first

multiply the value of r a t e by 60. The node labeled + indicates that we must

add the result of this multiplication to the value of i n i t i a l . The root of the

tree, labeled =, indicates that we must store the result of this addition into the

location for the identifier p o s i t ion. This ordering of operations is consistent

with the usual conventions of arithmetic which tell us that multiplication has

higher precedence than addition, and hence that the multiplication is to be

performed before the addition.

The subsequent phases of the compiler use the grammatical structure to help

analyze the source program and generate the target program. In Chapter 4

we shall use context-free grammars to specify the grammatical structure of

programming languages and discuss algorithms for constructing efficient syntax

analyzers automatically from certain classes of grammars. In Chapters 2 and 5

we shall see that syntax-directed definitions can help specify the translation of

programming language constructs.

1.2.3 Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the symbol

table to check the source program for semantic consistency with the language

definition. It also gathers type information and saves it in either the syntax tree

or the symbol table, for subsequent use during intermediate-code generation.

An important part of semantic analysis is type checking, where the compiler

checks that each operator has matching operands. For example, many program-

ming language definitions require an array index to be an integer; the compiler

must report an error if a floating-point number is used to index an array.

The language specification may permit some type conversions called coer-

cions. For example, a binary arithmetic operator may be applied to either a

pair of integers or to a pair of floating-point numbers. If the operator is applied

to a floating-point number and an integer, the compiler may convert or coerce

the integer into a floating-point number.

1.2. THE STRUCTURE OF A COMPILER 9

Such a coercion appears in Fig. 1.7. Suppose that pos i t i on , i n i t i a l , and

r a t e have been declared to be floating-point numbers, and that the lexeme 60

by itself forms an integer. The type checker in the semantic analyzer in Fig. 1.7

discovers that the operator * is applied to a floating-point number r a t e and

an integer 60. In this case, the integer may be converted into a floating-point

number. In Fig. 1.7, notice that the output of the semantic analyzer has an

extra node for the operator inttofloat, which explicitly converts its integer

argument into a floating-point number. Type checking and semantic analysis

are discussed in Chapter 6.

1.2.4 Intermediate Code Generation

In the process of translating a source program into target code, a compiler may

construct one or more intermediate representations, which can have a variety

of forms. Syntax trees are a form of intermediate representation; they are

commonly used during syntax and semantic analysis.

After syntax and semantic analysis of the source program, many compil-

ers generate an explicit low-level or machine-like intermediate representation,

which we can think of as a program for an abstract machine. This intermedi-

ate representation should have two important properties: it should be easy to

produce and it should be easy to translate into the target machine.

In Chapter 6, we consider an intermediate form called three-address code,

which consists of a sequence of assembly-like instructions with three operands

per instruction. Each operand can act like a register. The output of the inter-

mediate code generator in Fig. 1.7 consists of the three-address code sequence

t l = i n t t o f l o a t (60)

t 2 = i d3 * t l
t 3 = i d2 + t 2

i d 1 = t 3

There are several points worth noting about three-address instructions.

First, each three-address assignment instruction has at most one operator on the

right side. Thus, these instructions fix the order in which operations are to be

done; the multiplication precedes the addition in the source program (1.1). Sec-

ond, the compiler must generate a temporary name to hold the value computed

by a three-address instruction. Third, some "three-address instructions" like
the first and last in the sequence (1.3), above, have fewer than three operands.

In Chapter 6, we cover the principal intermediate representations used in

compilers. Chapters 5 introduces techniques for syntax-directed translation
that are applied in Chapter 6 to type checking and intermediate-code generation

for typical programming language constructs such as expressions, flow-of-control

constructs, and procedure calls.

10 CHAPTER 1. INTRODUCTION

1.2.5 Code Optimization

The machine-independent code-optimization phase attempts to improve the

intermediate code so that better target code will result. Usually better means

faster, but other objectives may be desired, such as shorter code, or target code

that consumes less power. For example, a straightforward algorithm generates

the intermediate code (1.3), using an instruction for each operator in the tree

representation that comes from the semantic analyzer.

A simple intermediate code generation algorithm followed by code optimiza-

tion is a reasonable way to generate good target code. The optimizer can deduce

that the conversion of 60 from integer to floating point can be done once and for

all at compile time, so the inttofloat operation can be eliminated by replacing

the integer 60 by the floating-point number 60.0. Moreover, t3 is used only

once to transmit its value to id1 so the optimizer can transform (1.3) into the

shorter sequence

There is a great variation in the amount of code optimization different com-

pilers perform. In those that do the most, the so-called "optimizing compilers,"

a significant amount of time is spent on this phase. There are simple opti-

mizations that significantly improve the running time of the target program

without slowing down compilation too much. The chapters from 8 on discuss

machine-independent and machine-dependent optimizations in detail.

1.2.6 Code Generation

The code generator takes as input an intermediate representation of the source

program and maps it into the target language. If the target language is machine

code, registers or memory locations are selected for each of the variables used by

the program. Then, the intermediate instructions are translated into sequences

of machine instructions that perform the same task. A crucial aspect of code

generation is the judicious assignment of registers to hold variables.

For example, using registers R 1 and R2, the intermediate code in (1.4) might

get translated into the machine code

LDF R 2 , i d3

MULF R 2 , R 2 , #60.0

LDF R l , id2

ADDF R l , R l , R2

S T F i d l , R l

The first operand of each instruction specifies a destination. The F in each

instruction tells us that it deals with floating-point numbers. The code in

1.2. THE STRUCTURE OF A COMPILER 11

(1.5) loads the contents of address id3 into register R2, then multiplies it with

floating-point constant 60.0. The # signifies that 60.0 is to be treated as an

immediate constant. The third instruction moves id2 into register R 1 and the

fourth adds to it the value previously computed in register R2. Finally, the value

in register R1 is stored into the address of i d l , so the code correctly implements

the assignment statement (1.1). Chapter 8 covers code generation.

This discussion of code generation has ignored the important issue of stor-

age allocation for the identifiers in the source program. As we shall see in

Chapter 7, the organization of storage at run-time depends on the language be-

ing compiled. Storage-allocation decisions are made either during intermediate

code generation or during code generation.

1.2.7 Symbol-Table Management

An essential function of a compiler is to record the variable names used in the

source program and collect information about various attributes of each name.

These attributes may provide information about the storage allocated for a

name, its type, its scope (where in the program its value may be used), and

in the ca,se of procedure names, such things as the number and types of its

arguments, the method of passing each argument (for example, by value or by

reference), and the type returned.

The symbol table is a data structure containing a record for each variable

name, with fields for the attributes of the name. The data structure should be

designed to allow the compiler to find the record for each name quickly and to

store or retrieve data from that record quickly. Symbol tables are discussed in

Chapter 2.

1.2.8 The Grouping of Phases into Passes

The discussion of phases deals with the logical organization of a compiler. In

an implementation, activities from several phases may be grouped together

into a pass that reads an input file and writes an output file. For example,
the front-end phases of lexical analysis, syntax analysis, semantic analysis, and

intermediate code generation might be grouped together into one pass. Code

optimization might be an optional pass. Then there could be a back-end pass

consisting of code generation for a particular target machine.

Some compiler collections have been created around carefully designed in-

termediate representations that allow the front end for a particular language to

interface with the back end for a certain target machine. With these collections,

we can produce compilers for different source languages for one target machine

by combining different front ends with the back end for that target machine.

Similarly, we can produce compilers for different target machines, by combining

a front end with back ends for different target machines.

12 CHAPTER 1. INTRODUCTION

1.2.9 Compiler-Construction Tools

The compiler writer, like any software developer, can profitably use modern

software development environments containing tools such as language editors,

debuggers, version managers, profilers, test harnesses, and so on. In addition

to these general software-development tools, other more specialized tools have

been created to help implement various phases of a compiler.

These tools use specialized languages for specifying and implementing spe-

cific components, and many use quite sophisticated algorithms. The most suc-

cessful tools are those that hide the details of the generation algorithm and

produce components that can be easily integrated into the remainder of the

compiler. Some commonly used compiler-construction tools include

1. Parser generators that automatically produce syntax analyzers from a

grammatical description of a programming language.

2. Scanner generators that produce lexical analyzers from a regular-expres-

sion description of the tokens of a language.

3. Syntax-directed translat ion engines that produce collections of routines

for walking a parse tree and generating intermediate code.

4. Code-generator generators that produce a code generator from a collection

of rules for translating each operation of the intermediate language into

the machine language for a target machine.

5. Data-flow analysis engines that facilitate the gathering of information

about how values are transmitted from one part of a program to each

other part. Data-flow analysis is a key part of code optimization.

6. Compiler-construct ion toolk2ts that provide an integrated set of routines

for constructing various phases of a compiler.

We shall describe many of these tools throughout this book.

1.3 The Evolution of Programming Languages

The first electronic computers appeared in the 1940's and were programmed in

machine language by sequences of 0's and 1's that explicitly told the computer
what operations to execute and in what order. The operations themselves

were very low level: move data from one location to another, add the contents
of two registers, compare two values, and so on. Needless to say, this kind

of programming was slow, tedious, and error prone. And once written, the

programs were hard to understand and modify.

1.3. THE EVOLUTION OF PROGRAMMING LANGUAGES

1.3.1 The Move to Higher-level Languages

The first step towards more people-friendly programming languages was the
development of mnemonic assembly languages in the early 1950's. Initially,

the instructions in an assembly language were just mnemonic representations
of machine instructions. Later, macro instructions were added to assembly

languages so that a programmer could define parameterized shorthands for

frequently used sequences of machine instructions.

A major step towards higher-level languages was made in the latter half of

the 1950's with the development of Fortran for scientific computation, Cobol

for business data processing, and Lisp for symbolic computation. The philos-

ophy behind these languages was to create higher-level notations with which

programmers could more easily write numerical computations, business appli-

cations, and symbolic programs. These languages were so successful that they

are still in use today.

In the following decades, many more languages were created with innovative

features to help make programming easier, more natural, and more robust.

Later in this chapter, we shall discuss some key features that are common to

many modern programming languages.

Today, there are thousands of programming languages. They can be classi-

fied in a variety of ways. One classification is by generation. First-generation

languages are the machine languages, second-generation the assembly languages,

and third-generation the higher-level languages like Fortran, Cobol, Lisp, C,

C++, C#, and Java. Fourth-generation languages are languages designed

for specific applications like NOMAD for report generation, SQL for database

queries, and Postscript for text formatting. The term fifth-generation language

has been applied to logic- and constraint-based languages like Prolog and OPS5.

Another classification of languages uses the term imperative for languages

in which a program specifies how a computation is to be done and declarative

for languages in which a program specifies what computation is to be done.

Languages such as C, C++, C#, and Java are imperative languages. In imper-

ative languages there is a notion of program state and statements that change

the state. Functional languages such as ML and Haskell and constraint logic

languages such as Prolog are often considered to be declarative languages.

The term von Neumann language is applied to programming languages

whose computational model is based on the von Neumann computer archi-

tecture. Many of today's languages, such as Fortran and C are von Neumann

languages.

An object-oriented language is one that supports object-oriented program-
ming, a programming style in which a program consists of a collection of objects

that interact with one another. Simula 67 and Smalltalk are the earliest major

object-oriented languages. Languages such as C++, C#, Java, and Ruby are

more recent ob ject-oriented languages.

Scripting languages are interpreted languages with high-level operators de-

signed for "gluing toget her" computations. These computations were originally

14 CHAPTER 1. INTRODUCTION

called "scripts." Awk, JavaScript, Perl, PHP, Python, Ruby, and Tcl are pop-

ular examples of scripting languages. Programs written in scripting languages

are often much shorter than equivalent programs written in languages like C.

1.3.2 Impacts on Compilers

Since the design of programming languages and compilers are intimately related,

the advances in programming languages placed new demands on compiler writ-

ers. They had to devise algorithms and representations to translate and support

the new language features. Since the 1940's, computer architecture has evolved

as well. Not only did the compiler writers have to track new language fea-
tures, they also had to devise translation algorithms that would take maximal

advantage of the new hardware capabilities.

Compilers can help promote the use of high-level languages by minimizing

the execution overhead of the programs written in these languages. Compilers

are also critical in making high-performance computer architectures effective

on users' applications. In fact, the performance of a computer system is so

dependent on compiler technology that compilers are used as a tool in evaluating

architectural concepts before a computer is built.

Compiler writing is challenging. A compiler by itself is a large program.

Moreover, many modern language-processing systems handle several source lan-

guages and target machines within the same framework; that is, they serve as

collections of compilers, possibly consisting of millions of lines of code. Con-

sequently, good software-engineering techniques are essential for creating and

evolving modern language processors.

A compiler must translate correctly the potentially infinite set of programs

that could be written in the source language. The problem of generating the

optimal target code from a source program is undecidable in general; thus,

compiler writers must evaluate tradeoffs about what problems to tackle and

what heuristics to use to approach the problem of generating efficient code.

A study of compilers is also a study of how theory meets practice, as we

shall see in Section 1.4.

The purpose of this text is to teach the methodology and fundamental ideas

used in compiler design. It is not the intention of this text to teach all the

algorithms and techniques that could be used for building a st ate-of-the-art

language-processing system. However, readers of this text will acquire the basic

knowledge and understanding to learn how to build a compiler relatively easily.

1.3.3 Exercises for Section 1.3

Exercise 1.3.1 : Indicate which of the following terms:

a) imperative b) declarative c) von Neumann

d) object-oriented e) functional f) third-generation

g) fourth-generation h) scripting

1.4. THE SCIENCE OF BUILDING A COMPILER

apply to which of the following languages:

1) C 2) C++ 3) Cobol 4) Fortran 5) Java

6) Lisp 7) ML 8) Per1 9) Python 10) VB.

1.4 The Science of Building a Compiler

Compiler design is full of beautiful examples where complicated real-world prob-

lems are solved by abstracting the essence of the problem mathematically. These

serve as excellent illustrations of how abstractions can be used to solve prob-

lems: take a problem, formulate a mathematical abstraction that captures the

key characteristics, and solve it using mathematical techniques. The problem

formulation must be grounded in a solid understanding of the characteristics of

computer programs, and the solution must be validated and refined empirically.

A compiler must accept all source programs that conform to the specification

of the language; the set of source programs is infinite and any program can be

very large, consisting of possibly millions of lines of code. Any transformation

performed by the compiler while translating a source program must preserve the

meaning of the program being compiled. Compiler writers thus have influence

over not just the compilers they create, but all the programs that their com-

pilers compile. This leverage makes writing compilers particularly rewarding;

however, it also makes compiler development challenging.

1.4.1 Modeling in Compiler Design and Implementation

The study of compilers is mainly a study of how we design the right mathe-

matical models and choose the right algorithms, while balancing the need for

generality and power against simplicity and efficiency.

Some of most fundamental models are finite-state machines and regular

expressions, which we shall meet in Chapter 3. These models are useful for de-

scribing the lexical units of programs (keywords, identifiers, and such) and for

describing the algorithms used by the compiler to recognize those units. Also

among the most fundamental models are context-free grammars, used to de-

scribe the syntactic structure of programming languages such as the nesting of

parentheses or control constructs. We shall study grammars in Chapter 4. Sim-

ilarly, trees are an important model for representing the structure of programs

and their translation into object code, as we shall see in Chapter 5.

1.4.2 The Science of Code Optimization

The term "optimization" in compiler design refers to the attempts that a com-

piler makes to produce code that is more efficient than the obvious code. "Op-

timization" is thus a misnomer, since there is no way that the code produced

by a compiler can be guaranteed to be as fast or faster than any other code

that performs the same task.

CHAPTER 1. INTRODUCTION

In modern times, the optimization of code that a compiler performs has

become both more important and more complex. It is more complex because

processor architectures have become more complex, yielding more opportunities

to improve the way code executes. It is more important because massively par-

allel computers require substantial optimization, or their performance suffers by

orders of magnitude. With the likely prevalence of multicore machines (com-

puters with chips that have large numbers of processors on them), all compilers

will have to face the problem of taking advantage of multiprocessor machines.

It is hard, if not impossible, to build a robust compiler out of "hacks."

Thus, an extensive and useful theory has been built up around the problem of

optimizing code. The use of a rigorous mathematical foundation allows us to

show that an optimization is correct and that it produces the desirable effect

for all possible inputs. We shall see, starting in Chapter 9, how models such

as graphs, matrices, and linear programs are necessary if the compiler is to

produce well optimized code.

On the other hand, pure theory alone is insufficient. Like many real-world

problems, there are no perfect answers. In fact, most of the questions that

we ask in compiler optimization are undecidable. One of the most important

skills in compiler design is the ability to formulate the right problem to solve.

We need a good understanding of the behavior of programs to start with and

thorough experimentation and evaluation to validate our intuitions.

Compiler optimizations must meet the following design objectives:

The optimization must be correct, that is, preserve the meaning of the

compiled program,

The optimization must improve the performance of many programs,

The compilation time must be kept reasonable, and

The engineering effort required must be manageable.

It is impossible to overemphasize the importance of correctness. It is trivial

to write a compiler that generates fast code if the generated code need not

be correct! Optimizing compilers are so difficult to get right that we dare say

that no optimizing compiler is completely error-free! Thus, the most important

objective in writing a compiler is that it is correct.

The second goal is that the compiler must be effective in improving the per-

formance of many input programs. Normally, performance means the speed of

the program execution. Especially in embedded applications, we may also wish

to minimize the size of the generated code. And in the case of mobile devices,

it is also desirable that the code minimizes power consumption. Typically, the

same optimizations that speed up execution time also conserve power. Besides

performance, usability aspects such as error reporting and debugging are also

import ant.

Third, we need to keep the compilation time short to support a rapid devel-

opment and debugging cycle. This requirement has become easier to meet as

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 17

machines get faster. Often, a program is first developed and debugged without

program optimizations. Not only is the compilation time reduced, but more

importantly, unoptimized programs are easier to debug, because the optimiza-

tions introduced by a compiler often obscure the relationship between the source

code and the object code. Turning on optimizations in the compiler sometimes

exposes new problems in the source program; thus testing must again be per-

formed on the optimized code. The need for additional testing sometimes deters

the use of optimizations in applications, especially if their performance is not

critical.

Finally, a compiler is a complex system; we must keep the system sim-

ple to assure that the engineering and maintenance costs of the compiler are

manageable. There is an infinite number of program optimizations that we

could implement, and it takes a nontrivial amount of effort to create a correct

and effective optimization. We must prioritize the optimizations, implementing

only those that lead to the greatest benefits on source programs encountered in

practice.

Thus, in studying compilers, we learn not only how to build a compiler, but

also the general methodology of solving complex and open-ended problems. The

approach used in compiler development involves both theory and experimenta-

tion. We normally start by formulating the problem based on our intuitions on

what the important issues are.

1.5 Applications of Compiler Technology

Compiler design is not only about compilers, and many people use the technol-

ogy learned by studying compilers in school, yet have never, strictly speaking,

written (even part of) a compiler for a major programming language. Compiler

technology has other important uses as well. Additionally, compiler design im-

pacts several other areas of computer science. In this section, we review the

most important interactions and applications of the technology.

1.5.1 Implementation of High-Level Programming

Languages

A high-level programming language defines a programming abstraction: the

programmer expresses an algorithm using the language, and the compiler must

translate that program to the target language. Generally, higher-level program-

ming languages are easier to program in, but are less efficient, that is, the target

programs run more slowly. Programmers using a low-level language have more

control over a computation and can, in principle, produce more efficient code.

Unfortunately, lower-level programs are harder to write and - worse still -

less portable, more prone to errors, and harder to maintain. Optimizing com-

pilers include techniques to improve the performance of generated code, thus

offsetting the inefficiency introduced by high-level abstractions.

18 CHAPTER 1. INTRODUCTION

Example 1.2 : The register keyword in the C programming language is an

early example of the interaction between compiler technology and language evo-

lution. When the C language was created in the mid 1970s, it was considered

necessary to let a programmer control which program variables reside in regis-

ters. This control became unnecessary as effective register-allocation techniques

were developed, and most modern programs no longer use this language feature.

In fact, programs that use the register keyword may lose efficiency, because

programmers often are not the best judge of very low-level matters like register

allocation. The optimal choice of register allocation depends greatly on the

specifics of a machine architecture. Hardwiring low-level resource-management

decisions like register allocation may in fact hurt performance, especially if the
program is run on machines other than the one for which it was written.

The many shifts in the popular choice of programming languages have been

in the direction of increased levels of abstraction. C was the predominant

systems programming language of the 80's; many of the new projects started

in the 90's chose C++; Java, introduced in 1995, gained popularity quickly

in the late 90's. The new programming-language features introduced in each

round spurred new research in compiler optimization. In the following, we give

an overview on the main language features that have stimulated significant

advances in compiler technology.

Practically all common programming languages, including C, Fortran and

Cobol, support user-defined aggregate data types, such as arrays and structures,

and high-level control flow, such as loops and procedure invocations. If we just

take each high-level construct or data-access operation and translate it directly

to machine code, the result would be very inefficient. A body of compiler

optimizations, known as data-flow optimizations, has been developed to analyze

the flow of data through the program and removes redundancies across these

constructs. They are effective in generating code that resembles code written

by a skilled programmer at a lower level.

Object orientation was first introduced in Simula in 1967, and has been
incorporated in languages such as Smalltalk, C++, C#, and Java. The key

ideas behind object orientation are

1. Data abstraction and

2. Inheritance of properties,

both of which have been found to make programs more modular and easier to

maintain. Object-oriented programs are different from those written in many

other languages, in that they consist of many more, but smaller, procedures

(called methods in object-oriented terms). Thus, compiler optimizations must

be able to perform well across the procedural boundaries of the source program.

Procedure inlining, which is the replacement of a procedure call by the body

of the procedure, is particularly useful here. Optimizations to speed up virtual
met hod dispatches have also been developed.

APPLICATIONS OF COMPILER TECHNOLOGY

Java has many features that make programming easier, many of which have

been introduced previously in other languages. The Java language is type-safe;

that is, an object cannot be used as an object of an unrelated type. All array

accesses are checked to ensure that they lie within the bounds of the array.

Java has no pointers and does not allow pointer arithmetic. It has a built-in

garbage-collection facility that automatically frees the memory of variables that

are no longer in use. While all these features make programming easier, they

incur a run-time overhead. Compiler optimizations have been developed to

reduce the overhead, for example, by eliminating unnecessary range checks and

by allocating objects that are not accessible beyond a procedure on the stack

instead of the heap. Effective algorithms also have been developed to minimize

the overhead of garbage collection.

In addition, Java is designed to support portable and mobile code. Programs

are distributed as Java bytecode, which must either be interpreted or compiled

into native code dynamically, that is, at run time. Dynamic compilation has also

been studied in other contexts, where information is extracted dynamically at

run time and used to produce better-optimized code. In dynamic optimization,

it is important to minimize the compilation time as it is part of the execution

overhead. A common technique used is to only compile and optimize those

parts of the program that will be frequently executed.

1.5.2 Optimizations for Computer Architectures

The rapid evolution of computer architectures has also led to an insatiable

demand for new compiler technology. Almost all high-performance systems

take advantage of the same two basic techniques: parallelism and memory hi-

erarchies. Parallelism can be found at several levels: at the instruction level,

where multiple operations are executed simultaneously and at the processor

level, where different threads of the same application are run on different pro-

cessors. Memory hierarchies are a response to the basic limitation that we can

build very fast storage or very large storage, but not storage that is both fast

and large.

Parallelism

All modern microprocessors exploit instruction-level parallelism. However, this

parallelism can be hidden from the programmer. Programs are written as if all

instructions were executed in sequence; the hardware dynamically checks for

dependencies in the sequential instruction stream and issues them in parallel

when possible. In some cases, the machine includes a hardware scheduler that

can change the instruction ordering to increase the parallelism in the program.

Whether the hardware reorders the instructions or not, compilers can rearrange

the instructions to make instruction-level parallelism more effective.

Instruction-level parallelism can also appear explicitly in the instruction set.

VLIW (Very Long Instruction Word) machines have instructions that can issue

CHAPTER 2. INTRODUCTION

multiple operations in parallel. The Intel IA64 is a well-known example of such

an architecture. All high-performance, general-purpose microprocessors also
include instructions that can operate on a vector of data at the same time.

Compiler techniques have been developed to generate code automatically for

such machines from sequential programs.

Multiprocessors have also become prevalent ; even personal computers of-

ten have multiple processors. Programmers can write multithreaded code for

multiprocessors, or parallel code can be automatically generated by a com-

piler from conventional sequential programs. Such a compiler hides from the

programmers the details of finding parallelism in a program, distributing the

computation across the machine, and minimizing synchronization and com-

munication among the processors. Many scientific-computing and engineering

applications are computation-intensive and can benefit greatly from parallel

processing. Parallelization techniques have been developed to translate auto-

matically sequential scientific programs into multiprocessor code.

Memory Hierarchies

A memory hierarchy consists of several levels of storage with different speeds

and sizes, with the level closest to the processor being the fastest but small-

est. The average memory-access time of a program is reduced if most of its
accesses are satisfied by the faster levels of the hierarchy. Both parallelism and

the existence of a memory hierarchy improve the potential performance of a

machine, but they must be harnessed effectively by the compiler to deliver real

performance on an application.

Memory hierarchies are found in all machines. A processor usually has

a small number of registers consisting of hundreds of bytes, several levels of

caches containing kilobytes to megabytes, physical memory containing mega-

bytes to gigabytes, and finally secondary storage that contains gigabytes and

beyond. Correspondingly, the speed of accesses between adjacent levels of the

hierarchy can differ by two or three orders of magnitude. The performance of a

system is often limited not by the speed of the processor but by the performance

of the memory subsystem. While compilers traditionally focus on optimizing

the processor execution, more emphasis is now placed on making the memory
hierarchy more effective.

Using registers effectively is probably the single most important problem in

optimizing a program. Unlike registers that have to be managed explicitly in

software, caches and physical memories are hidden from the instruction set and

are managed by hardware. It has been found that cache-management policies

implemented by hardware are not effective in some cases, especially in scientific

code that has large data structures (arrays, typically). It is possible to improve

the effectiveness of the memory hierarchy by changing the layout of the data,
or changing the order of instructions accessing the data. We can also change

the layout of code to improve the effectiveness of instruction caches.

1.5. APPLICATIONS OF COMPILER TECHNOLOGY

1.5.3 Design of New Computer Architectures

In the early days of computer architecture design, compilers were developed

after the machines were built. That has changed. Since programming in high-

level languages is the norm, the performance of a computer system is determined

not by its raw speed but also by how well compilers can exploit its features.

Thus, in modern computer architecture development, compilers are developed

in the processor-design stage, and compiled code, running on simulators, is used

to evaluate the proposed architectural features.

RISC

One of the best known examples of how compilers influenced the design of

computer architecture was the invention of the RISC (Reduced Instruction-Set

Computer) architecture. Prior to this invention, the trend was to develop pro-

gressively complex instruction sets intended to make assembly programming

easier; these architectures were known as CISC (Complex Instruction-Set Com-

puter). For example, CISC instruction sets include complex memory-addressing

modes to support data-structure accesses and procedure-invocation instructions

that save registers and pass parameters on the stack.

Compiler optimizations often can reduce these instructions to a small num-

ber of simpler operations by eliminating the redundancies across complex in-

structions. Thus, it is desirable to build simple instruction sets; compilers can

use them effectively and the hardware is much easier to optimize.

Most general-purpose processor architectures, including PowerPC, SPARC,

MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the

x86 architecture-the most popular microprocessor-has a CISC instruction

set, many of the ideas developed for RISC machines are used in the imple-

mentation of the processor itself. Moreover, the most effective way to use a

high-performance x86 machine is to use just its simple instructions.

Specialized Architectures

Over the last three decades, many architectural concepts have been proposed.

They include data flow machines, vector machines, VLIW (Very Long Instruc-

tion Word) machines, SIMD (Single Instruction, Multiple Data) arrays of pro-

cessors, systolic arrays, multiprocessors with shared memory, and multiproces-

sors with distributed memory. The development of each of these architectural

concepts was accompanied by the research and development of corresponding

compiler technology.

Some of these ideas have made their way into the designs of embedded

machines. Since entire systems can fit on a single chip, processors need no
longer be prepackaged commodity units, but can be tailored to achieve better

cost-effectiveness for a particular application. Thus, in contrast to general-
purpose processors, where economies of scale have led computer architectures

22 CHAPTER 1. INTRODUCTION

to converge, application-specific processors exhibit a diversity of computer ar-

chitectures. Compiler technology is needed not only to support programming

for these architectures, but also to evaluate proposed architectural designs.

1.5.4 Program Translations

While we normally think of compiling as a translation from a high-level lan-

guage to the machine level, the same technology can be applied to translate

between different kinds of languages. The following are some of the important

applications of program-translation techniques.

Binary Translation

Compiler technology can be used to translate the binary code for one machine

to that of another, allowing a machine to run programs originally compiled for

another instruction set. Binary translation technology has been used by various

computer companies to increase the availability of software for their machines.

In particular, because of the domination of the x86 personal-computer mar-

ket, most software titles are available as x86 code. Binary translators have

been developed to convert x86 code into both Alpha and Sparc code. Binary

translation was also used by Transmeta Inc. in their implementation of the x86

instruction set. Instead of executing the complex x86 instruction set directly in

hardware, the Transmeta Crusoe processor is a VLIW processor that relies on

binary translation to convert x86 code into native VLIW code.

Binary translation can also be used to provide backward compatibility.

When the processor in the Apple Macintosh was changed from the Motorola MC

68040 to the PowerPC in 1994, binary translation was used to allow PowerPC

processors run legacy MC 68040 code.

Hardware Synthesis

Not only is most software written in high-level languages; even hardware de-

signs are mostly described in high-level hardware description languages like

Verilog and VHDL (Very high-speed integrated circuit Hardware Description

Language). Hardware designs are typically described at the register trans-

fer level (RTL), where variables represent registers and expressions represent

combinational logic. Hardware-synthesis tools translate RTL descriptions auto-

matically into gates, which are then mapped to transistors and eventually to a
physical layout. Unlike compilers for programming languages, these tools often
take hours optimizing the circuit. Techniques to translate designs at higher

levels, such as the behavior or functional level, also exist.

Database Query Interpreters

Besides specifying software and hardware, languages are useful in many other

applications. For example, query languages, especially SQL (Structured Query

1.5. APPLICATIONS OF COMPILER TECHNOLOGY

Language), are used to search databases. Database queries consist of predicates

containing relational and boolean operators. They can be interpreted or com-

piled into commands to search a database for records satisfying that predicate.

Compiled Simulation

Simulation is a general technique used in many scientific and engineering disci-

plines to understand a phenomenon or to validate a design. Inputs to a simula-

tor usually include the description of the design and specific input parameters

for that particular simulation run. Simulations can be very expensive. We typi-

cally need to simulate many possible design alternatives on many different input

sets, and each experiment may take days to complete on a high-performance

machine. Instead of writing a simulator that interprets the design, it is faster

to compile the design to produce machine code that simulates that particular

design natively. Compiled simulation can run orders of magnitude faster than

an interpreter-based approach. Compiled simulation is used in many state-of-

the-art tools that simulate designs written in Verilog or VHDL.

1.5.5 Software Productivity Tools

Programs are arguably the most complicated engineering artifacts ever pro-

duced; they consist of many many details, every one of which must be correct

before the program will work completely. As a result, errors are rampant in

programs; errors may crash a system, produce wrong results, render a system

vulnerable to security attacks, or even lead to catastrophic failures in critical

systems. Testing is the primary technique for locating errors in programs.

An interesting and promising complementary approach is to use data-flow

analysis to locate errors statically (that is, before the program is run). Data-

flow analysis can find errors along all the possible execution paths, and not

just those exercised by the input data sets, as in the case of program testing.

Many of the data-flow-analysis techniques, originally developed for compiler

optimizations, can be used to create tools that assist programmers in their

software engineering tasks.

The problem of finding all program errors is undecidable. A data-flow analy-

sis may be designed to warn the programmers of all possible statements violating

a particular category of errors. But if most of these warnings are false alarms,

users will not use the tool. Thus, practical error detectors are often neither

sound nor complete. That is, they may not find all the errors in the program,

and not all errors reported are guaranteed to be real errors. Nonetheless, var-

ious static analyses have been developed and shown to be effective in finding

errors, such as dereferencing null or freed pointers, in real programs. The fact

that error detectors may be unsound makes them significantly different from

compiler optimizations. Optimizers must be conservative and cannot alter the

semantics of the program under any circumstances.

24 CHAPTER 1. INTRODUCTION

In the balance of this section, we shall mention several ways in which pro-

gram analysis, building upon techniques originally developed to optimize code

in compilers, have improved software productivity. Of special importance are

techniques that detect statically when a program might have a security vulner-

ability.

Type Checking

Type checking is an effective and well-established technique to catch inconsis-

tencies in programs. It can be used to catch errors, for example, where an

operation is applied to the wrong type of object, or if parameters passed to a

procedure do not match the signature of the procedure. Program analysis can

go beyond finding type errors by analyzing the flow of data through a program.

For example, if a pointer is assigned n u l l and then immediately dereferenced,

the program is clearly in error.

The same technology can be used to catch a variety of security holes, in

which an attacker supplies a string or other data that is used carelessly by the

program. A user-supplied string can be labeled with a type "dangerous." If

this string is not checked for proper format, then it remains "dangerous," and

if a string of this type is able to influence the control-flow of the code at some

point in the program, then there is a potential security flaw.

Bounds Checking

It is easier to make mistakes when programming in a lower-level language than

a higher-level one. For example, many security breaches in systems are caused

by buffer overflows in programs written in C. Because C does not have array-

bounds checks, it is up to the user to ensure that the arrays are not accessed

out of bounds. Failing to check that the data supplied by the user can overflow

a buffer, the program may be tricked into storing user data outside of the

buffer. An attacker can manipulate the input data that causes the program to

misbehave and compromise the security of the system. Techniques have been

developed to find buffer overflows in programs, but with limited success.

Had the program been written in a safe language that includes automatic

range checking, this problem would not have occurred. The same data-flow

analysis that is used to eliminate redundant range checks can also be used to

locate buffer overflows. The major difference, however, is that failing to elimi-

nate a range check would only result in a small run-time cost, while failing to

identify a potential buffer overflow may compromise the security of the system.

Thus, while it is adequate to use simple techniques to optimize range checks, so-

phisticated analyses, such as tracking the values of pointers across procedures,

are needed to get high-quality results in error detection tools.

1.6. PROGRAMMING LANGUAGE BASICS

Memory-Management Tools

Garbage collection is another excellent example of the tradeoff between effi-

ciency and a combination of ease of programming and software reliability. Au-

tomatic memory management obliterates all memory-management errors (e.g.,

"memory leaks"), which are a major source of problems in C and C++ pro-

grams. Various tools have been developed to help programmers find memory

management errors. For example, Purify is a widely used tool that dynamically

catches memory management errors as they occur. Tools that help identify

some of these problems statically have also been developed.

1.6 Programming Language Basics

In this section, we shall cover the most important terminology and distinctions

that appear in the study of programming languages. It is not our purpose to

cover all concepts or all the popular programming languages. We assume that

the reader is familiar with at least one of C, C++, C#, or Java, and may have

encountered other languages as well.

1.6.1 The Static/Dynarnic Distinction

Among the most important issues that we face when designing a compiler for

a language is what decisions can the compiler make about a program. If a

language uses a policy that allows the compiler to decide an issue, then we say

that the language uses a static policy or that the issue can be decided a t compile
t ime. On the other hand, a policy that only allows a decision to be made when

we execute the program is said to be a dynamic policy or to require a decision

at r u n t ime.

One issue on which we shall concentrate is the scope of declarations. The

scope of a declaration of x is the region of the program in which uses of x refer t o

this declaration. A language uses static scope or lexical scope if it is possible to

determine the scope of a declaration by looking only a t the program. Otherwise,

the language uses dynamic scope. With dynamic scope, as the program runs,

the same use of x could refer to any of several different declarations of x.

Most languages, such as C and Java, use static scope. We shall discuss static

scoping in Section 1.6.3.

Example 1.3 : As another example of the staticldynamic distinction, consider

the use of the term "static" as it applies to data in a Java class declaration. In

Java, a variable is a name for a location in memory used to hold a data value.

Here, "static" refers not to the scope of the variable, but rather to the ability of

the compiler to determine the location in memory where the declared variable

can be found. A declaration like

public s t a t i c i n t x ;

CHAPTER 1. INTRODUCTION

makes x a class variable and says that there is only one copy of x, no matter how

many objects of this class are created. Moreover, the compiler can determine a

location in memory where this integer x will be held. In contrast, had "static"

been omitted from this declaration, then each object of the class would have its

own location where x would be held, and the compiler could not determine all

these places in advance of running the program.

1.6.2 Environments and States

Another important distinction we must make when discussing programming

languages is whether changes occurring as the program runs affect the values of

data elements or affect the interpretation of names for that data. For example,

the execution of an assignment such as x = y + 1 changes the value denoted by

the name x. More specifically, the assignment changes the value in whatever

location is denoted by x.

It may be less clear that the location denoted by x can change at run time.

For instance, as we discussed in Example 1.3, if x is not a static (or "class")

variable, then every object of the class has its own location for an instance

of variable x. In that case, the assignment to x can change any of those "in-

stance" variables, depending on the object to which a method containing that

assignment is applied.

environment state

names
n n

locations values

(variables)

Figure 1.8: Two-stage mapping from names to values

The association of names with locations in memory (the store) and then

with values can be described by two mappings that change as the program runs

(see Fig. 1.8):

1. The environment is a mapping from names to locations in the store. Since

variables refer to locations ('L1-values" in the terminology of C), we could

alternatively define an environment as a mapping from names to variables.

2. The state is a mapping from locations in store to their values. That is, the

state maps 1-values to their corresponding r-values, in the terminology of

C.

Environments change according to the scope rules of a language.

Example 1.4: Consider the C program fragment in Fig. 1.9. Integer i is

declared a global variable, and also declared as a variable local to function f .

When f is executing, the environment adjusts so that name i refers to the

1.6. PROGRAMMING LANGUAGE BASICS

i n t i ;
...
void f(.--) {

i n t i ;

/* global i */

/* local i */

/* use of local i */

x = i + I ; /* use of global i */

Figure 1.9: Two declarations of the name i

location reserved for the i that is local to f , and any use of i , such as the

assignment i = 3 shown explicitly, refers to that location. Typically, the local

i is given a place on the run-time stack.

Whenever a function g other than f is executing, uses of i cannot refer to

the i that is local to f . Uses of name i in g must be within the scope of some

other declaration of i. An example is the explicitly shown statement x = i+l,

which is inside some procedure whose definition is not shown. The i in i + 1

presumably refers to the global i . As in most languages, declarations in C must

precede their use, so a function that comes before the global i cannot refer to

it.

The environment and state mappings in Fig. 1.8 are dynamic, but there are

a few exceptions:

1. Static versus dynamic binding of names to locations. Most binding of

names to locations is dynamic, and we discuss several approaches to this

binding throughout the section. Some declarations, such as the global i

in Fig. 1.9, can be given a location in the store once and for all, as the

compiler generates object code.2

2. Static versus dynamic binding of locations to values. The binding of lo-

cations to values (the second stage in Fig. 1.8), is generally dynamic as
well, since we cannot tell the value in a location until we run the program.

Declared constants are an exception. For instance, the C definition

#define ARRAYSIZE 1000
-- --

2~echnically, the C compiler will assign a location in virtual memory for the global i,

leaving it to the loader and the operating system to determine where in the physical memory

of the machine i will be located. However, we shall not worry about "relocation" issues such
as these, which have no impact on compiling. Instead, we treat the address space that the

compiler uses for its output code as if it gave physical memory locations.

28 CHAPTER I . INTRODUCTION

Names, Identifiers, and Variables

Although the terms "name" and "variable," often refer to the same thing,

we use them carefully to distinguish between compile-time names and the

run-time locations denoted by names.

An identifier is a string of characters, typically letters or digits, that

refers to (identifies) an entity, such as a data object, a procedure, a class,

or a type. All identifiers are names, but not all names are identifiers.

Names can also be expressions. For example, the name x.y might denote

the field y of a structure denoted by x. Here, x and y are identifiers, while

x.y is a name, but not an identifier. Composite names like x.y are called

qualified names.

A variable refers to a particular location of the store. It is common for

the same identifier to be declared more than once; each such declaration

introduces a new variable. Even if each identifier is declared just once, an

identifier local to a recursive procedure will refer to different locations of

the store at different times.

binds the name ARRAYSIZE to the value 1000 statically. We can determine

this binding by looking at the statement, and we know that it is impossible

for this binding to change when the program executes.

1.6.3 Static Scope and Block Structure

Most languages, including C and its family, use static scope. The scope rules

for C are based on program structure; the scope of a declaration is determined

implicitly by where the declaration appears in the program. Later languages,

such as C++, Java, and C#, also provide explicit control over scopes through

the use of keywords like public, private, and protected.

In this section we consider static-scope rules for a language with blocks,

where a block is a grouping of declarations and statements. C uses braces I and

) to delimit a block; the alternative use of begin and end for the same purpose

dates back to Algol.

Example 1.5 : To a first approximation, the C static-scope policy is as follows:

1. A C program consists of a sequence of top-level declarations of variables

and functions.

2. Functions may have variable declarations within them, where variables

include local variables and parameters. The scope of each such declaration

is restricted to the function in which it appears.

1.6. PROGRAMMING LANGUAGE BASICS 29

Procedures, Functions, and Methods

To avoid saying "procedures, functions, or methods," each time we want

to talk about a subprogram that may be called, we shall usually refer to

all of them as "procedures." The exception is that when talking explicitly

of programs in languages like C that have only functions, we shall refer

to them as "functions." Or, if we are discussing a language like Java that

has only methods, we shall use that term instead.

A function generally returns a value of some type (the "return type"),

while a procedure does not return any value. C and similar languages,

which have only functions, treat procedures as functions that have a special

return type "void," to signify no return value. Object-oriented languages

like Java and C++ use the term "methods." These can behave like either

functions or procedures, but are associated with a particular class.

3. The scope of a top-level declaration of a name x consists of the entire

program that follows, with the exception of those statements that lie

within a function that also has a declaration of x.

The additional detail regarding the C static-scope policy deals with variable

declarations within statements. We examine such declarations next and in

Example 1.6.

In C, the syntax of blocks is given by

1. One type of statement is a block. Blocks can appear anywhere that other

types of statements, such as assignment statements, can appear.

2. A block is a sequence of declarations followed by a sequence of statements,

all surrounded by braces.

Note that this syntax allows blocks to be nested inside each other. This
nesting property is referred to as block structure. The C family of languages

has block structure, except that a function may not be defined inside another

function.

We say that a declaration D "belongs" to a block B if B is the most closely

nested block containing D; that is, D is located within B , but not within any

block that is nested within B.
The static-scope rule for variable declarations in a block-structured lan-

guages is as follows. If declaration D of name x belongs to block B, then the

scope of D is all of B , except for any blocks B' nested to any depth within B ,

in which x is redeclared. Here, x is redeclared in B' if some other declaration
D' of the same name x belongs to B'.

30 CHAPTER 1. INTRODUCTION

An equivalent way to express this rule is to focus on a use of a name x.

Let B1, B2, . . . , Bk be all the blocks that surround this use of x, with Bk the

smallest, nested within Bk-1, which is nested within Bk-2, and so on. Search

for the largest i such that there is a declaration of x belonging to Bi. This use

of x refers to the declaration in Bi. Alternatively, this use of x is within the

scope of the declaration in Bi.

'int b = 2; \

.€
B2

int a = 3;

cout << a << b;
3

int b = 4;

cout << a << b;
3
,cout << a << b;

J

cout << a << b;
1

Figure 1.10: Blocks in a C++ program

Example 1.6 : The C++ program in Fig. 1.10 has four blocks, with several

definitions of variables a and b. As a memory aid, each declaration initializes

its variable to the number of the block to which it belongs.

For instance, consider the declaration int a = I in block B1. Its scope

is all of B1, except for those blocks nested (perhaps deeply) within B1 that

have their own declaration of a. B2, nested immediately within B1, does not

have a declaration of a , but B3 does. B4 does not have a declaration of a , so

block B3 is the only place in the entire program that is outside the scope of the

declaration of the name a that belongs to B1. That is, this scope includes f i

and all of B2 except for the part of B2 that is within B3. The scopes of all five

declarations are summarized in Fig. 1.11.

From another point of view, let us consider the output statement in block

B4 and bind the variables a and b used there to the proper declarations. The

list of surrounding blocks, in order of increasing size, is Bq , B2, B1. Note that

B3 does not surround the point in question. B4 has a declaration of b, so it

is to this declaration that this use of b refers, and the value of b printed is 4.

However, B4 does not have a declaration of a , so we next look at B2. That

block does not have a declaration of a either, so we proceed to B1. Fortunately,

1.6. PROGRAMMING LANGUAGE BASICS

DECLARATION

int a = 1;

int b = 1;

int b = 2;

int a = 3;

int b = 4;

Figure 1.11: Scopes of declarations in Example 1.6

there is a declaration int a = 1 belonging to that block, so the value of a

printed is I. Had there been no such declaration, the program would have been

erroneous. C1

1.6.4 Explicit Access Control

Classes and structures introduce a new scope for their members. If p is an

object of a class with a field (member) x, then the use of x in p.x refers to

field x in the class definition. In analogy with block structure, the scope of a

member declaration x in a class C extends to any subclass C', except if C' has

a local declaration of the same name x.

Through the use of keywords like public, private, and protected, object-

oriented languages such as C++ or Java provide explicit control over access

to member names in a superclass. These keywords support encapsulation by

restricting access. Thus, private names are purposely given a scope that includes

only the method declarations and definitions associated with that class and any

"friend" classes (the C++ term). Protected names are accessible to subclasses.

Public names are accessible from outside the class.

In C++, a class definition may be separated from the definitions of some

or all of its methods. Therefore, a name x associated with the class C may

have a region of the code that is outside its scope, followed by another region (a

method definition) that is within its scope. In fact, regions inside and outside

the scope may alternate, until all the methods have been defined.

1.6.5 Dynamic Scope

Technically, any scoping policy is dynamic if it is based on factor(s) that can

be known only when the program executes. The term dynamic scope, however,

usually refers to the following policy: a use of a name x refers to the declaration

of x in the most recently called procedure with such a declaration. Dynamic

scoping of this type appears only in special situations. We shall consider two ex-

amples of dynamic policies: macro expansion in the C preprocessor and method

resolution in ob ject-oriented programming.

32 CHAPTER 1. INTRODUCTION

Declarations and Definitions

The apparently similar terms "declaration" and "definition" for program-

ming-language concepts are actually quite different. Declarations tell us

about the types of things, while definitions tell us about their values. Thus,

int i is a declaration of i, while i = I is a definition of i .

The difference is more significant when we deal with methods or other

procedures. In C++, a method is declared in a class definition, by giving

the types of the arguments and result of the method (often called the

signature for the method. The method is then defined, i.e., the code for

executing the method is given, in another place. Similarly, it is common

to define a C function in one file and declare it in other files where the

function is used.

Example 1.7 : In the C program of Fig. 1.12, identifier a is a macro that

stands for expression (x + I). But what is x? We cannot resolve x statically,

that is, in terms of the program text.

int x = 2;

void b() (int x = I ; printf (ll%d\nll, a) ; 3

void c () (printf("%d\nI1, a);

void main() (b(); c () ; 3

Figure 1.12: A macro whose names must be scoped dynamically

In fact, in order to interpret x, we must use the usual dynamic-scope rule.

We examine all the function calls that are currently active, and we take the most

recently called function that has a declaration of x. It is to this declaration that

the use of x refers.
In the example of Fig. 1.12, the function main first calls function b. As b

executes, it prints the value of the macro a. Since (x + 1) must be substituted

for a , we resolve this use of x to the declaration int x=l in function b. The
reason is that b has a declaration of x, so the (x + 1) in the printf in b refers

to this x. Thus, the value printed is 1.

After b finishes, and c is called, we again need to print the value of macro

a. However, the only x accessible to c is the global x. The printf statement
in c thus refers to this declaration of x, and value 2 is printed.

Dynamic scope resolution is also essential for polymorphic procedures, those

that have two or more definitions for the same name, depending only on the

1.6. PROGRAMMING LANGUAGE BASICS

Analogy Between Static and Dynamic Scoping

While there could be any number of static or dynamic policies for scoping,

there is an interesting relationship between the normal (block-structured)

static scoping rule and the normal dynamic policy. In a sense, the dynamic

rule is to time as the static rule is to space. While the static rule asks us to

find the declaration whose unit (block) most closely surrounds the physical

location of the use, the dynamic rule asks us to find the declaration whose

unit (procedure invocation) most closely surrounds the time of the use.

types of the arguments. In some languages, such as ML (see Section 7.3.3), it

is possible to determine statically types for all uses of names, in which case the

compiler can replace each use of a procedure name p by a reference to the code

for the proper procedure. However, in other languages, such as Java and C++,
there are times when the compiler cannot make that determination.

Example 1.8 : A distinguishing feature of object-oriented programming is the

ability of each object to invoke the appropriate method in response to a message.

In other words, the procedure called when x.m() is executed depends on the

class of the object denoted by x at that time. A typical example is as follows:

1. There is a class iC with a method named m().

2. D is a subclass of C, and D has its own method named m().

3. There is a use of m of the form x.m(), where x is an object of class C.

Normally, it is impossible to tell at compile time whether x will be of class

C or of the subclass D. If the method application occurs several times, it is

highly likely that some will be on objects denoted by x that are in class C but

not D, while others will be in class D. It is not until run-time that it can be

decided which definition of rn is the right one. Thus, the code generated by the

compiler must determine the class of the object x, and call one or the other

method named m.

1.6.6 Parameter Passing Mechanisms

All programming languages have a notion of a procedure, but they can differ

in how these procedures get their arguments. In this section, we shall consider

how the actual parameters (the parameters used in the call of a procedure)

are associated with the formal parameters (those used in the procedure defi-

nition). Which mechanism is used determines how the calling-sequence code

treats parameters. The great majority of languages use either "call-by-value,"

or "call-by-reference," or both. We shall explain these terms, and another
method known as "call-by-name," that is primarily of historical interest.

CHAPTER 1. INTRODUCTION

In call-by-value, the actual parameter is evaluated (if it is an expression) or

copied (if it is a variable). The value is placed in the location belonging to
the corresponding formal parameter of the called procedure. This method is

used in C and Java, and is a common option in C++, as well as in most

other languages. Call-by-value has the effect that all computation involving the

formal parameters done by the called procedure is local to that procedure, and

the actual parameters themselves cannot be changed.

Note, however, that in C we can pass a pointer to a variable to allow that

variable to be changed by the callee. Likewise, array names passed as param-

eters in C, C++, or Java give the called procedure what is in effect a pointer

or reference to the array itself. Thus, if a is the name of an array of the calling

procedure, and it is passed by value to corresponding formal parameter x, then

an assignment such as x[i] = 2 really changes the array element a[2]. The

reason is that, although x gets a copy of the value of a , that value is really a

pointer to the beginning of the area of the store where the array named a is

located.

Similarly, in Java, many variables are really references, or pointers, to the

things they stand for. This observation applies to arrays, strings, and objects

of all classes. Even though Java uses call-by-value exclusively, whenever we

pass the name of an object to a called procedure, the value received by that

procedure is in effect a pointer to the object. Thus, the called procedure is able

to affect the value of the object itself.

Call- by-Reference

In call- b y-reference, the address of the actual parameter is passed to the callee as

the value of the corresponding formal parameter. Uses of the formal parameter

in the code of the callee are implemented by following this pointer to the location

indicated by the caller. Changes to the formal parameter thus appear as changes

to the actual parameter.

If the actual parameter is an expression, however, then the expression is

evaluated before the call, and its value stored in a location of its own. Changes

to the formal parameter change this location, but can have no effect on the
data of the caller.

Call-by-reference is used for "ref" parameters in C++ and is an option in

many other languages. It is almost essential when the formal parameter is a

large object, array, or structure. The reason is that strict call-by-value requires

that the caller copy the entire actual parameter into the space belonging to
the corresponding formal parameter. This copying gets expensive when the

parameter is large. As we noted when discussing call-by-value, languages such
as Java solve the problem of passing arrays, strings, or other objects by copying

only a reference to those objects. The effect is that Java behaves as if it used

call-by-reference for anything other than a basic type such as an integer or real.

1.6. PROGRAMMING LANGUAGE BASICS

Call- by-Name

A third mechanism - call-by-name - was used in the early programming

language Algol 60. It requires that the callee execute as if the actual parameter

were substituted literally for the formal parameter in the code of the callee, as

if the formal parameter were a macro standing for the actual parameter (with

renaming of local names in the called procedure, to keep them distinct). When

the actual parameter is an expression rather than a variable, some unintuitive

behaviors occur, which is one reason this mechanism is not favored today.

1.6.7 Aliasing

There is an interesting consequence of call-by-reference parameter passing or

its simulation, as in Java, where references to objects are passed by value. It

is possible that two formal parameters can refer to the same location; such

variables are said to be aliases of one another. As a result, any two variables,

which may appear to take their values from two distinct formal parameters, can

become aliases of each other, as well.

Example 1.9 : Suppose a is an array belonging to a procedure p, and p calls

another procedure q(x, y) with a call q(a, a) . Suppose also that parameters

are passed by value, but that array names are really references to the location

where the array is stored, as in C or similar languages. Now, x and y have

become aliases of each other. The important point is that if within q there is

an assignment x [lo] = 2, then the value of y[10] also becomes 2.

It turns out that understanding aliasing and the mechanisms that create it

is essential if a compiler is to optimize a program. As we shall see starting in

Chapter 9, there are many situations where we can only optimize code if we

can be sure certain variables are not aliased. For instance, we might determine

that x = 2 is the only place that variable x is ever assigned. If so, then we can

replace a use of x by a use of 2; for example, replace a = x+3 by the simpler

a = 5. But suppose there were another variable y that was aliased to x. Then

an assignment y = 4 might have the unexpected effect of changing x. It might

also mean that replacing a = x+3 by a = 5 was a mistake; the proper value of

a could be 7 there.

1.6.8 Exercises for Section 1.6

Exercise 1.6.1 : For the block-structured C code of Fig. 1.13(a), indicate the

values assigned to w, x, y, and x.

Exercise 1.6.2 : Repeat Exercise 1.6.1 for the code of Fig. 1.13(b).

Exercise 1.6.3 : For the block-structured code of Fig. 1.14, assuming the usual

static scoping of declarations, give the scope for each of the twelve declarations.

CHAPTER 1. INTRODUCTION

i n t w , x , y , z ;

i n t i = 4 ; i n t j = 5 ;

(i n t j = 7 ;

i = 6 ;

w = i + j ;

3
x = i + j ;

{ i n t i = 8 ;

y = i + j ;

i n t w , x, y , z ;

i n t i = 3 ; i n t j = 4;

(i n t i = 5 ;
w = i + j ;

3
x = i + j ;

(i n t j = 6 ;

i = 7 ;
y = i + j ;

(a) Code for Exercise 1.6.1 (b) Code for Exercise 1.6.2

Figure 1.13: Block-structured code

C i n t w, x, y , z ; /* Block B 1 */
C i n t x , z ; /* Block B2 */

(i n t w , x; /* Block B3 */ 3

3
{ i n t w , x ; /* Block B4 */

{ i n t y , z ; /* Block B5 */ 3
3

3

Figure 1.14: Block structured code for Exercise 1.6.3

Exercise 1.6.4 : What is printed by the following C code?

#define a (x+l)

i n t x = 2;

void b() (x = a ; p r i n t f (l l%d\nlf , x) ; 3
void c () (i n t x = 1 ; p r i n t f ("%d\n"), a ;)

void main() (b(); c () ; 3

1.7 Summary of Chapter 1

+ Language Processors. An integrated software development environment

includes many different kinds of language processors such as compilers,

interpreters, assemblers, linkers, loaders, debuggers, profilers.

+ Compiler Phases. A compiler operates as a sequence of phases, each of

which transforms the source program from one intermediate representa-

tion to another.

1.7. SUMMARY OF CHAPTER 1

+ Machine and Assembly Languages. Machine languages were the first-

generation programming languages, followed by assembly languages. Pro-

gramming in these languages was time consuming and error prone.

+ Modeling in Compiler Design. Compiler design is one of the places where

theory has had the most impact on practice. Models that have been found

useful include automata, grammars, regular expressions, trees, and many

others.

+ Code Optimization. Although code cannot truly be "optimized," the sci-

ence of improving the efficiency of code is both complex and very impor-

tant. It is a major portion of the study of compilation.

+ Higher-Level Languages. As time goes on, programming languages take

on progressively more of the tasks that formerly were left to the program-

mer, such as memory management, type-consistency checking, or parallel

execution of code.

+ Compilers and Computer Architecture. Compiler technology influences

computer architecture, as well as being influenced by the advances in ar-

chitecture. Many modern innovations in architecture depend on compilers

being able to extract from source programs the opportunities to use the

hardware capabilities effectively.

+ Software Productivity and Software Security. The same technology that

allows compilers to optimize code can be used for a variety of program-

analysis tasks, ranging from detecting common program bugs to discov-

ering that a program is vulnerable to one of the many kinds of intrusions

that "hackers" have discovered.

+ Scope Rules. The scope of a declaration of x is the context in which uses

of x refer to this declaration. A language uses static scope or lexical scope
if it is possible to determine the scope of a declaration by looking only at

the program. Otherwise, the language uses dynamic scope.

+ Environments. The association of names with locations in memory and

then with values can be described in terms of environments, which map

names to locations in store, and states, which map locations to their

values.

+ Block Structure. Languages that allow blocks to be nested are said to

have block structure. A name x in a nested block B is in the scope of a

declaration D of x in an enclosing block if there is no other declaration

of x in an intervening block.

+ Parameter Passing. Parameters are passed from a calling procedure to

the callee either by value or by reference. When large objects are passed

by value, the values passed are really references to the objects themselves,

resulting in an effective call-by-reference.

38 CHAPTER 1. INTRODUCTION

+ Aliasing. When parameters are (effectively) passed by reference, two for-

mal parameters can refer to the same object. This possibility allows a
change in one variable to change another.

1.8 References for Chapter 1

For the development of programming languages that were created and in use

by 1967, including Fortran, Algol, Lisp, and Simula, see [7]. For languages that

were created by 1982, including C, C++, Pascal, and Smalltalk, see [I].

The GNU Compiler Collection, gcc, is a popular source of open-source

compilers for C, C-t- +, Fortran, Java, and other languages [2]. Phoenix is a

compiler-construction toolkit that provides an integrated framework for build-

ing the program analysis, code generation, and code optimization phases of

compilers discussed in this book [3].
For more information about programming language concepts, we recom-

mend [5,6]. For more on computer architecture and how it impacts compiling,

we suggest [4].

1. Bergin, T. J. and R. G. Gibson, History of Programming Languages, ACM

Press, New York, 1996.

2. http: //gcc .gnu.org/ .

4. Hennessy, J. L. and D. A. Patterson, Computer Organization and De-

sign: The Hardware/Software Interface, Morgan-Kaufmann, San Fran-

cisco, CA, 2004.

5. Scott, M. L., Programming Language Pragmatics, second edition, Morgan-

Kaufmann, San Francisco, CA, 2006.

6. Sethi, R., Programming Languages: Concepts and Constructs, Addison-

Wesley, 1996.

7. Wexelblat, R. L., History of Programming Languages, Academic Press,
New York, 1981.

Chapter 2

A Simple Syntax-Directed

Translator

This chapter is an introduction to the compiling techniques in Chapters 3

through 6 of this book. It illustrates the techniques by developing a working

Java program that translates representative programming language statements

into three-address code, an intermediate representation. In this chapter, the

emphasis is on the front end of a compiler, in particular on lexical analysis,

parsing, and intermediate code generation. Chapters 7 and 8 show how to

generate machine instructions from three-address code.

We start small by creating a syntax-directed translator that maps infix arith-

metic expressions into postfix expressions. We then extend this translator to

map code fragments as shown in Fig. 2.1 into three-address code of the form

in Fig. 2.2.

The working Java translator appears in Appendix A. The use of Java is
convenient, but not essential. In fact, the ideas in this chapter predate the

creation of both Java and C.

<
i n t i ; i n t j ; f loat[100] a ; f l o a t v ; f l o a t x ;

while (t r u e) (

do i = i + l ; while (a[i] < v) ;

do j = j - I ; while (a[j] > v) ;

i f (i >= j) break;

x = a [i l ; a [i l = a [j] ; a [j] = x ;

Figure 2.1: A code fragment to be translated

39

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Figure 2.2: Simplified intermediate code for the program fragment in Fig. 2.1

2.1 Introduction

The analysis phase of a compiler breaks up a source program into constituent

pieces and produces an internal representation for it, called intermediate code.

The synthesis phase translates the intermediate code into the target program.

Analysis is organized around the "syntax" of the language to be compiled.

The syntax of a programming language describes the proper form of its pro-

grams, while the semantics of the language defines what its programs mean; that

is, what each program does when it executes. For specifying syntax, we present

a widely used notation, called context-free grammars or BNF (for Backus-Naur

Form) in Section 2.2. With the notations currently available, the semantics of

a language is much more difficult to describe than the syntax. For specifying

semantics, we shall therefore use informal descriptions and suggestive examples.

Besides specifying the syntax of a language, a context-free grammar can be

used to help guide the translation of programs. In Section 2.3, we introduce

a grammar-oriented compiling technique known as syntax-directed translation.
Parsing or syntax analysis is introduced in Section 2.4.

The rest of this chapter is a quick tour through the model of a compiler

front end in Fig. 2.3. We begin with the parser. For simplicity, we consider the

syntax-directed translation of infix expressions to postfix form, a notation in

which operators appear after their operands. For example, the postfix form of

the expression 9 - 5 + 2 is 95 - 2+. Translation into postfix form is rich enough

to illustrate syntax analysis, yet simple enough that the translator is shown in
full in Section 2.5. The simple translator handles expressions like 9 - 5 + 2,

consisting of digits separated by plus and minus signs. One reason for starting

with such simple expressions is that the syntax analyzer can work directly with

the individual characters for operators and operands.

2.1. INTRODUCTION

Symbol 1 Table 1
Figure 2.3: A model of a compiler front end

t hree-address

code

A lexical analyzer allows a translator to handle multicharacter constructs

like identifiers, which are written as sequences of characters, but are treated

as units called tokens during syntax analysis; for example, in the expression

count + 1, the identifier count is treated as a unit. The lexical analyzer in

Section 2.6 allows numbers, identifiers, and "white space" (blanks, tabs, and

newlines) to appear within expressions.

Next, we consider intermediate-code generation. Two forms of intermedi-

ate code are illustrated in Fig. 2.4. One form, called abstract syntax trees or

simply syntax trees, represents the hierarchical syntactic structure of the source

program. In the model in Fig. 2.3, the parser produces a syntax tree, that

is further translated into three-address code. Some compilers combine parsing

and intermediate-code generation into one component.

body

I

syntax

tree
Parser

source

prograz

assign

/ \

Intermediate
Code

Generator

Figure 2.4: Intermediate code for "do i = i + 1 ; while (a [il < v) ; "

Y

~ ~ ~ i ~ ~ l
Analyzer

The root of the abstract syntax tree in Fig. 2.4(a) represents an entire do-

while loop. The left child of the root represents the body of the loop, which

consists of only the assignment i = i + 1 ; . The right child of the root repre-
sents the condition a Cil < v. An implementation of syntax trees appears in

Section 2.8(a).

The other common intermediate representation, shown in Fig. 2.4(b), is a

tokens
c-

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

sequence of "three-address" instructions; a more complete example appears in

Fig. 2.2. This form of intermediate code takes its name from instructions of

the form x = y op z, where op is a binary operator, y and z the are addresses

for the operands, and x is the address for the result of the operation. A three-

address instruction carries out at most one operation, typically a computation,

a comparison, or a branch.

In Appendix A, we put the techniques in this chapter together to build a

compiler front end in Java. The front end translates statements into assembly-

level instructions.

2.2 Syntax Definition

In this section, we introduce a notation - the "context-free grammar," or

"grammar" for short - that is used to specify the syntax of a language. Gram-

mars will be used throughout this book to organize compiler front ends.

A grammar naturally describes the hierarchical structure of most program-

ming language constructs. For example, an if-else statement in Java can have

the form

if (expression) statement else statement

That is, an if-else statement is the concatenation of the keyword if, an open-

ing parenthesis, an expression, a closing parenthesis, a statement, the keyword

else, and another statement. Using the variable expr to denote an expres-

sion and the variable stmt to denote a statement, this structuring rule can be

expressed as

stmt -+ if (expr) stmt else stmt

in which the arrow may be read as "can have the form." Such a rule is called a

production. In a production, lexical elements like the keyword if and the paren-

theses are called terminals. Variables like expr and stmt represent sequences of

terminals and are called nonterminals.

2.2.1 Definition of Grammars

A context-free grammar has four components:

1. A set of terminal symbols, sometimes referred to as "tokens." The termi-

nals are the elementary symbols of the language defined by the grammar.

2. A set of nonterminals, sometimes called "syntactic variables." Each non-
terminal represents a set of strings of terminals, in a manner we shall
describe.

3. A set of productions, where each production consists of a nonterminal,
called the head or left side of the production, an arrow, and a sequence of

2.2. SYNTAX DEFINITION 43

Tokens Versus Terminals

In a compiler, the lexical analyzer reads the characters of the source pro-

gram, groups them into lexically meaningful units called lexemes, and pro-

duces as output tokens representing these lexemes. A token consists of two

components, a token name and an attribute value. The token names are

abstract symbols that are used by the parser for syntax analysis. Often,

we shall call these token names terminals, since they appear as terminal

symbols in the grammar for a programming language. The attribute value,

if present, is a pointer to the symbol table that contains additional infor-
mation about the token. This additional information is not part of the

grammar, so in our discussion of syntax analysis, often we refer to tokens

and terminals synonymously.

terminals and/or nonterminals, called the body or right side of the produc-

tion. The intuitive intent of a production is to specify one of the written

forms of a construct; if the head nonterminal represents a construct, then

the body represents a written form of the construct.

4. A designation of one of the nonterminals as the start symbol.

We specify grammars by listing their productions, with the productions

for the start symbol listed first. We assume that digits, signs such as < and

<=, and boldface strings such as while are terminals. An italicized name is a

nonterminal, and any nonitalicized name or symbol may be assumed to be a

terminal.' For notational convenience, productions with the same nonterminal

as the head can have their bodies grouped, with the alternative bodies separated

by the symbol 1 , which we read as "or."

Example 2.1 : Several examples in this chapter use expressions consisting of

digits and plus and minus signs; e.g., strings such as 9-5+2, 3-1, or 7. Since a

plus or minus sign must appear between two digits, we refer to such expressions

as "lists of digits separated by plus or minus signs." The following grammar
describes the syntax of these expressions. The productions are:

list -+ list + digit

list -+ list - digit

list -+ digit

digit -+ 0 1 1 1 2) 3) 4 (5 1 6 1 7 1 8 1 9

l~ndividual italic letters will be used for additional purposes, especially when grammars
are studied in detail in Chapter 4. For example, we shall use X, Y, and Z to talk about a

symbol that is either a terminal or a nonterminal. However, any italicized name containing
two or more characters will continue to represent a nonterminal.

44 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The bodies of the three productions with nonterminal l ist as head equiva-

lently can be grouped:

l i s t + l i s t + digit 1 l i s t - digit I digit

According to our conventions, the terminals of the grammar are the symbols

The nonterminals are the italicized names l ist and digit, with l ist being the start

symbol because its productions are given first.

We say a production is for a nonterminal if the nonterminal is the head of

the production. A string of terminals is a sequence of zero or more terminals.

The string of zero terminals, written as E , is called the e m p t y string2

2.2.2 Derivations

A grammar derives strings by beginning with the start symbol and repeatedly

replacing a nonterminal by the body of a production for that nonterminal. The

terminal strings that can be derived from the start symbol form the language

defined by the grammar.

Example 2.2 : The language defined by the grammar of Example 2.1 consists

of lists of digits separated by plus and minus signs. The ten productions for the

nonterminal digit allow it to stand for any of the terminals 0 ,1 , . . . ,9. From

production (2.3), a single digit by itself is a list. Productions (2.1) and (2.2)

express the rule that any list followed by a plus or minus sign and then another

digit makes up a new list.

Productions (2.1) to (2.4) are all we need to define the desired language.

For example, we can deduce that 9-5+2 is a l ist as follows.

a) 9 is a l ist by production (2.3), since 9 is a digit.

b) 9-5 is a l ist by production (2.2), since 9 is a l ist and 5 is a digit.

c) 9-5+2 is a l ist by production (2.1), since 9-5 is a l ist and 2 is a digit.

Example 2.3 : A somewhat different sort of list is the list of parameters in a

function call. In Java, the parameters are enclosed within parentheses, as in

the call max(x, y) of function max with parameters x and y. One nuance of such
lists is that an empty list of parameters may be found between the terminals
(and). We may start to develop a grammar for such sequences with the

productions:

2~echnically, e can be a string of zero symbols from any alphabet (collection of symbols).

2.2. SYNTAX DEFINITION

call + id (optparams)

optparams -+ params I 6

params -+ params , param I param

Note that the second possible body for optpamms ("optional parameter list")

is t, which stands for the empty string of symbols. That is, optparams can be

replaced by the empty string, so a call can consist of a function name followed
by the two-terminal string () . Notice that the productions for params are

analogous to those for dist in Example 2.1, with comma in place of the arithmetic

operator + or -, and param in place of digit. We have not shown the productions

for param, since parameters are really arbitrary expressions. Shortly, we shall

discuss the appropriate productions for the various language constructs, such

as expressions, statements, and so on.

Parsing is the problem of taking a string of terminals and figuring out how

to derive it from the start symbol of the grammar, and if it cannot be derived

from the start symbol of the grammar, then reporting syntax errors within the

string. Parsing is one of the most fundamental problems in all of compiling;

the main approaches to parsing are discussed in Chapter 4. In this chapter, for

simplicity, we begin with source programs like 9-5+2 in which each character

is a terminal; in general, a source program has multicharacter lexemes that are

grouped by the lexical analyzer into tokens, whose first components are the

terminals processed by the parser.

2.2.3 Parse Trees

A parse tree pictorially shows how the start symbol of a grammar derives a

string in the language. If nonterminal A has a production A -+ XYZ, then a

parse tree may have an interior node labeled A with three children labeled X,
Y, and Z, from left to right:

/ 1 \
X Y Z

Formally, given a context-free grammar, a parse tree according to the gram-

mar is a tree with the following properties:

1. The root is labeled by the start symbol.

2. Each leaf is labeled by a terminal or by e.

3. Each interior node is labeled by a nonterminal.

4. If A is the nonterminal labeling some interior node and XI , Xz, . . . , Xn are

the labels of the children of that node from left to right, then there must

be a production A -+ X1X2 . . Xn. Here, X1, X2, . . . , X, each stand

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Tree Terminology

Tree data structures figure prominently in compiling.

A tree consists of one or more nodes. Nodes may have labels, which

in this book typically will be grammar symbols. When we draw a

tree, we often represent the nodes by these labels only.

Exactly one node is the root. All nodes except the root have a unique

parent; the root has no parent. When we draw trees, we place the

parent of a node above that node and draw an edge between them.

The root is then the highest (top) node.

If node N is the parent of node M , then M is a child of N. The

children of one node are called siblings. They have an order, from
the left, and when we draw trees, we order the childen of a given

node in this manner.

A node with no children is called a leaf. Other nodes - those with

one or more children - are interior nodes.

A descendant of a node N is either N itself, a child of N , a child of

a child of N, and so on, for any number of levels. We say node N is

an ancestor of node M if M is a descendant of N.

for a symbol that is either a terminal or a nonterminal. As a special case,

if A -+ c is a production, then a node labeled A may have a single child

labeled E .

Example 2.4: The derivation of 9-5+2 in Example 2.2 is illustrated by the

tree in Fig. 2.5. Each node in the tree is labeled by a grammar symbol. An

interior node and its children correspond to a production; the interior node

corresponds to the head of the production, the children to the body.

In Fig. 2.5, the root is labeled list, the start symbol of the grammar in

Example 2.1. The children of the root are labeled, from left to right, list, +,

and digit. Note that

list -+ list + digit

is a production in the grammar of Example 2.1. The left child of the root is

similar to the root, with a child labeled - instead of +. The three nodes labeled

digit each have one child that is labeled by a digit.

From left to right, the leaves of a parse tree form the yield of the tree, which

is the string generated or derived from the nonterminal at the root of the parse

2.2. SYNTAX DEFINITION

list

list -----' 1 ' d i g i t

Figure 2.5: Parse tree for 9-5+2 according to the grammar in Example 2.1

list
/

I
digit

I

tree. In Fig. 2.5, the yield is 9-5+2; for convenience, all the leaves are shown

at the bottom level. Henceforth, we shall not necessarily line up the leaves in

this way. Any tree imparts a natural left-to-right order to its leaves, based on

the idea that if X and Y are two children with the same parent, and X is to

the left of Y, then all descendants of X are to the left of descendants of Y.
Another definition of the language generated by a grammar is as the set of

strings that can be generated by some parse tree. The process of finding a parse

tree for a given string of terminals is called parsing that string.

\
digit

2.2.4 Ambiguity

We have to be careful in talking about the structure of a string according to a

grammar. A grammar can have more than one parse tree generating a given

string of terminals. Such a grammar is said to be ambiguous. To show that a

grammar is ambiguous, all we need to do is find a terminal string that is the

yield of more than one parse tree. Since a string with more than one parse tree

usually has more than one meaning, we need to design unambiguous grammars

for compiling applications, or to use ambiguous grammars with additional rules

to resolve the ambiguities.

Example 2.5 : Suppose we used a single nonterminal string and did not dis-
tinguish between digits and lists, as in Example 2.1. We could have written the

grammar

string -+ string + string I s t k g - string 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 / 9

Merging the notion of digit and list into the nonterminal string makes superficial

sense, because a single digit is a special case of a list.
However, Fig. 2.6 shows that an expression like 9-5+2 has more than one

parse tree with this grammar. The two trees for 9-5+2 correspond to the two

ways of parenthesizing the expression: (9-5) +2 and 9- (5+2) . This second
parenthesization gives the expression the unexpected value 2 rather than the

customary value 6. The grammar of Example 2.1 does not permit this inter-

pretation.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

string

/ I \
string + string

/ I \ I
string - string 2

I I
9 5

string - string

I / I \
9 string + string

I I
5 2

Figure 2.6: Two parse trees for 9-5+2

2.2.5 Associativity of Operators

By convention, 9+5+2 is equivalent to (9+5)+2 and 9-5-2 is equivalent to

(9-5)-2. When an operand like 5 has operators to its left and right, con-

ventions are needed for deciding which operator applies to that operand. We

say that the operator + associates to the left, because an operand with plus signs

on both sides of it belongs to the operator to its left. In most programming

languages the four arithmetic operators, addition, subtraction, multiplication,

and division are left-associative.

Some common operators such as exponentiation are right-associative. As

another example, the assignment operator = in C and its descendants is right-

associative; that is, the expression a=b=c is treated in the same way as the

expression a= (b=c) .
Strings like a=b=c with a right-associative operator are generated by the

following grammar:

right + letter = right I letter

letter -+ a I b I . 1 z

The contrast between a parse tree for a left-associative operator like - and

a parse tree for a right-associative operator like = is shown by Fig. 2.7. Note

that the parse tree for 9-5-2 grows down towards the left, whereas the parse

tree for a=b=c grows down towards the right.

2.2.6 Precedence of Operators

Consider the expression 9+5*2. There are two possible interpretations of this

expression: (9+5) *2 or 9+ (5*2). The associativity rules for + and * apply to

occurrences of the same operator, so they do not resolve this ambiguity. Rules

defining the relative precedence of operators are needed when more than one

kind of operator is present.
We say that * has higher precedence than + if * takes its operands before +

does. In ordinary arithmetic, multiplication and division have higher precedence

than addition and subtraction. Therefore, 5 is taken by * in both 9+5*2 and

9*5+2; i.e., the expressions are equivalent to 9+ (5*2) and (9*5) +2, respectively.

2.2. SYNTAX DEFINITION

list - digit

/ I \ I
list - digit 2

I I
digit 5

I
9

letter = right

I / I \
a letter = right

I I
b letter

Figure 2.7: Parse trees for left- and right-associative grammars

Example 2.6 : A grammar for arithmetic expressions can be constructed from

a table showing the associativity and precedence of operators. We start with

the four common arithmetic operators and a precedence table, showing the

operators in order of increasing precedence. Operators on the same line have

the same associativity and precedence:

left-associative: + -
left-associative: * /

We create two nonterminals expr and t e r m for the two levels of precedence,

and an extra nonterminal factor for generating basic units in expressions. The

basic units in expressions are presently digits and parenthesized expressions.

factor + digit I (expr)

Now consider the binary operators, * and /, that have the highest prece-

dence. Since these operators associate to the left, the productions are similar

to those for lists that associate to the left.

t e r m + t e r m * factor

I t e r m / factor

I factor

Similarly, expr generates lists of terms separated by the additive operators.

expr + expr + t e r m

I expr - t e r m

I t e r m

The resulting grammar is therefore

expr -+ expr + t e r m (expr - t e r m (t e r m

t e r m -+ t e r m * factor I t e r m / factor (factor

factor --+ digit 1 (expr)

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Generalizing the Expression Grammar of Example 2.6

We can think of a factor as an expression that cannot be "torn apart" by

any operator. By "torn apart," we mean that placing an operator next

to any factor, on either side, does not cause any piece of the factor, other

than the whole, to become an operand of that operator. If the factor is a

parenthesized expression, the parentheses protect against such "tearing,"

while if the factor is a single operand, it cannot be torn apart.

A term (that is not also a factor) is an expression that can be torn

apart by operators of the highest precedence: * and /, but not by the
lower-precedence operators. An expression (that is not a term or factor)

can be torn apart by any operator.

We can generalize this idea to any number n of precedence levels. We

need n+ 1 nonterminals. The first, like factor in Example 2.6, can never be

torn apart. Typically, the production bodies for this nonterminal are only

single operands and parenthesized expressions. Then, for each precedence

level, there is one nonterminal representing expressions that can be torn

apart only by operators at that level or higher. Typically, the productions

for this nonterminal have bodies representing uses of the operators at that

level, plus one body that is just the nonterminal for the next higher level.

With this grammar, an expression is a list of terms separated by either + or

- signs, and a term is a list of factors separated by * or / signs. Notice that

any parenthesized expression is a factor, so with parentheses we can develop
expressions that have arbitrarily deep nesting (and arbitrarily deep trees).

Example 2.7: Keywords allow us to recognize statements, since most state-

ment begin with a keyword or a special character. Exceptions to this rule

include assignments and procedure calls. The statements defined by the (am-

biguous) grammar in Fig. 2.8 are legal in Java.

In the first production for stmt, the terminal id represents any identifier.

The productions for expression are not shown. The assignment statements

specified by the first production are legal in Java, although Java treats = as an

assignment operator that can appear within an expression. For example, Java

allows a = b = c, which this grammar does not.
The nonterminal stmts generates a possibly empty list of statements. The

second production for stmts generates the empty list E . The first production

generates a possibly empty list of statements followed by a statement.

The placement of semicolons is subtle; they appear at the end of every body

that does not end in stmt. This approach prevents the build-up of semicolons
after statements such as if- and while-, which end with nested substatements.

When the nested substatement is an assignment or a do-while, a semicolon will
be generated as part of the substatement.

2.2. SYNTAX DEFINITION

stmt -+ id = expression ;

(if (expression) stmt

I if (expression) stmt else stmt

I while (expression) stmt

I do stmt while (expression) ;

I C stmts 3

stmts -+ stmts stmt

I t:

Figure 2.8: A grammar for a subset of Java statements

2.2.7 Exercises for Section 2.2

Exercise 2.2 .I : Consider the context-free grammar

S -+ S S + I S S * 1 a

a) Show how the string aa+a* can be generated by this grammar.

b) Construct a parse tree for this string.

c) What language does this grammar generate? Justify your answer.

Exercise 2.2.2 : What language is generated by the following grammars? In

each case justify your answer.

Exercise 2.2.3 : Which of the grammars in Exercise 2.2.2 are ambiguous?

Exercise 2.2.4 : Construct unambiguous context-free grammars for each of

the following languages. In each case show that your grammar is correct.

a) Arithmetic expressions in postfix notation.

b) Left-associative lists of identifiers separated by commas.

c) Right-associative lists of identifiers separated by commas.

d) Arithmetic expressions of integers and identifiers with the four binary

operators +, -, *, /.

52 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

! e) Add unary plus and minus to the arithmetic operators of (d).

Exercise 2.2.5 :

a) Show that all binary strings generated by the following grammar have

values divisible by 3. Hint. Use induction on the number of nodes in a
parse tree.

num += I1 I 1001 I numO I numnum

b) Does the grammar generate all binary strings with values divisible by 3?

Exercise 2.2.6 : Construct a context-free grammar for roman numerals.

2.3 Syntax-Directed Translation

Syntax-directed translation is done by attaching rules or program fragments to

productions in a grammar. For example, consider an expression expr generated

by the production

expr += expr, + term

Here, expr is the sum of the two subexpressions expr, and term. (The subscript

in expr, is used only to distinguish the instance of expr in the production body

from the head of the production). We can translate expr by exploiting its

structure, as in the following pseudo-code:

translate expr, ;
translate term;
handle +;

Using a variant of this pseudocode, we shall build a syntax tree for expr in

Section 2.8 by building syntax trees for exprl and term and then handling + by

constructing a node for it. For convenience, the example in this section is the

translation of infix expressions into postfix notation.

This section introduces two concepts related to syntax-directed translation:

Attributes. An attribute is any quantity associated with a programming
construct. Examples of attributes are data types of expressions, the num-

ber of instructions in the generated code, or the location of the first in-

struction in the generated code for a construct, among many other pos-

sibilities. Since we use grammar symbols (nonterminals and terminals)
to represent programming constructs, we extend the notion of attributes

from constructs to the symbols that represent them.

2.3. SYNTAX-DIRECTED TRANSLATION 53

(Syntax-directed) translation schemes. A translation scheme is a notation

for attaching program fragments to the productions of a grammar. The

program fragments are executed when the production is used during syn-

tax analysis. The combined result of all these fragment executions, in

the order induced by the syntax analysis, produces the translation of the

program to which this analysis/synthesis process is applied.

Syntax-directed translations will be used throughout this chapter to trans-

late infix expressions into postfix notation, to evaluate expressions, and to build

syntax trees for programming constructs. A more detailed discussion of syntax-

directed formalisms appears in Chapter 5 .

2.3.1 Postfix Notation

The examples in this section deal with translation into postfix notation. The

postfix notation for an expression E can be defined inductively as follows:

1. If E is a variable or constant, then the postfix notation for E is E itself.

2. If E is an expression of the form El o p E2, where o p is any binary

operator, then the postfix notation for E is Ei Eh op, where Ei and Eh
are the postfix notations for El and E2, respectively.

3. If E is a parenthesized expression of the form (El), then the postfix

notation for E is the same as the postfix notation for El .

Example 2.8 : The postfix notation for (9-5)+2 is 95-2+. That is, the trans-

lations of 9, 5, and 2 are the constants themselves, by rule (1). Then, the

translation of 9-5 is 95- by rule (2). The translation of (9-5) is the same

by rule (3). Having translated the parenthesized subexpression, we may apply

rule (2) to the entire expression, with (9-5) in the role of El and 2 in the role

of E2, to get the result 95-2+.
As another example, the postfix notation for 9- (5+2) is 952+-. That is, 5+2

is first translated into 52+, and this expression becomes the second argument

of the minus sign.

No parentheses are needed in postfix notation, because the position and

arity (number of arguments) of the operators permits only one decoding of a

postfix expression. The "trick" is to repeatedly scan the postfix string from the

left, until you find an operator. Then, look to the left for the proper number

of operands, and group this operator with its operands. Evaluate the operator

on the operands, and replace them by the result. Then repeat the process,
continuing to the right and searching for another operator.

Example 2.9 : Consider the postfix expression 952+-3*. Scanning from the

left, we first encounter the plus sign. Looking to its left we find operands 5 and

2. Their sum, 7, replaces 52+, and we have the string 97-3*. Now, the leftmost

54 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

operator is the minus sign, and its operands are 9 and 7. Replacing these by

the result of the subtraction leaves 23*. Last, the multiplication sign applies to

2 and 3, giving the result 6.

2.3.2 Synthesized Attributes

The idea of associating quantities with programming constructs-for example,

values and types with expressions-can be expressed in terms of grammars. We

associate attributes with nonterminals and terminals. Then, we attach rules to

the productions of the grammar; these rules describe how the attributes are

computed at those nodes of the parse tree where the production in question is

used to relate a node to its children.

A syntax-directed definition associates

1. With each grammar symbol, a set of attributes, and

2. With each production, a set of semantic rules for computing the values of

the attributes associated with the symbols appearing in the production.

Attributes can be evaluated as follows. For a given input string x, construct

a parse tree for x. Then, apply the semantic rules to evaluate attributes at each

node in the parse tree, as follows.

Suppose a node N in a parse tree is labeled by the grammar symbol X . We

write X.a to denote the value of attribute a of X at that node. A parse tree

showing the attribute values at each node is called an annotated parse tree. For

example, Fig. 2.9 shows an annotated parse tree for 9-5+2 with an attribute

t associated with the nonterminals expr and term. The value 95-2+ of the

attribute at the root is the postfix notation for 9-5+2. We shall see shortly how

these expressions are computed.

Figure 2.9: Attribute values at nodes in a parse tree

An attribute is said to be synthesized if its value at a parse-tree node N is de-

termined from attribute values at the children of N and at N itself. Synthesized

2.3. SYNTAX-DIRECTED TRANSLATION 55

attributes have the desirable property that they can be evaluated during a sin-

gle bottom-up traversal of a parse tree. In Section 5.1.1 we shall discuss another

important kind of attribute: the "inherited" attribute. Informally, inherited at-

tributes have their value at a parse-tree node determined from attribute values

at the node itself, its parent, and its siblings in the parse tree.

Example 2.10 : The annotated parse tree in Fig. 2.9 is based on the syntax-

directed definition in Fig. 2.10 for translating expressions consisting of digits

separated by plus or minus signs into postfix notation. Each nonterminal has a

string-valued attribute t that represents the postfix notation for the expression

generated by that nonterminal in a parse tree. The symbol 1 1 in the semantic

rule is the operator for string concatenation.

expr -+ exprl + term

expr -+ exprl - term

expr -+ term

term -+ 0

term -+ I

. . .

term -+ 9

expr.t = exprl.t 1 1 term.t 1 1 '+I

expr.t = exprl.t) I term.t 1 1 I-'
expr.t = term.t

term.t = '0'

term.t = 'I'

. . .

term.t = '9'

Figure 2.10: Syntax-directed definition for infix to postfix translation

The postfix form of a digit is the digit itself; e.g., the semantic rule associ-

ated with the production term -+ 9 defines term.t to be 9 itself whenever this

production is used at a node in a parse tree. The other digits are translated

similarly. As another example, when the production expr -+ term is applied,

the value of term.t becomes the value of expr.t.

The production expr -+ exprl + term derives an expression containing a plus

operator.3 The left operand of the plus operator is given by expr, and the right

operand by term. The semantic rule

associated with this production constructs the value of attribute expr.t by con-

catenating the postfix forms expr, .t and term.t of the left and right operands,

respectively, and then appending the plus sign. This rule is a formalization of
the definition of "postfix expression."

3 ~ n this and many other rules, the same nonterminal (e x p r , here) appears several times.
The purpose of the subscript 1 in expr l is to distinguish the two occurrences of e x p r in the
production; the "1" is not part of the nonterminal. See the box on "Convention Distinguishing
Uses of a Nonterminal" for more details.

56 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Convention Distinguishing Uses of a Nonterminal

In rules, we ~ftem have a need to distinguish among several uses of the

same nonterminal in the head and/or body of a production; e.g., see Ex-

ample 2.10. The reason is that in the parse tree, different nodes labeled

by the same nonterminal usually have different values for their transla-

tions. We shall adopt the following convention: the nonterminal appears

unsubscripted in the head and with distinct subscripts in the body. These

are all occurrences of the same nonterminal, and the subscript is not part

of its name. However, the reader should be alert to the difference be-

tween examples of specific translations, where this convention is used, and

generic productions like A -+ X1X2,. . . , X,, where the subscripted X's

represent an arbitrary list of grammar symbols, and are not instances of

one particular nonterminal called X .

2.3.3 Simple Syntax-Directed Definitions

The syntax-directed definition in Example 2.10 has the following important

property: the string representing the translation of the nonterminal at the head

of each production is the concatenation of the translations of the nonterminals

in the production body, in the same order as in the production, with some

optional additional strings interleaved. A syntax-directed definition with this

property is termed simple.

Example 2.1 1 : Consider the first production and semantic rule from Fig. 2.10:

PRODUCTION SEMANTIC RULE

expr -+ exprl + term expr.t = expr, .t I I term.t I I '+'
(2.5)

Here the translation expr.t is the concatenation of the translations of expr, and

term, followed by the symbol +. Notice that exprl and term appear in the

same order in both the production body and the semantic rule. There are no

additional symbols before or between their translations. In this example, the

only extra symbol occurs at the end.

When translation schemes are discussed, we shall see that a simple syntax-

directed definition can be implemented by printing only the additional strings,

in the order they appear in the definition.

2.3.4 Tree Traversals

Tree traversals will be used for describing attribute evaluation and for specifying

the execution of code fragments in a translation scheme. A traversal of a tree

starts at the root and visits each node of the tree in some order.

2.3. SYNTAX-DIRE CTED TRANSLATION

A depth-first traversal starts at the root and recursively visits the children

of each node in any order, not necessarily from left to right. It is called "depth-

first" because it visits an unvisited child of a node whenever it can, so it visits

nodes as far away from the root (as "deep") as quickly as it can.
The procedure visit(N) in Fig. 2.11 is a depth first traversal that visits the

children of a node in left-to-right order, as shown in Fig. 2.12. In this traversal,

we have included the action of evaluating translations at each node, just before

we finish with the node (that is, after translations at the children have surely

been computed). In general, the actions associated with a traversal can be

whatever we choose, or nothing at all.

procedure visit(node N) {
for (each child C of N, from left to right) {

visit (C) ;

1
evaluate semantic rules at node N;

Figure 2.11: A depth-first traversal of a tree

Figure 2.12: Example of a depth-first traversal of a tree

A syntax-directed definition does not impose any specific order for the eval-

uation of attributes on a parse tree; any evaluation order that computes an

attribute a after all the other attributes that a depends on is acceptable. Syn-

thesized attributes can be evaluated during any bottom-up traversal, that is, a

traversal that evaluates attributes at a node after having evaluated attributes

at its children. In general, with both synthesized and inherited attributes, the

matter of evaluation order is quite complex; see Section 5.2.

2.3.5 Translation Schemes

The syntax-directed definition in Fig. 2.10 builds up a translation by attaching
strings as attributes to the nodes in the parse tree. We now consider an alter-

native approach that does not need to manipulate strings; it produces the same

translation increment ally, by executing program fragments.

58 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Preorder and Postorder Traversals

Preorder and postorder traversals are two important special cases of depth-

first traversals in which we visit the children of each node from left to right.

Often, we traverse a tree to perform some particular action at each
node. If the action is done when we first visit a node, then we may refer

to the traversal as a preorder traversal. Similarly, if the action is done
just before we leave a node for the last time, then we say it is a postorder

traversal of the tree. The procedure visit(N) in Fig. 2.11 is an example of

a postorder traversal.

Preorder and postorder traversals define corresponding orderings on

nodes, based on when the action at a node would be performed. The
preorder of a (sub)tree rooted at node N consists of N, followed by the

preorders of the subtrees of each of its children, if any, from the left. The

postorder of a (sub)tree rooted at N consists of the postorders of each of

the subtrees for the children of N, if any, from the left, followed by N

itself.

A syntax-directed translation scheme is a notation for specifying a transla-

tion by attaching program fragments to productions in a grammar. A transla-

tion scheme is like a syntax-directed definition, except that the order of evalu-

ation of the semantic rules is explicitly specified.

Program fragments embedded within production bodies are called semantic

actions. The position at which an action is to be executed is shown by enclosing

it between curly braces and writing it within the production body, as in

rest -+ + t e r m {print('+')) restl

We shall see such rules when we consider an alternative form of grammar for

expressions, where the nonterminal rest represents "everything but the first

term of an expression." This form of grammar is discussed in Section 2.4.5.

Again, the subscript in restl distinguishes this instance of nonterminal rest in

the production body from the instance of rest at the head of the production.

When drawing a parse tree for a translation scheme, we indicate an action

by constructing an extra child for it, connected by a dashed line to the node

that corresponds to the head of the production. For example, the portion of

the parse tree for the above production and action is shown in Fig. 2.13. The

node for a semantic action has no children, so the action is performed when

that node is first seen.

Example 2.12: The parse tree in Fig. 2.14 has print statements at extra

leaves, which are attached by dashed lines to interior nodes of the parse tree.
The translation scheme appears in Fig. 2.15. The underlying grammar gen-

erates expressions consisting of digits separated by plus and minus signs. The

2.3. SYNTAX-DIRECTED TRANSLATION

Figure 2.13: An extra leaf is constructed for a semantic action

actions embedded in the production bodies translate such expressions into post-

fix notation, provided we perform a left-to-right depth-first traversal of the tree

and execute each print statement when we visit its leaf.

xprK. \ \ .
\

+ term iprint ('+I))

A e x 7 - - - - - - -- . / \ \ \ \

expr - term {print (I-') 2 {print ('2'))

I / \ \ \ \

term 5 {print ('5'))

/ \ \ \ \

9 {print ('9'))

Figure 2.14: Actions translating 9-5+2 into 95-2+

expr -+ expr, + term {print('+'))

expr -+ expr, - term {print('-'))

e x + term

term + 0 {print ('0'))

term + 1 {print (' 1'))
. . .

term -+ 9 {print ('9'))

Figure 2.15: Actions for translating into postfix notation

The root of Fig. 2.14 represents the first production in Fig. 2.15. In a
postorder traversal, we first perform all the actions in the leftmost subtree of

the root, for the left operand, also labeled expr like the root. We then visit the
leaf + at which there is no action. We next perform the actions in the subtree

for the right operand term and, finally, the semantic action {print('+')) at the

extra node.

Since the productions for term have only a digit on the right side, that digit

is printed by the actions for the productions. No output is necessary for the
production expr + term, and only the operator needs to be printed in the

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

action for each of the first two productions. When executed during a postorder

traversal of the parse tree, the actions in Fig. 2.14 print 95-2+.

Note that although the schemes in Fig. 2.10 and Fig. 2.15 produce the same

translation, they construct it differently; Fig. 2.10 attaches strings as attributes

to the nodes in the parse tree, while the scheme in Fig. 2.15 prints the translation

incrementally, through semantic actions.

The semantic actions in the parse tree in Fig. 2.14 translate the infix ex-

pression 9-5+2 into 95-2+ by printing each character in 9-5+2 exactly once,

without using any storage for the translation of subexpressions. When the out-

put is created incrementally in this fashion, the order in which the characters

are printed is significant.

The implementation of a translation scheme must ensure that semantic ac-

tions are performed in the order they would appear during a postorder traversal

of a parse tree. The implementation need not actually construct a parse tree

(often it does not), as long as it ensures that the semantic actions are per-

formed as if we constructed a parse tree and then executed the actions during

a postorder traversal.

2.3.6 Exercises for Section 2.3

Exercise 2.3.1 : Construct a syntax-directed translation scheme that trans-

lates arithmetic expressions from infix notation into prefix notation in which an

operator appears before its operands; e.g., -xy is the prefix notation for x - y.

Give annotated parse trees for the inputs 9-5+2 and 9-5*2.

Exercise 2.3.2 : Construct a syntax-directed translation scheme that trans-

lates arithmetic expressions from postfix notation into infix notation. Give

annotated parse trees for the inputs 95-2* and 952*-.

Exercise 2.3.3 : Construct a syntax-directed translation scheme that trans-

lates integers into roman numerals.

Exercise 2.3.4 : Construct a syntax-directed translation scheme that trans-

lates roman numerals into integers.

Exercise 2.3.5 : Construct a syntax-directed translation scheme that trans-

lates postfix arithmetic expressions into equivalent infix arithmetic expressions.

2.4 Parsing

Parsing is the process of determining how a string of terminals can be generated

by a grammar. In discussing this problem, it is helpful to think of a parse tree
being constructed, even though a compiler may not construct one, in practice.

However, a parser must be capable of constructing the tree in principle, or else

the translation cannot be guaranteed correct.

2.4. PARSING

This section introduces a parsing method called "recursive descent," which

can be used both to parse and to implement syntax-directed translators. A com-

plete Java program, implementing the translation scheme of Fig. 2.15, appears

in the next section. A viable alternative is to use a software tool to generate

a translator directly from a translation scheme. Section 4.9 describes such a

tool - Yacc; it can implement the translation scheme of Fig. 2.15 without

modification.

For any context-free grammar there is a parser that takes

